匹配滤波器
- 格式:ppt
- 大小:508.50 KB
- 文档页数:19
1.5.2. 匹配滤波器最佳接收机还可以有另外的一种结构,即匹配滤波器。
为了说明匹配滤波器的基本原理,我们从这样一个直观的分析入手。
我们知道,通信系统的误码率与输出的信噪比有关,接收端输出信噪比越大,则系统的误码率越小。
因此,如果在每次判决前,输出的信噪比都是最大的,则该系统一定是误码率最小的系统。
遵从这种考虑原则,我们可以得到匹配滤波器的概念。
接收机通过匹配滤波器使输出信噪比最大。
一、匹配滤波器原理假设线性滤波器的输入端是信号与噪声的叠加)()()(t n t x t s +=,且假设噪声)(t n 是白噪声,其功率谱密度2)(0N f P n =,信号的频谱为)(f X 。
问题:设计一个滤波器使输出端的信噪比在某时刻0t 达到最大。
假设该滤波器的系统响应函数为)(f H ,系统冲击响应为)(t h ,则 输出信号)()()(0t n t s t y O += 其中,⎰∞∞--=τττd t h x t s )()()(0,)()()(f H f X f S o =⎰∞∞-=df e f H f X t s ftj o π2)()()(所以在0t 时刻,信号的功率为200|)(|t s 输出噪声的功率谱密度20|)(|2)(f H N f P on =输出噪声平均功率为⎰∞∞-=df f H N Pn 20|)(|2所以0t 时刻输出的信噪比为:⎰⎰∞∞-∞∞-==dff H N df ef H f X Pnt s r ft j 20222000|)(|2|)()(||)(|0π根据Schwarts 不等式,⎰⎰⎰∞∞-∞∞-∞∞-≤df f Y dff X df f Y f X 222|)(||)(||)()(|02022|)(|N E N df f X r s =≤⎰∞∞-当02*)()(ft j e f KX f H π-=时等式成立。
因此,如果设计一个滤波器,它的系统响应函数为 02*)()(ft j ef KX f H π-=时,滤波器输出信噪比最大。
匹配滤波器设计仿真匹配滤波器是一种用于信号处理和通信系统中的重要滤波器设计。
它可以用于信号匹配、频率选择和滤波等应用。
在设计匹配滤波器之前,我们需要了解滤波器设计的基本原理和方法。
本文将介绍匹配滤波器的设计过程,并通过仿真实例展示其性能。
首先,我们需要确定滤波器的频率响应。
频率响应是描述滤波器在不同频率下输出的响应的函数。
常见的频率响应包括低通、高通、带通、带阻等。
根据系统要求,选择适当的频率响应。
其次,选择合适的滤波器类型。
常见的滤波器类型有FIR滤波器和IIR滤波器。
FIR滤波器是一种无反馈滤波器,采用有限长冲激响应的方式实现滤波功能。
IIR滤波器是一种有反馈滤波器,采用递归方式实现滤波功能。
根据需求,选择适合的滤波器类型。
然后,选择适当的滤波器参数。
滤波器参数包括滤波器阶数、滤波器系数等。
滤波器阶数反映了滤波器的复杂程度,一般情况下,滤波器的阶数越高,性能越好,但计算和实现的复杂度也越高。
滤波器系数是滤波器的输出与输入之间的系数关系。
通过调整滤波器参数,可以实现滤波器设计的灵活性和性能优化。
最后,进行匹配滤波器的仿真。
在现代工具和平台的支持下,匹配滤波器的仿真已经变得非常方便和高效。
可以使用MATLAB、Simulink、LabVIEW等软件工具进行匹配滤波器的仿真。
通过仿真可以评估滤波器的性能、验证设计的正确性和优化设计参数。
下面我们通过一个仿真实例来演示匹配滤波器的设计和仿真过程。
假设我们要设计一个低通滤波器,频率响应为0-1kHz,滤波器类型为FIR滤波器,滤波器阶数为10,采样率为10kHz。
首先,确定滤波器的频率响应。
由于是低通滤波器,我们希望在1kHz以下的频率范围内的信号通过,而在1kHz以上的频率范围内的信号被截止。
可以选择一个合适的频率响应函数,例如一阶巴特沃斯低通滤波器函数。
然后,选择滤波器类型。
这里选择使用FIR滤波器,因为FIR滤波器具有线性和时移不变的特点,适用于许多实际应用。
实验二匹配滤波器一、 实验目的1、了解匹配滤波器的工作原理。
2、掌握二相编码脉压信号的压缩比、主旁瓣比、码元宽度的测量方法。
3、加深和巩固课堂所学有关距离分辨力、横向滤波器和匹配滤波方面的知识。
二、 实验仪器示波器、直流稳压电源、万用表三、 实验原理二相编码信号的匹配滤波器为:12()()()H f f f μμ=⋅式中,1()f μ为子脉冲匹配滤波器,为横向滤波器(即抽头加权延时线求和网络)。
二相编码信号的匹配滤波器结构如图一所示。
图一 二相编码信号的匹配滤波器结构子脉冲匹配滤波器频率特性为:1()()j fTf c fT e πμ=为横向滤波器频率特性为:12()(1)2()P j f kT P k k f c eπμ----==∑式中,P 为码长,T 为码元宽度,k c 为二相编码信号。
在此,采用数字信号处理省略了子脉冲匹配滤波器,所以脉压输出不再是三角波而是方波。
横向滤波器(即抽头加权延时线求和网络)在此采用超大规模集成电路完成。
四、 实验电路该实验箱能够产生矩形脉冲、m 序列、PN 截断码、巴克码、互补码等多种信号以及其对应的匹配滤波输出。
通过按键的选择,可以观察各种信号形式以及对应的匹配滤波输出结果,测量各种信号的脉压参数。
试验箱OUT1端口为原始波形信号输出,OUT2端口为信号匹配滤波输出。
数码管用以显示当前信号波形以及频率指示,K1~K8用来选择波形以及当前信号频率。
其含义如下:1、按键K1:数码管显示P。
单脉冲。
周期1ms;脉冲宽度30us。
2、按键K2:数码管显示SP。
脉冲串。
周期1ms;脉冲宽度10us。
一个周期有7个单脉冲。
3、按键K3:数码管显示31。
31位m序列。
无限长;码元宽度1us。
4、按键K4:数码管显示P31。
31位PN截断码。
周期1ms;码元宽度1us。
5、按键K5:数码管显示b13。
13位巴克码。
周期1ms;脉冲宽度30us。
6、按键K6:数码管显示cb47。
匹配滤波器
匹配滤波器是一种数字信号处理中常用的滤波器。
它用于检测信号中特定的频率成分或者特定的信号模式。
匹配滤波器的输入信号和滤波器的内部参考信号进行相关运算,输出的结果表示输入信号和参考信号的匹配程度。
匹配滤波器的数学表示可以用以下公式表示:
y(t) = ∫[x(t) * h(t-T)]dt
其中,y(t)是输出信号,x(t)是输入信号,h(t)是滤波器的内部参考信号,*表示卷积运算,T表示滤波器的延时。
匹配滤波器的应用领域包括雷达信号处理、通信系统、图像处理等。
在雷达信号处理中,匹配滤波器可以用来检测目标的回波信号;在通信系统中,匹配滤波器可以用来接收和识别特定的信号;在图像处理中,匹配滤波器可以用来检测图像中的特定模式。
总之,匹配滤波器是一种可以用来检测特定信号频率成分或者模式的滤波器,广泛应用于各个领域的信号处理中。
匹配滤波器的设计班级:通信091学号:0930334105姓名:顾浙杰1、匹配滤波器的设计要点:(1)接收端事先明确知道,发送信号分别以何种形状的波形来表示发送的1、0码符号或多元符号;(2)接收端针对各符号波形,分别提供与其相适应的接受电路,并且并且各唯一对应适配的一种传输的信号波形,能使输出信噪比达到最大,判决风险最小; (3)对未知相位的已调波,采用附有包络检测的匹配滤波器接收方式。
2、匹配滤波器的传递特性设计:设接收滤波器的传输函数为H(f),冲激响应为h(t),滤波器输入码元s(t)的持续时间为Ts ,信号和噪声之和r(t)为式中,s(t) 为信号码元,n(t) 为 高斯白噪声。
并设信号码元s(t)的频谱密度函数为S(f),噪声n(t)的双边功率谱密度为P n (f) = n 0/2,n 0为噪声单边功率谱密度。
由于假定滤波器是线性的,根据线性电路叠加定理,当滤波器输入电压r(t)中信号和噪声两部分时,滤波器的输出电压y(t)中也包含相应的输出信号和输出噪声两部分,即 y(t)= s 0(t)+ n 0(t)这时的输出噪声功率N o 等于在抽样时刻t 0上,输出信号瞬时功率与噪声平均功率之比为为了求出r 0的最大值,我们利用施瓦兹不等式求 r 0的最大值()()()0sr t s t n t t T =+≤≤2()*()()()()()()()()==0=n /2由于:为输出功率谱密度,为输入功率谱密度,Y R R Y R R P f H f H f P f H f P f P f P f P f ⎰⎰∞∞-∞∞-=⋅=df f H n df n f H N o 2002)(22)(02220020()()()()2j ft o oH f S f e df s t r n N H f df π∞-∞∞-∞==⎰⎰⎰⎰⎰∞∞-∞∞-∞∞-≤dx x f dx x f dx x f x f 2221221)()()()(等号成立的条件是(k 为任意常数)若在白噪声干扰的背景下,按上式设计的线性滤波器,将能在给定时刻t 0上获得最大输出信噪比(2E/n 0)。