简单的线性规划 说课稿 教案
- 格式:doc
- 大小:49.48 KB
- 文档页数:3
高中数学《简单的线性规划》说课稿范文一、教材分析:1、教材的地位与作用:线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。
本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。
通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。
2、教学重点与难点:重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。
难点:在可行域内,用图解法准确求得线性规划问题的最优解。
二、目标分析:教材的重点难点:小说的主人公虽然是小英子。
但节选部分主要是写主人公的爸爸对她严中有爱的教育和爸爸去世时她的人生体验,显然爸爸是一个怎样的人显的很重要。
本文的难点在于文章没有正面提及爸爸的病危、濒死,写得很含蓄,但文中处处有伏笔。
在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。
知识目标:1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行能力培养目标:(1)通过引导学生分析帝国主义国家之间的矛盾,培养学生正确把握矛盾的变化,学会抓住矛盾主要方面的方法。
(2)通过搜集和整合信息,训练学生史论结合,论证问题的能力。
皮亚杰在认知学说中提山:“幼儿在游戏中扩大认识,形成概念,思维变得灵活,能用实物、动作和语言来表现周围世界。
”所以在这一环节中游戏由浅入深:当幼儿问几点时,熊妈妈不回答,只出示数字让大家判断:看到单数,就独自站好不动,看到双数,就找一个同伴相抱。
这个游戏是活动的重点环节,它让幼儿用不同的肢体动作,进一步感受和表现单、双数的不同之处。
游戏的难度加入了,趣味性也更浓厚了,好奇、好动是幼儿的特点,这一环节的游戏使幼儿的情绪高涨,活动的白动性、积极性明显增强。
域和最优解等概念;2、理解线性规划问题的图解法;3、会利用图解法求线性目标函数的最优解.能力目标:1、在应用图解法解题的过程中培养学生的观察能力、理解能力。
第七章第四节 简单的线性规划1.本节知识结构:2.学习目的要求(1)会用二元一次不等式(组)表示平面区域,能画出给定的不等式(组)表示的平面区域; (2)了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念; (3)了解线性规划问题的图解法,并能应用线性规划的方法解决一些简单的实际问题,以提高解决实际问题的能力.3.教学任务分析(1)本小节介绍了用二元一次不等式(组)表示平面区域和简单的线性规划问题. 重点是二元一次不等式(组)表示平面区域,相对困难的是把实际问题转化成线性规划问题,并给出解答,解决这一困难的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.(2)教科书首先借助于“献爱心活动”的具体例子,抽象出线性规划的模型:“在条件⎪⎩⎪⎨⎧≥≤+≤+-.1,3753,01x y x y x下,求y x z 35+=的最大值的问题”.在此基础上,提出了研究二元一次不等式的含义的必要性. 这样安排的目的,是使学生体会从具体问题到数学问题的过程,并由此明确所研究问题的基本模型.(3)在探求二元一次不等式所表示的平面区域时,图形计算器或计算机是一个十分有用的工具. 教科书先安排研究“献爱心活动”中的不等式01<+-y x 的含义,在得到它的几何意义是表示直线01=+-y x 的一侧的平面区域后,再给出了不等式01>+-y x 所表示的平面区域,并由此不加证明地给出了一般的二元一次不等式0<++C By Ax (或0>++C By Ax )表示平面区域的结论,说明了怎样确定不等式0<++C By Ax (或0>++C By Ax )表示直线Ax +By +C =0的哪一侧区域. 最后举例说明怎样用二元一次不等式(组)表示平面区域.在“二元一次不等式表示平面区域”中,教科书用点集的观点来分析直线,并提出点的集合}{01),(>-+y x y x表示什么图形的问题. 用集合的观点和语言来分析和描述几何图形问题,常能使问题更加清楚、准确,在教学中应注意运用这种观点和语言. 但是,集合语言有时会使叙述比较繁复,所以,使用时要注意适当性.(4)教学中,要使学生注意,Ax +By +C >0表示的平面区域是直线Ax +By +C =0的某一侧且不包括边界直线Ax +By +C =0;而Ax +By +C ≥0所表示的平面区域包括边界直线Ax +By +C =0.实际上,{),(y x | Ax +By +C ≥}0={),(y x | Ax +By +C >}0∪{),(y x | Ax +By +C=}0.由于对在直线Ax +By +C =0的同一侧的所有点(x ,y ),实数Ax +By +C 的符号相同,所以只需在此直线的某侧任取一点(x 0,y 0),把它的坐标代入Ax +By +C ,由其值的符号即可判断Ax +By +C >0表示直线的哪一侧. (5)教科书利用解决“献爱心活动”这个具体的线性规划问题,说明了线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等有关的基本概念,介绍了线性规划问题的图解方法,最后举例说明了线性规划在实际中的简单应用. 在实际问题的求解中,不必让学生去具体地扣这些概念的名称,只要求能找出线性约束条件,并画出线性约束条件表示的平面区域,然后求出线性目标函数的最优解即可.(6)简单的线性规划问题中的可行域,大多数情况下就是一个二元一次不等式(组)表示的平面区域,因而解决简单的线性规划问题,是以二元一次不等式(组)表示平面区域的知识为基础的. 在具体画二元一次不等式(组)表示的平面区域时,可充分利用图形计算器或计算机.(7)教科书在求“献爱心活动”这个线性规划问题中的线性目标函数y x z 35+=的最大值时,借助了一组直线5x +3y =z ,指出直线往右平移时z 随之增大,这一点未作严格说明,只是直观地承认它. 在教学中可以略作说明:当直线往右平移时,直线在x 轴上的截距随之增大. 而直线5x +3y =z 在x 轴上的截距为5z ,当5z 增大时,z 也随之增大. 当然也可以用直线在y 轴上的截距3z来说明. (8)教科书中安排的例8所反映的线性规划问题是:在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务,这是常见的一类线性规划问题. 例9是另一类常见的线性规划问题:给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源完成该项任务.例8所反映的线性规划问题的可行域是下图中的阴影部分:但例9所反映的线性规划问题的可行域,却是下图阴影部分中两个坐标都是整数的点(称为整点):因此,例9要求的最优解是整点)9,3(B 、)8,4(C ,而不是点)539,518(A ,这也是实际中常常用到的. 此外,对于最优解的近似值,要根据实际问题的具体情形取不足近似值或过剩近似值. (9)本小节安排的“数学实验”,不仅仅是让学生了解二元一次不等式0>++C By Ax (或0<++C By Ax )所表示的平面区域的另一种判定方法,更重要的是让学生通过解决这个问题,培养自己用运动的观点解决含参数的问题的基本方法. 在指导学生研究这一问题时,可启发学生利用图形计算器或计算机的测算与追踪功能去解决问题.4.信息技术在教学设计中的应用 (1)二元一次不等式表示的平面区域①用图形计算器或计算机画出直线l :01=+-y x .在直线l 上任取一点P ,测量出其坐标(x , y ),计算1+-y x 的值,我们发现,点P 的坐标是二元一次方程01=+-y x 的解(如下图(1)).(1) (2) (3)②在直线l 的右下方任取一点P ,测量出其坐标(x , y ),并计算1+-y x 的值,我们发现,点P 的坐标满足二元一次不等式01>+-y x (如上图(2)).③在直线l 的左上方时任取一点P ,测量其坐标(x , y ),并计算1+-y x 的值,我们发现,点P 的坐标满足二元一次不等式01<+-y x (如上图(3)).(2)探求最优解下面我们借助于信息技术工具,探求二元一次函数y x z 35+=在下述条件下的最优解:⎪⎩⎪⎨⎧≥≤+≤+-.1,3753,01x y x y x①用几何画板先作出上述不等式表示的平面区域,然后作出含参数z 的直线l :z y x =+35(如下图).②改变z 的值,观察直线l 的变化,我们发现: 当z 增大时,直线l 向右平移;当11<z 或35>z 时,直线l 与公共区域无公共点;当3511≤≤z 时,直线l 与公共区域有公共点,如35=z 时,直线l 在直线l 2的位置,此时l 经过点A (4,5);又如11=z 时,直线l 在直线l 1的位置,此时l 经过点B (1,2).③根据上述分析,我们可得当l 经过点A (4,5)时,二元一次函数y x z 35+=取最大值35;当l 经过点B (1,2)时,二元一次函数y x z 35+=取最小值11.。
高中数学说课稿《简单线性计划问题》一.说教材至此,咱们将一个具体的事物"温度计"通过抽象而归纳为一个数学概念"数轴",使学生初步体验到一个从实践到理论的熟悉进程.1.本节课主要内容是线性计划的意义和线性约束条件、线性目标函数、可行域、可行解、最优解等概念,按照约束条件成立线性目标函数。
应用线性计划的图解法解决一些实际问题。
2.地位作用:线性计划是数学计划中理论较完整、方式较成熟、应用较普遍的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。
简单的线性计划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。
通过这部份内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培育学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。
3.教学目标圆的方程是学生在初中学习了圆的概念和大体性质后,又掌握了求曲线方程的一般方式的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习进程中不免会出现困难.另外学生在探讨问题的能力,合作交流的意识等方面有待增强.我的理解是,小结归纳不该该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手腕,为充分发挥学生的主题作用,从学习的只是、方式、体验是那个方面进行归纳,我设计了这么三个问题:(1)知识与技术:了解线性计划的意义和线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能按照约束条件成立线性目标函数。
了解并初步应用线性计划的图解法解决一些实际问题。
(2)进程与方式:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中包含的一些数学模式进行思考和作出判断。
(3)情感、态度与价值观:体会数形结合、等价转化等数学思想,慢慢熟悉数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。
4.重点与难点重点:理解和用好图解法难点:如何用图解法寻觅线性计划的最优解。
课题:7.4 简单的线性规划(一)教材分析:本节课是在学生学习了直线与直线方程的关系,初步了解了二元一次方程的几何意义的基础上,引领学生进一步研究二元一次不等式的几何意义,为后面学习用图解法求二元函数最值问题创造条件.使学生体会数与形的转化过程,逐步加强学生应用几何图形解决代数问题的意识.基于以上分析,在教学中应充分利用多媒体课件向学生展示代数条件与几何图形的对应关系,加强学生对问题的了解,培养学生学习数学的兴趣.教学目标:1.使学生了解二元一次不等式表示平面区域;2. 掌握根据二元一次不等式(组)正确做出平面区域的方法,培养学生作图的能力.3.让学生通过观察、联想,体验数学的作用,培养学生学习数学的兴趣,培养学生勤于思考、勇于探索和团结协作的精神。
教学重点:二元一次不等式表示平面区域.教学难点:1.二元一次不等式表示平面区域;2.根据二元一次不等式(组)正确做出平面区域.教法分析:师生互动,探究、研讨、辨析、总结鉴于高二学生已具有较好的数学基础知识和较强的分析问题、解决问题的能力,本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法.首先设置“问题”情境,激发学生解决问题的欲望;其次提供观察、探索、交流的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识.恰当的利用多媒体课件辅助教学,直观生动地呈现学生思维的形成过程,从而提高教学效率.在教学过程中,注重学生的探索经历和发现新知的体验,使其形成自己对数学知识的理解和有效的学习策略.:二元一次不等式表示平面区域的作图步骤:⑴作出直线;⑵取特殊点;⑶代入表示的平面区域.不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.小结:1.二元一次不等式表示平面区域;2.二元一次不等式(组)表示平面区域的作图方法.作业:1.阅读教材P63-P65;2.习题7.4 1.《简单的线性规划(一)》教案说明“简单的线性规划”是高中《数学》第二册(上)第七章第四节的内容,这是《新大纲》中增加的一个新内容,反映了《新大纲》对数学知识应用的重视.线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题.本大节内容实质上是在学习了直线方程的基础上,介绍直线方程的一个简单应用,它虽然只是规划论中极小的一部分,但这部分内容,也能体现数学的工具性、应用性,同时渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法.通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,激发学生学习数学的兴趣,应用数学的意识,提高认识问题、分析问题和解决实际问题的能力.《大纲》和教科书在这部分内容之前安排了简易逻辑、平面向量等教学内容,把过去教材中位于这部分内容之后的充要条件移入第一章“集合与简易逻辑”中,客观上使这部分内容有了新的思维角度和处理方法的可能.数学思想是对于数学知识的理性的、本质的、高度抽象和概括的认识,带有普遍的指导意义,蕴涵于运用数学方法分析、处理和解决数学问题的过程之中.数学方法是研究或解决数学问题并使之达到目的的手段、方式、途径或程序.数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深对于具体数学知识的理解和掌握.本节内容重视与之密切相关的数形结合思想和坐标方法的教学.在教学中注意把同一数学对象在数量关系和空间形式这两方面结合起来思考,由形思数,由数思形,互相联想,达到相互转化并使问题得以解决.对于某些数学问题,通过引进坐标系,把问题的条件和结论用点的坐标表示为某些数量关系式,然后用代数方法进行解决.在讨论二元一次不等式表示平面区域时候,应用集合观点来描述直线和被直线划分所得的平面区域,并用集合的语言来表达这些点的集合,比较准确和简明.本节内容是本小节的重点.教科书首先借助于一个具体例子,提出一个有关二元一次不等式表示平面区域的问题和猜想,然后证明这一猜想,并不加证明地给出一般的二元一次不等式表示平面区域的结论,说明怎样确定不等式表示直线0Ax By C ++=的哪儿一侧区域,举例说明怎样用二元一次不等式(组)表示平面区域.依据教材的内容,教学中有两个问题有待解决.一个是如何理解二元一次不等式与平面区域的对应关系,另一个是在第一个问题解决之后如何准确作出二元一次不等式所对应的平面区域.如果直接告诉学生一般的二元一次不等式表示平面区域的结论和作出区域的方法,学生可能也能解决一些用二元一次不等式平面区域的题目,但是很难真正理解数形结合的思想方法,并自觉地将这种思想方法应用于其他的数学知识.普通高中《数学课程标准》指出:在高中数学教学中,教师应鼓励学生积极参与教学活动,包括思维的参与和行为的参与.课堂上,既要有教师的讲授和指导,也要有学生的自主探索与合作交流.教师要创设适当的问题情境,鼓励学生发现数学的规律和问题解决的途径,使他们经历知识形成的过程.创设情境必须紧紧围绕意义建构这一目的.本节课开篇借助北京奥运会开幕式上的一幕作为引入,创设了一个导情引思的情境.平面直角坐标系的建立,将形(点)与数(坐标)联系在一起,为奥运场馆、大脚印与坐标平面内的点的对应关系,为区域内的点与坐标代入代数式的结果的对应,做了很好的铺垫.学生已经学过了直线上的点的坐标都满足二元一次方程,而且以二元一次方程的解为坐标的点都在直线上.在学生得出直线方程后,如何使教材的认知结构(不等关系)和学生的认知(相等关系)构建和谐统一?在教学设计上,我采用以问题为中心,在老师的引导下,通过学生独立思考、讨论、交流等形式,对数学问题进行探究、求解、延伸和发展,通过发现问题、提出问题、解决问题来揭示二元一次不等式与平面区域的关系.对猜想的证明,要从两方面来进行.在直线3460x y -+=左上方区域内的点的坐标都满足3460x y -+<,而且在直线3460x y -+=右下方区域内的点的坐标都满足3460x y -+>.学生在证明的时候,往往会只证明其中的一方面,而忽略对另一方面的证明.只有两方面都得到证明,才能用特殊点来确定平面区域.在实际教学中,处理一些问题时,注意不纠缠于一些细枝末节问题的讨论,重在让学生应用基本的思想方法去解决问题.这样,学生是应用数学思想在思考问题,解决问题,避免了复杂的记忆和一般的讨论.正是基于这样的考虑,教材在给出猜想的证明后,直接给出了一般的二元一次不等式表示平面区域的结论.通过对引入的问题的回顾与反思,其实作出二元一次不等式表示的平面区域的方法步骤,已经很明确了.我们将教材中的例1加以变化后作为练习给出,目的是巩固作平面区域的步骤,区分边界的虚实.本节课的教学设计始终以问题为中心,将学生吸引到教师设置的问题之中,启发学生探讨、辨析,主动地参与探索学习.使学生经历了一个完整的问题提出、解决、发展的过程.通过这节课的教学,不仅仅使学生会用二元一次不等式表示平面区域,更让学生亲眼目睹数学过程形象而生动的特点,亲身体会数学活动的乐趣,培养学生利用已知数学知识解决未知问题的创新意识,理解知识的来龙去脉,领会知识的产生、发展、形成过程,真正体现知识与技能、过程与方法、情感态度与价值观的新课程理念.。
高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
7.4 简单的线性规划教学目标(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学建议一、知识结构教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.二、重点、难点分析本小节的重点是二元一次不等式(组)表示平面的区域.对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.难点是把实际问题转化为线性规划问题,并给出解答.对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.三、教法建议(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也可.(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.线性规划教学设计方案(一)教学目标使学生了解并会作二元一次不等式和不等式组表示的区域.重点难点了解二元一次不等式表示平面区域.教学过程【引入新课】我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?【二元一次不等式表示的平面区域】1.先分析一个具体的例子我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴于是所以因为点,是L上的任意点,所以,对于直线右上方的任意点,都成立同理,对于直线左下方的任意点,都成立所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.是直线右上方的平面区域(如图)类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.2.二元一次不等式和表示平面域.(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.【应用举例】例1 画出不等式表示的平面区域解;先画直线(画线虚线)取原点(0,0),代入,∴∴原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.例2 画出不等式组表示的平面区域分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.课堂练习作出下列二元一次不等式或不等式组表示的平面区域.(1)(2)(3)(4)(5)总结提炼1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法.3.二元一次不等式组表示的平面区域.布置作业1.不等式表示的区域在的().A.右上方 B.右下方 C.左上方 D.左下方2.不等式表示的平面区域是().3.不等式组表示的平面区域是().4.直线右上方的平面区域可用不等式表示.5.不等式组表示的平面区域内的整点坐标是.6.画出表示的区域.答案:1.B 2.D 3.B 4. 5.(-1,-1)6.线性规划教学设计方案(二)教学目标巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点理解二元一次不等式表示平面区域是教学重点.如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.【线性规划】先讨论下面的问题设,式中变量x、y满足下列条件①求z的最大值和最小值.我们先画出不等式组①表示的平面区域,如图中内部且包括边界.点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上.作一组和平等的直线可知,当l在的右上方时,直线l上的点满足.即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t最大,以经过点的直线,所对应的t最小,所以在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的最大值和最小值问题.线性约束条件除了用一次不等式表示外,有时也有一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.【应用举例】例1 解下列线性规划问题:求的最大值和最小值,使式中的x、y满足约束条件解:先作出可行域,见图中表示的区域,且求得.作出直线,再将直线平移,当的平行线过B点时,可使达到最小值,当的平行线过C点时,可使达到最大值.通过这个例子讲清楚线性规划的步骤,即:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找出最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值.例2 解线性规划问题:求的最大值,使式中的x、y满足约束条件.解:作出可行域,见图,五边形OABCD表示的平面区域.作出直线将它平移至点B,显然,点B的坐标是可行域中的最优解,它使达到最大值,解方程组得点B的坐标为(9,2).∴这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为,约束条件不变,则z的最大值在点C(3,6)处取得.事实上,可行域内最优解对应的点在何处,与目标函数所确定的直线的斜率有关.就这个例子而言,当的斜率为负数时,即时,若(直线的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当时,点C处使z取得最大值(比如:时),若,可请同学思考.随堂练习1.求的最小值,使式中的满足约束条件2.求的最大值,使式中满足约束条件答案:1.时,.2.时,.总结提炼1.线性规划的概念.2.线性规划的问题解法.布置作业1.求的最大值,使式中的满足条件2.求的最小值,使满足下列条件答案:1.2.在可行域内整点中,点(5,2)使z最小,扩展资料线性规划的解课本题中出现的线性规划都有唯一的最优解,其实线性规划的解有许多不同的情况,除了有唯一的最优解的情况外,还有(1)无可行解,从而无最优解.这就是约束条件不等式组无解的情况.(2)有无穷多个最优解例2我们用图解法求解.由于目标函数等高线和可行域的边界线平行,沿着目标函数值增加方向平行移动目标函数的等高线,最终停留在直线上,所以线段AB上的所有点都是最优解.线性规划如果有最优解,只会是有唯一最优解或者有无穷多个最优解这两种情况,不会出现其他情况,这就是下面的命题.命题1 如果线性规划有两个不同的最优解,那么对任意,是最优解.这个命题的证明可以在任何一本线性规划的书中找到,这里就不再证明了.事实上证明是平凡的,只要注意到在线段上,利用线性性质,读者就可以自己证明.(3)有可行解,无最优解.例3我们用图解法求解.从图中可以看出随着目标函数等高线的移动,目标函数值会越来越大,没有上界.有的书上称之为无界解.无界解的情况只会出现在可行域是开区域的时候.如果可行域是闭区域,就一定是有界的,于是有命题2 如果统性规划可行域是闭区域,那么一定有最优解.只要注意到线性函数是连续函数,上面的命题就是“有界闭区域上连续函数可以达到最大值或最小值”这一定理的一个推理.从上面的例子中我们可以看出,如果有最优解,那么就有可行域的顶点是最优解.所以也可以通过比较可行域顶点的目标函数值来求线性规划的最优解.例如,中的顶点的目标函数值是;的目标函数值是3;的目标函数值是于是通过比较可以知道是最优解.线性规划的单纯形算法,就是一种从顶点到顶点并使得目标函数值不断改进的迭代算法,由于可行域的顶点只有有限多个,所以经过有限次送代就可以求出线性规划的最优解.单纯形算法可以求解一般的(变量多于两个)线性规划问题.许多实际问题中变量和约束的个数都很多,有些规模比较大的问题中变量和约束的个数甚至可以上万,这样的问题当然是无法用手工计算的,需要用计算机和专门的软件求解.对于规模不是太大(如几十个变量)的线性规划,现在常用的数学软件如Mathematica,Matlab都可以解.下面介绍如何用Matematica解线性规划.用Mathematica解线性规划用的是ConstrainedMax或者函数,这两个函数的格式如下:[目标函数,][目标函数,]由于软件是用C语言编写的,所以它的函数带有C语言的风格.{}表示表格,和函数中都有两个表格,第一个表格是约束条件的表,第二个表格是变量表,表格中的项用逗号分隔.要指出的是由于一般的线性规划中的变量都是非负变量,这两个函数的变量也要求有非负约束,但是非负约束可以不在约束条件表格中列出.例如求解线性规划只要输入In[2]:=计算机就会给出计算结果最优值2,最优解:斜体的和自动加上的表示输入,表示输出,中的2表示行号.用求例l中的规划问题,在许多实际问题中都要求线性规划的最优整数解,课本中也出现了这样的例子和习题.但是笔者以为求最优整数解不应该成为教学的重点.因为求整数解的问题属于整数规划的范畴,而整数规划和线性规划是运筹学中两个不同的分支.教材的作者显然是知道这一点的,所以在教材的处理上回避了如何去求整数解这个问题.作者这样做一方面告诉大家求整数解不应该成为教学的重点,另一方面也给学生留下了一个自由发展的空间.事实上对于课本上出现的这样非常简单的问题只要在非整数优解的附近找出整数可行解,通过比较它们目标函数值的大小就可以求出最优整数解,学生完全可以自己想办法解决.在科普杂志《科学的美国人》(Scientific American)1981年第6期上有一篇介绍线性规划的文章,文章用了下面的一个例子(本文中的数量单位有改动):某啤酒厂生产两种啤酒,其中淡色啤酒A桶,啤酒B桶.粮食、啤酒花和麦芽是三种有约束的资源,每天分别可以提供480斤、160两和11 90斤.假设生产一桶淡色啤酒需要粮食5斤、啤酒花4两、麦芽20斤;生产一桶啤酒需要粮食15斤、啤酒花4两、麦芽35斤.售出后每桶淡色啤酒可获利13元,每桶啤酒可获利23元.问A,B等于多少时工厂的利润最大.这个例子的线性规划模型是和课本中的例子相比较这个例子有两个优点,一是它的数据更接近实际数据,有真实感,同时由于数字较大求出的最优解不是整数的问题被相对淡化了;另一方面例子中三种约束的单位不同,这在实际问题中经常出现,例子可以告诉学生列规划时并不需要统一各种约束条件的单位.笔者建议在教学中可以使用类似的例子.选自《中学数学月刊》2002第八期选节探究活动利润的线性规划[问题]某企业1997年的利润为5万元,1998年的利润为7万元,1999年的利润为81元,请你根据以上信息拟定两个不同的利润增长直线方程,从而预2001年企业的利润,请问你帮该企业预测的利润是多少万?[分析]首先应考虑在平面直角坐标系中如何描述题中信息:“1997年的利润为5万元,1998年的利润为7万元,1999年的利润为8万元”,在确定这三点坐标后,如何运用这三点坐标,是仅用其中的两点,还是三点信息的综合运用,运用时要注意有其合理性、思考的方向可以考虑将通过特殊点的直线、平行某个线段的直线、与某些点距离最小的直线作为预测直线等等.建立平面直角坐标系,设1997年的利润为5万元对应的点为(0,5),1998年的利润为 7万元及1999年的利润为 8万元分别对应点(1,7)和(2,8),那么①若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为13万元.②若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为11万元.③若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为10万元.④若将过及线段的中点的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑤若将过及的重心(注:为3年的年平均利润)的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑥若将过及的重心的直线作为预测直线,其方程为:,这样预测2001年的利润为10.667万元.⑦若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为9万元.⑧若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为11.5万元.⑨若将过点且以线段的斜率为斜率的直线,作为预测直线,则预测直线的方程为;,这样预测2001年的利润为12万元.⑩若将过且以线段的斜率与线段的斜率的平均数为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为12万元.如此这样,还有其他方案,在此不—一列举.[思考](1)第⑤种方案与第④种方案的结果完全一致,这是为什么?(2)第⑦种方案中,的现实意义是什么?(3)根据以上的基本解题思路,请你思考新的方案.如方案⑥中,过的重心,找出以为斜率的直线中与两点的距离的平方和最小的直线作为预测直线.(4)根据以上结论及你自己的答案估计一下利润的范围,你预测的利润频率出现最多的是哪一个值?你认为将你预测的结论作怎样的处理,使之得到的利润预测更为有效?如果不要求用线性预测,你能得出什么结果?习题精选一、填空题1.点到直线的距离等于4,且在不等式表示的平面区域内,则点的坐标为__。
《简单的线性规划》说课稿麟游县中学仇银萍一、内容及其解析本节课是《普通高中课程标准实验教科书数学》北师大版必修5第四章《不等式》中4.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。
简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.二、学生学情分析本节课学生在学习了不等式、直线方程的基础上,通过实例理解了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性规划的限制条件,将实际问题转化成数学问题。
从数学知识上看,问题涉及多个已知数据,多个字母变量、多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。
三、教学目标设计:(1)知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;理解线性规划问题的图解法,并能应用它解决一些简单的实际问题;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力。
(3)情态、态度与价值观:让学生体会数学源于生活,服务于生活;体会数学活动充满着探索与创造,培养学生动手操作、勇于探索的精神。
简单的线性规划教案教案标题:简单的线性规划教案教学目标:1. 了解线性规划的基本概念和特点。
2. 理解线性规划问题的求解过程。
3. 能够利用线性规划方法解决简单的实际问题。
所需材料:1. 铅笔、纸张、计算器。
2. 多个线性规划问题的案例。
教学步骤:引入阶段:1. 引导学生思考:什么是线性规划?线性规划有哪些应用场景?2. 提出教学目标,并解释线性规划的定义和特点。
探究阶段:3. 解释线性约束条件和目标函数的概念。
4. 利用一个简单的例子说明线性规划问题的形式和表示方法。
5. 引导学生分析并列出问题的线性约束条件和目标函数。
实践阶段:6. 将学生分成小组,每个小组选择一个实际问题,并将其转化为线性规划问题。
7. 指导学生列出问题的线性约束条件和目标函数。
8. 引导学生运用计算器或手动计算,求解其线性规划问题。
9. 学生分享并讨论解决过程和结果。
巩固阶段:10. 提供更多复杂的线性规划问题案例,让学生独立尝试解答,并讨论解决策略和结果。
11. 简要总结线性规划的基本原理和步骤。
拓展阶段:12. 引导学生思考更高级的线性规划问题,如带有整数约束或非线性目标函数的问题。
13. 推荐相关参考书籍和网上学习资源供学生深入学习。
评估方式:1. 在实践阶段,观察学生的合作和参与情况。
2. 收集学生独立解答的线性规划问题的答案,并进行评估。
教学反思:根据学生的反馈和评估结果,适时调整教学步骤和内容,确保学生能够理解和应用线性规划的基本原理。
课程篇一、教学指导思想与理论依据线性规划是利用数学为工具,来研究在一定的人、财、物、时、空等资源条件下,如何安排,达到用最少的资源取得最大的效益。
目前所学的线性规划只是规划论中极小的一部分,但这部分内容,也能体现数学的工具性、应用性,为学生今后解决实际问题提供了一种重要的解题方法———数学建模法。
重点是介绍线性规划的有关概念和利用图解法求解。
难点是图解法求最优解的探索过程。
二、教学背景分析1.教学内容分析本课时是本节内容的第二课时,是本节的核心内容。
第一课时即二元一次不等式表示平面区域,为本课时的学习做好了知识上的准备。
第三课时线性规划的应用更是以本课时内容为基础展开的。
2.学生情况分析本节课是对二元一次不等式的深化和再认识、再理解,进一步了解二元一次不等式组在解决实际问题中的应用。
如果直接向学生介绍目标函数的几何意义,考虑到他们的接受能力,用数学游戏来渗透,设置一系列问题,激发学生的探索欲望。
3.教学方式:自主探究、合作探究及教师引导相结合。
4.教学手段:计算机辅助教学。
三、教学目标设计1.知识与技能:了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;会用图解法求线性目标函数的最大值、最小值。
2.情感、态度与价值观:培养学生观察、联想、作图和渗透化归,用数学的意识和解决实际问题的能力。
通过对“线性规划”的历史及应用的大致介绍,使学生感受数学的文化价值。
四、教学过程设计(一)引入:组织学生做选盒子的游戏活动师:在下图的方格中,每列(x )与每行(y )的交汇处都放有一个盒子,每次你只能选其中的一个盒子,每个盒子对应一个分值,即为你的得分,而且该分值与盒子所在的行数和列数有关,且每次的关系式在变化,你会选哪个盒子分值最高第一次:分值=x+y (即:列数+行数)第二次:分值=y -2x (即:行数-列数×2)0123454321y x y x 图1图20123454321师:出图3,在图中找出函数b =2x +y 的最大值01234567894321x y 1011图3学生沿用上面计算的方法显然很复杂,于是学生的思维产生“结点”,引出课题,提出何为线性(即为一次的),怎么规划(即求函数的最值),这是本节课的研究重点。
简单的线性规划
教学目标:
1.解线性约束条件、线性目标函数、线性规划概念; 2.在线性约束条件下求线性目标函数的最优解; 3.了解线性规划问题的图解法。
教学重点:线性规划问题。
教学难点:线性规划在实际中的应用。
教学过程:
1.复习回顾:
上一节,我们学习了二元一次不等式表示的平面区域,这一节,我们将应用这一知识来解决线性规划问题.所以,我们来简要回顾一下上一节知识.(略) 2.讲授新课:
例1:设z =2x +y ,式中变量满足下列条件:
⎩
⎪⎨⎪⎧x -4y ≤-33x +5y ≤25x ≥1 ,求z 的最大值和最小值. 解:变量x ,y 所满足的每个不等式都表示一个平面 区域,不等式组则表示这些平面区域的公共 区域.(如右图).
作一组与l 0:2x +y =0平行的直线l : 2x +y =t .t ∈R可知:当l 在l 0的右上方时,直线l 上的点(x ,y )满足2x +y >0,即t >0,而且,直线l 往右平移时,t 随之增大,在经过不等式组①所表示的公共区域内的点且平行于l 的直线中,以经过点A (5,2)的直线l 2所对应的t 最大,以经过点B (1,1)的直线l 1所对应的t 最小.所以
z max =2×5+2=12 z min =2×1+1=3
说明:例1目的在于给出下列线性规划的基本概念.
线性规划的有关概念:
①线性约束条件:
在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.
②线性目标函数:
关于x 、y 的一次式z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:
满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.
使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.
Ex :P 841,2,3
例2:在x ≥0,y ≥0,3x +y ≤3及2x +3y ≤6的条件下,试求x -y 的最值。
解:画出不等式组⎩
⎨⎧3x +y ≤32x +3y ≤6
x ≥0y ≥0
的图形
设x -y =t ,则y =x -t
由图知直线l :y =x -t 过A (1,0)时纵截距 最小,这时t =1;过B (0,2)时纵截距最大,
这时t =-2. 所以,x -y 的最大值为1,最小值为-2。
例3:某工厂生产甲、乙两种产品。
已知生产甲种产品1t 需耗A 种矿石10t 、B 种矿石5t 、煤4t ;生产乙
种产品1t 需耗A 种矿石4t 、B 种矿石4t 、煤9t 。
每1t 甲种产品的利润是600元,每1t 乙种产品的利润是1000元。
工厂在生产这两种产品的计划中要求消耗A 种矿石不超过300t 、B 种矿石不超过200t 、煤不超过360t 。
甲、乙两种产品应各生产多少(精确到0.1t ),能使利润总额达到最大? 消 产 耗
量 品
资 源 甲产品 (1t ) 乙产品 (1t ) 资源限额 (t ) A 种矿石(t ) 10 4 300 B 种矿石(t ) 5 4 200 煤(t ) 4 9 360 利润(元)
600
1000
解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么
⎩
⎪⎨⎪⎧10x +4y ≤3005x +4y ≤200
4x +9y ≤360x ≥0y ≥0
z =600x +1000y 作出以上不等式组所表示的平面区域,即可行域。
作直线l :600x +1000y =0,即直线l :3x +5y =0
把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大。
此时 z =600x +1000y 取最大值。
解方程组⎩⎨⎧5x +4y =200
4x +9y =360
得M 的坐标为 x =360
29 ≈12.4,
y =100029
≈34.4
答:应生产甲产品约12.4t ,乙产 品34.4t ,能使利润总额达到最大。
3.课堂练习:
课本P 84 1,2,3 4.课堂小结:
通过本节学习,要求大家掌握线性规划问题,并能解决简单的实际应用.。