高三数学理科试卷
- 格式:pdf
- 大小:1.17 MB
- 文档页数:11
高三年级数学(理科)试卷2第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}{}{}====Q P ,Q P ,b a Q a og P 则若0,,1,32A. {}0,3B. {}103,,C. {}203,,D. {}2103,,,2. 如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为 A.13 B.12 C.16 D.13.“=2πθ”是“曲线()sin y x θ=+关于y 轴对称”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.在等差数列{}()()135792354n a a a a a a ++++=中,,则此数列前10项的和10S =A.45B.60C.75D.905. 设向量()()cos ,1,2,sin a b αα=-= ,若a b ⊥ ,则tan 4πα⎛⎫- ⎪⎝⎭等于 A.13- B.13 C.3- D.36. 直线022=+-y x 经过椭圆)0(12222>>=+b a by a x 的一个焦点和一个顶点,则椭圆的离心率为 A. 55 B. 21 C. 552 D. 32 7.若实数11.e a dx x =⎰则函数()sin cos f x a x x =+的图象的一条对称轴方程为A.0x =B.34x π=-C.4π-D.54x π=- 8. 函数sin x y x =,(,0)(0,)x ππ∈- 的图象可能是下列图象中的9. 设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,则11++=x y s 的取值范围是A. ⎥⎦⎤⎢⎣⎡23,1B. ⎥⎦⎤⎢⎣⎡1,21C. []2,1D. ⎥⎦⎤⎢⎣⎡2,21 10. 已知函数()cos()f x A x ωϕ=+(0,0,0)A ωϕπ>><<为奇函数,该函数的部分图象如图所示,EFG ∆是边长为2的等边三角形,则(1)f 的值为A .3-B .6-C .3D .3-第II 卷(共90分)二、填空题:(本大题共4小题,每小题4分,共16分.把正确答案填写在答题纸给定的横线上.)11. 已知点),(n m A 在直线022=-+y x 上,则nm 42+的最小值为 .12.已知F 是抛物线2y x =的焦点,M 、N 是该抛物线上的两点,3MF NF +=,则线段MN 的中点到x 轴的距离为__________.13. 圆C :022222=--++y x y x 的圆心到直线01443=++y x 的距离是_______________.14. 已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图像如图所示,给出关于()f x 的下列命题:①函数()2y f x x ==在时,取极小值 ②函数()[]0,1f x 在是减函数,在[]1,2是增函数,③当12a <<时,函数()y f x a =-有4个零点 ④如果当[]1,x t ∈-时,()f x 的最大值是2,那么的最小值为0,其中所有正确命题序号为_________.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.15.(本小题满分12分)已知数列{}n a 是递增数列,且满足1016·6253=+=a ,a a a 。
高三理科数学试题及答案一、选择题(每题4分,共40分)1. 函数y=\(\frac{1}{x}\)的图象在第一象限内是()A. 递增函数B. 递减函数C. 先递增后递减D. 先递减后递增2. 已知向量\(\vec{a}=(3,-2)\),\(\vec{b}=(2,3)\),则\(\vec{a}\cdot\vec{b}\)的值为()A. -5B. 5C. 13D. -133. 已知双曲线的方程为\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\),其中a>0,b>0,若该双曲线的渐近线方程为y=±\(\frac{b}{a}\)x,则该双曲线的离心率为()A. \(\sqrt{2}\)B. \(\sqrt{3}\)C. \(\sqrt{5}\)D. 24. 已知函数f(x)=x^3-3x+1,若f(x)在区间(1,2)内有零点,则零点的个数为()A. 0B. 1C. 2D. 35. 已知等比数列{an}的前n项和为S_n,若S_3=7,S_6=28,则S_9的值为()A. 63B. 77C. 84D. 1266. 已知直线l的方程为y=kx+b,若直线l过点(1,2)且与直线y=-2x 平行,则直线l的方程为()A. y=-2x+4B. y=-2x+3C. y=2x-1D. y=2x+17. 已知函数f(x)=\(\ln(x+\sqrt{x^2+1})\),若f(x)在区间(0,+∞)上单调递增,则该函数的值域为()A. (0,+∞)B. (-∞,+∞)C. [0,+∞)D. R8. 已知抛物线C的方程为y^2=4x,若直线l与抛物线C相切,则直线l的斜率的取值范围为()A. (-∞,0]B. (0,+∞)C. [0,+∞)D. R9. 已知椭圆E的方程为\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\),其中a>b>0,若椭圆E的离心率为\(\frac{\sqrt{2}}{2}\),则椭圆E 的短轴长为()A. \(\sqrt{2}\)B. 1C. 2D. \(\sqrt{3}\)10. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为()A. \(\frac{7}{20}\)B. \(\frac{7}{15}\)C. \(\frac{7}{12}\)D. \(\frac{7}{10}\)二、填空题(每题4分,共20分)1. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为\(\frac{7}{20}\)。
一、选择题(每题5分,共50分)1. 已知函数f(x)=x^3-3x+1,则f(x)的图像大致为:A. 上升的抛物线B. 下降的抛物线C. 直线D. 垂直线2. 若a、b、c是等差数列,且a+b+c=0,则下列结论正确的是:A. a+b+c=0B. a^2+b^2+c^2=0C. a^3+b^3+c^3=0D. a^2+b^2+c^2=abc3. 已知等比数列{an}的首项为2,公比为q,且q≠1,若a1+a2+a3+a4=24,则q的值为:A. 2B. 3C. 4D. 64. 已知函数f(x)=x^3-3x^2+4x,若f(x)在区间[0,2]上存在极值,则f(x)的极值点个数为:A. 1B. 2C. 3D. 45. 已知数列{an}的通项公式为an=3^n-2^n,则数列{an}的前n项和Sn为:A. 3^n-2^nB. 3^n-2^(n-1)C. 2^n-3^nD. 2^n-3^(n-1)6. 已知函数f(x)=ln(x+1),则f(x)在区间(-1,+∞)上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 先减后增7. 已知数列{an}的通项公式为an=2n+1,则数列{an}的奇数项之和为:A. n^2+2nB. n^2+nC. n^2+2n+1D. n^2+n+18. 已知函数f(x)=x^2+2x+1,若f(x)在区间[1,2]上存在零点,则下列结论正确的是:A. f(1)=0B. f(2)=0C. f(1)≠0且f(2)≠0D. f(1)=0且f(2)=09. 已知等差数列{an}的首项为a1,公差为d,且a1+a2+a3+a4=24,则a1和d的关系为:A. a1+d=6B. a1+d=8C. a1+d=10D. a1+d=1210. 已知函数f(x)=x^3-3x^2+2x,若f(x)在区间(0,+∞)上存在极值,则f(x)的极值点个数为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 已知函数f(x)=x^2-2x+1,若f(x)在区间[1,3]上的最大值为M,则M=______。
理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。
一、选择题(每题5分,共50分)1. 下列函数中,在实数域内单调递增的是()A. y = -x^2B. y = 2x - 3C. y = x^3D. y = -2x + 52. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴方程为()A. x = 2B. x = -2C. y = 2D. y = -23. 在等差数列{an}中,若a1 = 3,d = 2,则a10的值为()A. 19B. 21C. 23D. 254. 若复数z满足|z - 1| = 2,则复数z的取值范围对应的图形是()A. 圆B. 矩形C. 正方形D. 菱形5. 已知向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的夹角θ的余弦值为()A. 1/5B. 2/5C. 3/5D. 4/56. 若等比数列{an}中,a1 = 2,公比q = 3,则数列的前5项和S5为()A. 62B. 66C. 72D. 787. 已知函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(-1, 2),则a、b、c的取值分别为()A. a > 0, b < 0, c = 2B. a > 0, b > 0, c = 2C. a < 0, b < 0, c = 2D. a < 0, b > 0, c = 28. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则角A的余弦值为()A. 3/5B. 4/5C. 5/5D. 5/49. 已知函数f(x) = log2(x + 1),则f(x)的定义域为()A. (-1, +∞)B. [-1, +∞)C. (-∞, -1]D. (-∞, +∞)10. 若不等式x^2 - 2x - 3 < 0的解集为A,则不等式x^2 - 2x - 3 > 0的解集为()A. AB. -AC. A的补集D. -A的补集二、填空题(每题5分,共50分)11. 若函数f(x) = 2x^3 - 3x^2 + 4x - 1在x = 1处取得极值,则该极值为______。
一、选择题(本大题共12小题,每小题5分,共60分)1. 若函数f(x) = x^3 - 3x在区间[0, 2]上的图像与x轴相交,则f(x)在区间[0,2]上的零点个数是:A. 1个B. 2个C. 3个D. 4个2. 若复数z满足|z - 1| = |z + 1|,则复数z的实部是:A. 0B. 1C. -1D. 不存在3. 已知等差数列{an}的前n项和为Sn,若S5 = 50,S10 = 150,则该数列的公差是:A. 2B. 3C. 4D. 54. 函数f(x) = (x - 1)^2 - 4x + 3的图像的对称轴是:A. x = 1B. x = 2C. y = 1D. y = 25. 在△ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 7,c = 8,则角A的正弦值是:A. 5/8B. 7/8C. 8/5D. 8/76. 下列不等式中,恒成立的是:A. x^2 - 4x + 3 > 0B. x^2 + 4x + 3 > 0C. x^2 - 4x - 3 > 0D. x^2 + 4x - 3 > 07. 已知函数f(x) = log2(x + 1) - log2(x - 1),则f(x)的定义域是:A. (-1, 1)B. (-∞, -1) ∪ (1, +∞)C. (-∞, -1) ∪ (1, +∞)D. (-1, +∞)8. 若向量a = (2, 3),向量b = (4, 6),则向量a与向量b的夹角θ的余弦值是:A. 1/2B. 1/3C. 2/3D. 3/29. 在直角坐标系中,点P(m, n)到直线x + 2y - 3 = 0的距离是√5,则m和n 的值分别是:A. 1, 2B. 2, 1C. -1, -2D. -2, -110. 若函数f(x) = ax^2 + bx + c在x = 1时取得极值,则a、b、c的关系是:A. a + b + c = 0B. a - b + c = 0C. a + b - c = 0D. a - b - c = 011. 已知等比数列{an}的首项a1 = 2,公比q = 3,则该数列的第n项an是:A. 2 × 3^(n-1)B. 2 × 3^nC. 2 × 3^(n+1)D. 2 × 3^(n-2)12. 若函数f(x) = e^x + x^2在x = 0时取得极值,则该极值是:A. 1B. 2C. eD. e^2二、填空题(本大题共6小题,每小题5分,共30分)13. 若复数z满足|z - 1| = |z + 1|,则z的实部为______。
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
卷面满分:150江西省临川一中2022—2023学年上学期期末考试高三年级数学理科试卷分考试试卷:120分钟命题人:黄维京审题人:上官学辉一、单选题(每题5分,共60分)1.设集合2{|230}A x Z x x =∈-- ,{0,1}B =,则A B =ð()A.{3,2,1}--- B.{1,2,3}- C.{1,0,1,2,3}- D.{0,1}2.在复平面内,复数z 1,z 2对应的向量分别是OA =(1,−2),OB =(−3,1),则复数z 1z 2对应的点位于()A .第一象限B .第二象限C.第三象限D.第四象限3.对于实数,条件G +1≠52,条件G ≠2且≠12,那么是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设a >0,b >0,且2a +b =1,则1a +2aa+b ()A.有最小值为4B.有最小值为22+1B.C.有最小值为14D.无最小值5.设a =57,b =c =log 3145,则a ,b ,c 的大小顺序是()A.b <a <cB.c <a <bC.b <c <aD.c <b <a6.已知(0,)4πα∈,4cos 25α=,则2sin (4πα+=()A.15B.25C.35 D.457.已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2−c 2)⋅(acosB +bcosA)=abc ,则角C =()A.30°B.45°C.60°D.90°8.已知函数=l 2−B +3在0,1上是减函数,则实数的取值范围是()A.0,1B.1,4C.0,1∪1,4D.2,49.已知圆:(−3)2+(−4)2=4和两点o −3s 0),o 3s 0)(>0).若圆上存在点,使得∠B =90°,则的最小值为()A.6B .5 C.2 D.310.已知双曲线22−22=1>0,>0的左、右焦点分别为1,2,点的坐标为−2,0,点是双曲线在第二象限的部分上一点,且∠1B 2=2∠1B ,B 1⊥12,则双曲线的离心率为()A.3B.2C.32D.211.在△B 中,B =4,B =3,B =5,点在该三角形的内切圆上运动,若B =B+B (s 为实数),则+的最小值为()A.12B.13C.16D.1712.若函数的定义域为,且2+1偶函数,3−1关于点1,3成中心对称,则下列说法正确的个数为()①的一个周期为2②2x =2−2x③的一个对称中心为6,3④J119=57 A.1B.2C.3D.4二、填空题(每题5分,共20分)13.已知2100+236=1上一点,1,2分别是椭圆的左、右焦点,若∠1B 2=60°,则△B 12的面积为________.14.若(1−3x)n 展开式中第6项的二项式系数与系数分别为p 、q ,则pq =_________.15.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体BB 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体BB 棱长为26,则模型中九个球的表面积和为__________.16.若函数op=3−o3+lnp的极小值点只有一个,则的取值范围是_________.三、解答题17.(12分)已知数列{}满足数列{r1−}为等比数列,1=1,2=2,且对任意的∈∗,r2=3r1−2.(1)求{}的通项公式;(2)=∙,求数列{}的前n项和S.18.(12分)如图,在直三棱柱B−111中,,,分别为线段11,1及B的中点,为线段1上的点,B=12B,B=8,B=6,三棱柱B−111的体积为240.(1)求点到平面1B的距离;(2)试确定动点的位置,使直线B与平面1B1所成角的正弦值最大.19.(12分)在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张中任抽2张.(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列.20(12分)已知抛物线:2=2B,抛物线上两动点A x1,y1,B x2,y2,x1≠x2且x1+x2=6(1)若线段AB过抛物线焦点,且B=10,求抛物线C的方程.(2)若线段AB的中垂线与X轴交于点C,求∆ABC面积的最大值.21(12分)已知op =e+2−s op =2−B −,s ∈(1)若op 与op 在x=1处的切线重合,分别求,的值.(2)若∀∈s op −op ≥op −op 恒成立,求的取值范围.四、选做题(共10分,请考生在22,23题任选一题作答,如果多选,则按所做第一题计分)22.(10分)在平面直角坐标系xOy 中,已知直线312:12x l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)与圆23cos :(3sin x C y θθθ=+⎧⎨=⎩为参数)相交于A,B 两点.(1)求直线及圆C 的普通方程;(2)已知(1,0)F ,求||||FA FB +的值.23.(10分)已知0a >,0.b >(1)求证:3+3≥2+B 2;(2)若3a b +=,求14a b+的最小值.。
理科数学试题一、选择题(每题5分,共60分)1.已知i 是虚数单位,复数z 满足2(1i)1i z-=+则z =()B.2C.12.已知全集{}2|230,{3}U x x x A =+-≤=-,则U A =ð()A.(,3](1,)-∞⋃+∞B.(3,1]- C.[3,1)- D.[3,1]-3.已知0.30.3121,log 0.3,0.32a b c ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系是()A.a b c<< B.c a b<< C.a c b << D.a c b<<4.函数2()cos ln f x x x =的图象大致为()A. B.C.D.5.已知向量,a b 的夹角为π4,且2,a b == ,则a b -= ()A.1B.2C.4D.66.若曲线e 1xy =+在0x=处的切线,也是ln y x b =+的切线,则b =()A.-1B.2C.4D.37.在等差数列{}n a 中,12018a =-,其前n 项和为n S ,若151051510S S -=则2020S =()A.0B.2018C.-2019D.20208、一个几何体的三视图如图所示,则该几何体的体积为()A.8π3+ B.8π+ C.82π3+D.89.如图,已知点()2,2A 与反比例函数2y x=,在正方形ABOC 内随机取一点P ,则点P 取自图中阴影部分的概率为()10.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且倾斜角为120的直线与抛物线C 交于,A B 两点,若,AF BF 的中点在y 轴上的射影分别为,M N ,且||43MN =,则抛物线C 的准线方程为()A.32x =-B.2x =- C.3x =- D.4x =-11.已知函数2,0()2ln ,0x x f x x x ⎧⎪<=⎨⎪>⎩,若函数()()1g x f x kx =--有且只有三个零点,则实数k 的取值范围()A.21(0,)eB.1(,0)2- C.(0,e)D.211(,)2e-12.已知等边ABC △的边长为23,,M N 分别为,AB AC 的中点,将AMN △沿MN 折起得到四棱锥A MNCB -.点P 为四棱锥A MNCB -的外接球球面上任意一点,当四棱锥A MNCB -的体积最大时,P 到平面MNCB 距离的最大值为()A.1312+ B.1312+ C.33+ D.35+二、填空题(每题5分,共20分)13.太极图被称为"中华第一图".从孔庙大成殿梁柱,到楼观台,三茅宫等的标记物,太极图无不跃居其上,这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为"阴阳鱼太极图".在如图所示的阴阳鱼图案中,阴影部分的区域可用不等式组222240(1)1x y x x y ⎧+⎪≤≤≥⎨⎪++⎩或22(1)1x y +-≤来表示,设(),x y 是阴影中任意一点,则z x y =+的最大值为_______.A.ln 22B.1ln 22+ C.2ln 22- D.1ln 22-14.某校举行歌唱比赛,高一年级从6名教师中选出3名教师参加,要求李老师,王老师两名老师至少有一人参加,则参加的三名老师不同的唱歌顺序的种数为______.(用数字作答)15.已知函数()2sin()(0)f x x ωϕω=+>满足π2,(π)04f f ⎛⎫== ⎪⎝⎭,且()f x 在区间ππ(,43上单调,则ω的值有_____个.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右顶点12,A A ,右焦点为1,F B 为虚轴的上端点,在线段1BF 上(不含端点)有且只有一点P满足120PA PA ⋅=,则双曲线的离心率为________.三、解答题(共70分)17、(本题12分)设n S 为数列{}n a 的前n 项和,且12n na a +=,149a a +=.(1)求数列{}n a 的通项公式;(2)记()12121log log 1n n n a b a S ++=⋅+,求数列{}n b 的前n 项和n T .18、(本题12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,120ABC ∠=︒,PA PB PC ==.(1)证明:PBD △为直角三角形;(2)若2PD =,E 是PC 的中点,且二面角P AB E --的余弦值为5714,求三棱锥P ABE -的体积.19、(本题12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A B B C C D D E +++、、、、、、、共8个等级.参照正态分布原则,确定各等级人数所占比例分别为371624241673%、%、%、%、%、%、%、%.选考科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[]91,100、[]81,90、[]71,80、[]61,70、[]51,60、[]41,50、[]31,40、[]21,30八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布()60,169N .(1)求物理原始成绩在区间()47,86的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记X 表示这3人中等级成绩在区间[]61,80的人数,求X 的分布列和数学期望.(附:若随机变量()2,N ξμσ~,则()0.682P μσξμσ-<<+=,()220.954P μσξμσ-<<+=,()330.997P μσξμσ-<<+=)20、(本题12分)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,下顶点为M ,直线2MF 与E 的另一个交点为P ,连接1PF ,若1PMF △的周长为12PF F △的面积为313b .(1)求椭圆E 的标准方程;(2)若直线:(1)l y kx m m =+≠-与椭圆E 交于A ,B 两点,当m 为何值时,MA MB ⊥恒成立?21、(本题12分)已知函数213()e3x a f x x -=-,其中常数a ∈R .(1)若()f x 在(0,)+∞上是增函数,求实数a 的取值范围;(2)当1a =时,求证:导函数()y f x '=与函数241y x x =-+的图象有两个交点.22.(本题10分)在平面直角坐标系xOy 中,曲线C的参数方程为4cos 24sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为π6θ=.(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于,A B 两点,求AB 的值.理科数学参考答案1.答案:A 解析:复数z 满足2(1i)1i z -=+,2(1i)2i 2i(1i)1i 1i 1i 2z ----∴====--++,||z ∴==2.答案:B 解析:全集{|(3)(1)0}[3,1],{3}U x x x A =+-≤=-=-,则(3,1]U A =-ð.3.答案:B 解析:0.3.311221110.31,log 0.3log 1222a ⎛⎫⎛⎫<<=>= ⎪ ⎪⎝⎭⎝⎭ ,c a b ∴<<.4.答案:C解析:易知()(),()f x f x f x -=∴为偶数,当(0,1)x ∈时,2cos 0,ln 0x x ><,所以当(0,1)x ∈时,()0f x <,故只有C 选项满足条件.5.答案:B解析:||82a b -===+= 6.答案:D解析: e 1x y =+的导数为'e x y =,曲线 e 1x y =+在0x =处的切线斜率为1k =,则曲线 e 1x y =+在0x =处的切线方程为2,ln y x y x b -==+的导数为1y x '=设切点为(),m n .则11m=解得1,3m n ==,即有3ln1b =+解得3b =.7.答案:D 解析:设等差数列{}n a 的公差为d ,由等差数列的性质可得112n S n a d n -=+为等差数列,n S n ⎧⎫⎨⎬⎩⎭的公差为2d .15105,5515102S S d -=∴⨯=.解得2d =.则2020202020192020(2018)220202S ⨯=⨯-+⨯=.8.答案:A 解析:该几何体是由一个四棱锥和一个圆柱的一半组成的几何体,体积为2118π12222π233⨯⨯⨯+⨯⨯⨯=+.9.答案:D解析:由题意可得正方形的面积为4,联立,22y y x =⎧⎪⎨=⎪⎩解得12x y =⎧⎨=⎩.所以阴影部分面积为221122d 22ln (42ln 2)(20)22ln 2x x x x ⎛⎫-=-=---=- ⎪⎝⎭⎰,所以所求概率22ln 21ln 242P --==.10.答案:C 解析:抛物线2(:20)C y px p =>的焦点为,02p F ⎛⎫⎪⎝⎭,过F 且倾斜角为120的直线方程设为)2py x =-联立抛物线的方程可得2220py +-=.设A 的纵坐标为1y ,B 的纵坐标为2y ,,M N 的纵坐标为1211,22y y ,可得21212y y y p +==-,则121||2y y -=,可得()212124192y y y y +-=,即为22192443p p =+解得6p =,则抛物线的准线方程为3x =-.11.答案:A解析:如图,作出函数,0()2ln ,0xx f x x x ⎧-<⎪=⎨⎪>⎩的图象,函数()()1g x f x kx =--有且只有三个零点,则函数()f x 与函数1y kx =+的图象有且只有三个交点,函数1y kx =+图象恒过点()0,1则直线1y kx =+在图中阴影部分内时,函数()f x 与1y kx =+有三个或两个交点.当直线1y kx =+与ln y x =的图象相切时,设切点为()00,ln x x 切线斜率为000011,ln 1k x x x x =∴=⋅+解得202211e ,,0,e ex k k ⎛⎫=∴=∴∈ ⎪⎝⎭.12.答案:A 解析:如图,由题意,易知,CM BM BN CN ⊥⊥,所以取BC 的中点E ,则E 是等腰梯形MNCB 外接圆圆心.AMN △为等边三角形,所以取MN 中点D ,连接AD ,在AD 上取点F 使2AF FD =,所以点为F AMN △外心.易知13,,1,.22AD MN DE MN DF AF DE ⊥⊥===设点O 为四棱锥A MNCB -的外接球球心OE ∴⊥平面MNCB ,OF ⊥平面AMN .当四棱锥A MNCB -的体积最大时,平面AMN ⊥平面MNCB .π31,,222ADE OF ED OE FD ∴∠=====设四棱锥A MNCB -的外接球半径R,则222134R AF OF =+=.所以当四棱锥A MNCB -的体积最大时,P 到平面MNCB距离的最大值为max d R OE =+=.13.答案:1解析:依题意,,,z x y y x z z =+∴=-+表示直线y x z =-+在y 轴上的截距,所以当直线y x z =-+与圆22(1)1x y +-=切于如图的点A 时,z 最大(1)z >.因为直线y x z =-+与圆相切,所以点()0,1到直线0x y z +-=的距离为1,即11z =>,1=,解得1z =+.14.答案:96解析:第一步:先选3人,李老师与王老师至少有一人参加,用间接法,有3364C C 20416-=-=种;第二步,将3人排序,有336A =种.故不同发言顺序的种数为16696⨯=.15.答案:9解析:由π2,(π)04f f ⎛⎫== ⎪⎝⎭知,*π3ππ,N 4244T kT k +=-=∈,*3π2(12),,N 123k T k k ω+∴==∈+又因为()f x 在区间ππ(,)43上单调,ππ342T ∴-≤故π2π,126T Tω≥∴=≤,即2(12)1712,32k k +≤∴≤,*N ,0,1,2,8k k ∈∴= 符合条件的ω的值有9个.16.解析:由题意1(,0),(0,)F c B b ,则直线1BF 的方程为0bx cy bc +-=,在线段1BF 上(不含端点)有且只有一点满足120PA PA ⋅=,则1PO BF ⊥,且PO a =,a ∴=即22222222b c a a b c b c =⋅+=+ ,42244230,310c a c a e e ∴-+=-+=,解得2351522e e ++=∴=.17.答案:(1) 设n S 为数列{}n a 的前n 项和,且12n na a +=,149a a +=.∴数列{}n a 为等比数列,公比2=q ,又149a a +=,11a ∴=.因此数列{}n a 的通项公式为12n n a -=,*n N ∈.(2)由()12121log log 1n n n a b a S ++=⋅+,得1221111(1)1log 2log 2n n n b n n n n +===-++.11111122311n n T n n n =-+-+-=++ .18.解析:(1)因为四边形ABCD 是菱形,120ABC ∠=︒,所以AD BD CD ==,取AB 的中点M ,连接DM ,PM ,易知DM AB ⊥,因为PA PB =,所以PM AB ⊥,因为PM DM M ⋂=,所以AB ⊥平面PDM ,又PD ⊂平面PDM ,所以PD AB ⊥.取BC 的中点N ,连接DN ,PN ,同理得PD BC ⊥,又AB BC B ⋂=,所以PD ⊥平面ABCD ,又BD ⊂平面ABCD ,所以PD BD ⊥,故PBD △为直角三角形.(2)由(1)可知,直线DM ,DC ,DP 两两垂直,故可以D 为坐标原点,DM ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系D xyz -,如图所示.设AB a =,则,,02a A ⎫-⎪⎪⎝⎭,,,02a B ⎫⎪⎪⎝⎭,(0,,0)C a ,(0,0,2)P ,因为E 是PC 的中点,所以0,,12a E ⎛⎫⎪⎝⎭,则(0,,0)AB a =,,,222aPA a ⎛⎫=-- ⎪ ⎪⎝⎭,,0,12BE a ⎛⎫=- ⎪ ⎪⎝⎭,设平面PAB 的法向量为()111,,x y z =m ,则0,0,AB PA ⎧⋅=⎪⎨⋅=⎪⎩m m 得11110,320,22ay a ax y z =⎧--=⎪⎩令12x =,则2a ⎛⎫= ⎪ ⎪⎝⎭m .设平面ABE 的法向量为()222,,x y z =n ,则0,0,AB BE ⎧⋅=⎪⎨⋅=⎪⎩n n 得2220,30,2ay z =⎧⎪⎨-+=⎪⎩令21x =,则⎛⎫= ⎪ ⎪⎝⎭n,所以2324|cos ,|a +〈〉=m n .令2314t a =+,则14=,解得73t =或4t =,所以237143a +=或23144a +=,所以43a =或2a =.连接AC ,因为12P ABC P ABCD V --=,12E ABC P ABC V V --=,所以2111344312P ABE E ABC P ABCD V V AB DM PD a ---===⨯⨯⨯⨯=.当2AB =时,三棱锥P ABE -;当43AB =时,三棱锥P ABE -19.答案:(1)因为物理原始成绩()260,13N ξ~,所以()()()478647606086P P P ξξξ<<=<<+≤<()()1160136013602136021322P P ξξ=-<<++-⨯≤<+⨯0.6820.95422=+0.818=.所以物理原始成绩在()47,86的人数为20000.8181636⨯=(人).(2)由题意得,随机抽取1人,其成绩在区间[]61,80内的概率为25.所以随机抽取三人,则X 的所有可能取值为0,1,2,3,且23,5X B ⎛⎫~ ⎪⎝⎭,所以()332705125P X ⎛⎫=== ⎪⎝⎭;()21323541C 55125P X ⎛⎫==⋅⋅= ⎪⎝⎭;()22323362C 55125P X ⎛⎫==⋅⋅=⎪⎝⎭;()32835125P X ⎛⎫=== ⎪⎝⎭.所以X 的分布列为X 0123P2712554125361258125所以数学期望()26355E X =⨯=.20.解析:(1)设122F F c =.由椭圆的定义可知,1PMF △的周长为4a =a =直线2MF 的方程为by x b c =-,与22221x y a b +=联立可得点2322222,a c b P a c a c ⎛⎫ ⎪++⎝⎭,12PF F ∴△的面积为333222112223b b c c b a c c ⨯⨯==++,即232c c =+,解得1c =或2c =(舍),则2221b a c =-=,∴椭圆E 的标准方程为2212x y +=.(2)联立22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得()222214220k x kmx m +++-=,()228210k m ∆=-+>.由(1)可知(0,1)M -,设()()1122,,,A x y B x y ,则2121222422,2121km m x x x x k k -+=-=++,()212122242222121k m my y k x x m m k k +=++=-+=++,()()()2212121212y y kx m kx m k x x mk x x m =++=+++()22222222222242212121k m k m m k m k k k --=-+=+++,()()1122,1,1 MA MB x y x y ∴⋅=+⋅+uuu r uuu r ()()121211x x y y =+++1212121x x y y y y =++++22222222221212121m m k mk k k --=++++++.由MA MB ⊥得0MA MB ⋅=uuu r uuu r ,故23210m m +-=,解得13m =或1m =-(舍),∴当13m =时,MA MB ⊥恒成立.21.解析:(1)因为()f x 在(0,)+∞上是增函数,所以212()2e 0x f x ax -'=-≥在(0,)+∞上恒成立,即212e 2x a x -≤恒成立,只需使212mine 2x a x -⎛⎫≤ ⎪⎝⎭即可.设212e ()(0)x h x x x -=>,则2122121432e 2e 2(1)e ()x x x x x x h x x x -----'==.当(0,1)x ∈时,()0h x '<,函数()h x 在(0,1)上单调递减;当(1,)x ∈+∞时,()0h x '>,函数()h x 在(1,)+∞上单调递增,所以()h x 的最小值为(1)e h =,所以e 2a≤,解得2e a ≤,故实数a 的取值范围是(,2e]-∞.(2)证明:当1a =时,212()2e x f x x -'=-.令()221()()412e 41x g x f x x x x -'=--+=--,则21()44x g x e -'=-.令()0g x '>得12x >;令()0g x '<得12x <,所以()g x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,在1,2⎛⎫-∞ ⎪⎝⎭上单调递减,所以()g x 在12x =处取极小值,1102g ⎛⎫=-< ⎪⎝⎭.因为32(1)410e g -=+->,3(2)290g e =->,所以存在12111,,,222x x ⎛⎫⎛⎫∈-∈ ⎪ ⎪⎝⎭⎝⎭,使得()()120,0g x g x ==,所以()g x 有两个零点,即导函数()y f x '=与函数241y x x =-+的图象有两个交点.22.答案:(1)曲线C 的参数方程为4cos 24sin x y αα=+⎧⎨=⎩.得曲线C 的普通方程为224120x y x +--=.所以曲线C 的极坐标方程为24cos 12ρρθ-=.(2)设,A B 两点的极坐标方程分别为12ππ(,,66ρρ,12||AB ρρ=-,又,A B 在曲线C 上,则12,ρρ是2π4cos 1206ρρ--=的两根.12121212,||AB ρρρρρρ∴+==-∴=-=.23.答案:(1).∵0,0a b >>,1a b +=由基本不等式得:2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时等号成立,由ab m ≤恒成立,14m ∴≥(2).∵(),0,a b ∈+∞()4141459b a a b a b a b a b ⎛⎫∴+=++=++≥ ⎪⎝⎭故要使41212x x a b+≥--+恒成立,第7页共7页则2129x x --+≤当2x ≤-时,不等式化为:1229x x -++≤,解得62x -≤≤-当122x -<<时,不等式化为:1229x x ---≤,解得122x -<<当12x ≥时,不等式化为:2129x x ---≤,解得1122x ≤≤故 x 的取值范围[]6,12-.。
高三理科数学第一学期期末联考试卷一、选择题:本大题共10小题,每小题5分,共50分。
1、设A 、B 为两个非空子集,定义:},{B b A a b a B A ∈∈+=+,若A={0,2,5}, B={1,2,6},则A+B 子集的个数是 ( )A 、29B 、28C 、27D 、262、i 是虚数单位,复数321i Z i=+等于( )A 、1i --B 、1i -+C 、1i -D 、1i +3、将2s i n ()36x y π=+的图象按向量(4a π=-,4)平移,则平移后所得图象的解析式为( )。
A 、2sin()434x y π=++ B 、2sin()434x y π=--C 、2sin()4312x y π=-+D 、2sin()4312x y π=+-4、已知直线m 、n 及平面α,下列命题中的真命题是( ) A 、若m n ⊥,m α⊥,则n ∥α B 、若m ∥n ,m α⊥,则n ∥αC 、若m ∥α,n ∥α,则m ∥nD 、若m α⊥,n α⊥,则m ∥n5、若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线5x y +=下方的概率是( )A 、13B 、14C 、16D 、1126、2002年8月在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,θ-θ22cos sin 则的值等于( )A 、1B 、2524-C 、257D 、-2577、函数|ln ||1|x y e x =--的图象大致是( )8、在231(3)2nx x -的展开式中含有常数项,则正整数n 的最小值是( )A 、4B 、5C 、6D 、79、椭圆22221x y a b+=(a >b >0)的离心率为12e =,右焦点为F (c ,0),方程2ax bx c +-=的两个实根分别为1x ,2x ,则点12(,)P x x ( ) A 、必在圆222x y +=内 B 、必在圆222x y +=上C 、必在圆222x y +=外D 、以上三种情形都有可能10、定义运算:⎩⎨⎧>≤=*ba b b a a b a ,,,如121=*,则函数x x x f -*=22)(的值域为( )A 、RB 、()+∞,0C 、(]1,0D 、[)+∞,1二、填空题:本大题共7小题,每小题4分,共28分。