实验二燃料电池阳极催化剂性能测试
- 格式:pdf
- 大小:948.67 KB
- 文档页数:5
竭诚为您提供优质文档/双击可除燃料电池实验报告篇一:燃料电池综合特性实验报告燃料电池综合特性实验【实验背景】燃料电池以氢和氧为燃料,通过电化学反应直接产生电力,能量转换效率高于燃烧燃料的热机。
燃料电池的反应生成物为水,对环境无污染,单位体积氢的储能密度远高于现有的其它电池。
因此它的应用从最早的宇航等特殊领域,到现在人们积极研究将其应用到电动汽车,手机电池等日常生活的各个方面,各国都投入巨资进行研发。
按燃料电池使用的电解质或燃料类型,可将现在和近期可行的燃料电池分为碱性燃料电池,质子交换膜燃料电池,直接甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池6种主要类型,本实验研究其中的质子交换膜燃料电池。
能源为人类社会发展提供动力,长期依赖矿物能源使我们面临环境污染之害,资源枯竭之困。
为了人类社会的持续健康发展,各国都致力于研究开发新型能源。
未来的能源系统中,太阳能将作为主要的一次能源替代目前的煤,石油和天然气,而燃料电池将成为取代汽油,柴油和化学电池的清洁能源。
【摘要】燃料电池尤其是质子交换膜燃料电池(pem)以其高功率密度、高能量转换效率、可低温启动、环境友好等突出优点而受到瞩目。
本实验包含太阳能电池发电(光能—电能转换),电解水制取氢气(电能—氢能转换),燃料电池发电(氢能—电能转换)几个环节,形成了完整的能量转换,储存,使用的链条。
本实验通过研究燃料电池的工作原理,测量其输出特性,计算燃料电池的最大输出功率及效率并验证法拉第电解定律。
测量太阳能电池的特性,做出所测太阳能电池的伏安特性曲线,电池输出功率随输出电压的变化曲线。
获取太阳能电池的开路电压,短路电流,最大输出功率等。
【关键词】燃料电池,电解池,太阳能电池【正文】一、实验目的:1、了解燃料电池的工作原理。
2、观察仪器的能量转换过程:光能→太阳能电池→电能→电解池→氢能(能量储存)→燃料电池→电能3、测量燃料电池输出特性,做出所测燃料电池的伏安特性(极化)曲线,电池输出功率随输出电压的变化曲线。
燃料电池综合特性实验一、实验目的:1、了解燃料电池的工作原理。
2、观察仪器的能量转换过程:光能→太阳能电池→电能→电解池→氢能(能量储存)→燃料电池→电能3、测量燃料电池输出特性,做出所测燃料电池的伏安特性(极化)曲线,电池输出功率随输出电压的变化曲线。
计算燃料电池的最大输出功率及效率。
4、测量质子交换膜电解池的特性,验证法拉第电解定律。
5、测量太阳能电池的特性,做出所测太阳能电池的伏安特性曲线,电池输出功率随输出电压的变化曲线。
获取太阳能电池的开路电压,短路电流,最大输出功率,填充因子等特性参数。
二、实验原理:1、燃料电池质子交换膜(PEM,Proton Exchange Membrane)燃料电池在常温下工作,具有启动快速,结构紧凑的优点,最适宜作汽车或其它可移动设备的电源,近年来发展很快,其基本结构如图l所示。
目前广泛采用的全氟璜酸质子交换膜为固体聚合物薄腆,厚度0.05~0.lmm,它提供氢离子(质子)从阳极到达阴极的通道,而电子或气体不能通过。
催化层是将纳米量级的铂粒子用化学或物理的方法附着在质子交换膜表面,厚度约0.03mm,对阳极氢的氧化和阴极氧的还原起催化作用。
膜两边的阳极和阴极由石墨化的碳纸或碳布做成,厚度0.2~0.5mm,导电性能良好,其上的微孔提供气体进入催化层的通道,又称为扩散层。
教学用燃料电池采用有机玻璃做流场板。
进入阳极的氢气通过电极上的扩散层到达质子交换膜。
氢分子在阳极催化剂的作用下解离为2个氢离子,即质子,并释放出2个电子,阳极反应为:H2=2H+2e (l)氢离子以水合质子H+(nH2O)的形式,在质子交换膜中从一个璜酸基转移到另一个璜酸基,最后到达阴极,实现质子导电,质子的这种转移导致阳极带负电。
在电池的另一端,氧气或空气通过阴极扩散层到达阴极催化层,在阴极催化层的作用下,氧与氢离子和电子反应生成水,阴极反应为:O2+4H+4e=2H2O (2)阴极反应使阴极缺少电子而带正电,结果在阴阳极间产生电压,在阴阳极间接通外电路,就可以向负载输出电能。
新能源技术知识:燃料电池系统的性能测试和评估燃料电池是一种能将化学能直接转化为电能的装置。
与传统燃烧方式不同,燃料电池正变得愈加普及,因为我们越来越注重开发高效、绿色的可再生能源。
燃料电池系统是由多个部分组成的,一般包括燃料电池、汇流板、氢气与空气供应系统等。
在最初设计时需要对其进行充分的验证和测试,才能确保所有组件的性能都符合要求。
这样可以降低故障率,提高系统的可靠性和稳定性。
燃料电池系统的性能测试和评估是一项非常重要的工作,它可以为开发新型燃料电池技术提供有价值的数据,同时也可以为燃料电池系统组件的设计和优化提供指导意见。
以下是燃料电池系统性能测试和评估的一些关键点。
1.效率测试燃料电池的效率是系统性能的关键指标之一,影响着电池的实际使用寿命和储能能力。
因此,需要对燃料电池的效率进行测试和评估,以检验其是否符合设计参数。
这些测试可以包括负载曲线分析、输出电压和电流的监测和统计等多个方面,以确保燃料电池的实际效率能够满足实际应用的需求。
2.性能稳定性测试燃料电池系统的稳定性是系统运行的关键指标之一。
需要尽可能长时间地对燃料电池的性能进行测试,以验证其稳定性和可靠性并检查是否存在可能的缺陷和故障。
在测试过程中,需要重点关注燃料电池的能力来应对不同负载和环境条件下的变化。
3.寿命测试燃料电池系统的寿命是影响其使用寿命的关键因素。
寿命测试旨在确定燃料电池系统能够持续工作多久、在其使用寿命中的可靠性是否达到要求等。
这个过程包括长期连续运行测试,检测系统的耐久性和韧性。
需要注意的是,燃料电池的寿命可能受到多种因素的影响,需要构造合理的测试计划。
4.安全性测试燃料电池系统的安全性是非常关键的,需要对其进行全面的安全性测试,与普通电池不同,燃料电池中的氢气比较危险,一旦泄漏就可能存在安全隐患。
在测试安全性时,需要模拟可能发生的意外情况,如燃料泄漏、过热等,检查燃料电池系统各部件是否达到安全性要求。
总之,正如其他新能源技术一样,燃料电池的发展离不开广泛的研发和实验验证。
燃料电池阳极催化剂性能测试实验报告系别:班级:姓名:学号:实验2 燃料电池阳极电催化剂性能的测试一、实验目的燃料电池阳极催化剂的合成及其电化学催化性能的表征,此实验过程设计无机合成、物理化学及电化学等学科方向内容,燃料电池是一类连续地将燃料氧化过程的化学能直接转换为电能的电化学电池。
1. 了解碳载铂与铂钌阳极催化剂的制备方法。
2. 了解甲醇燃料电池的工作原理,掌握催化剂电催化性能的测试方法。
二、实验原理1.燃料电池燃料电池(Fuel Cell, 简称FC)发电是继水力、火力和核能发电之后的第四类发电技术。
由于它是一种不经过燃烧直接以电化学反应方式将燃料的化学能转化为电能的发电装置,从理论上讲,只要连续供给燃料,燃料电池便能连续发电。
但是,与一般电池不同,FC所用的燃料和氧化剂并不是储存在电池内,而是储存在电池外。
在这一点上,与内燃机相似。
因此,FC又被形象地称为“电化学发电机”。
2.甲醇燃料电池(DMFC)的工作原理直接以液态或气态甲醇为燃料的FC称为DMFC,直接甲醇燃料电池是质子交换膜燃料电池(PEMFC)的一种变种,它直接使用甲醇而勿需预先重整。
甲醇在阳极转换成二氧化碳、质子和电子,如同标准的质子交换膜燃料电池一样,质子透过质子交换膜在阴极与氧反应,电子通过外电路到达阴极,并做功。
其中:阳极反应:CH3OH + H2O → CO2+ 6H+ + 6e-E=0.046V (1)阴极反应:3/2O2+ 6H+ + 6e-→ 3H2O E = 1.23V (2)电池反应:CH3OH + 3/2O2→ CO2+ 2H2O E = 1.18V (3)DMFC在标准状态下的理论电压E o = -ΔG o/nF =1.21V (4)其中,F为法拉第常数,n为反应中包含的电子数。
DMFC在标准状态下的理论能量转换效率η= - ΔG o/ΔH o298 = 0.970 (5)三、阳极催化剂的制备方法1. 浸渍-液相还原法将Pt的可溶性化合物溶解后,与活性炭载体混合,再加入还原剂,如NaBH4、甲醛溶液、柠檬酸钠、甲酸钠、肼等,使Pt还原、沉积到活性炭上,干燥后,得到Pt/C催化剂。
燃料电池的特性测量实验燃料电池以氢和氧为燃料,通过电化学反应直接产生电力,能量转换效率高于燃烧燃料的热机。
燃料电池的反应生成物为水,对环境无污染,单位体积氢的储能密度远高于现有的其它电池。
因此它的应用从最早的宇航等特殊领域,到现在人们积极研究将其应用到电动汽车,手机电池等日常生活的各个方面,各国都投入巨资进行研发。
1839年,英国人格罗夫(W. R . Grove)发明了燃料电池,历经近两百年,在材料,结构,工艺不断改进之后,进入了实用阶段。
按燃料电池使用的电解质或燃料类型,可将现在和近期可行的燃料电池分为碱性燃料电池,质子交换膜燃料电池,直接甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池6种主要类型,本实验研究其中的质子交换膜燃料电池。
燃料电池的燃料氢(反应所需的氧可从空气中获得)可电解水获得,也可由矿物或生物原料转化制成。
本实验包含太阳能电池发电(光能-电能转换),电解水制取氢气(电能-氢能转换),燃料电池发电(氢能-电能转换)几个环节,形成了完整的能量转换,储存,使用的链条。
实验内含物理内容丰富,实验内容紧密结合科技发展热点与实际应用,实验过程环保清洁。
能源为人类社会发展提供动力,长期依赖矿物能源使我们面临环境污染之害,资源枯竭之困。
为了人类社会的持续健康发展,各国都致力于研究开发新型能源。
未来的能源系统中,太阳能将作为主要的一次能源替代目前的煤,石油和天然气,而燃料电池将成为取代汽油,柴油和化学电池的清洁能源。
【实验目的】1.了解燃料电池的工作原理。
2.观察仪器的能量转换过程:光能—太阳能电池—电能—电解池—氢能(能量存储)—燃料电池—电能。
3.测量燃料电池的输出特性,作出燃料电池的伏安特性曲线,电池输出功率随输出电压的变化曲线,计算燃料电池的最大输出功率和效率。
4.测量质子交换膜电解池的特性,验证法拉第电解定律。
5.测量太阳能电池的特性,作太阳能电池的伏安特性曲线以及输出功率随输出电压的变化曲线,获取太阳能电池的开路电压、短路电流、最大输出功率、填充因子等特性参数。
实验四十 燃料电池综合特性实验仪燃料电池以氢和氧为燃料,通过电化学反应直接产生电力,能量转换效率高于燃烧燃料的热机。
燃料电池的反应生成物为水,对环境无污染,单位体积氢的储能密度远高于现有的其它电池。
因此它的应用从最早的宇航等特殊领域,到现在人们积极研究将其应用到电动汽车,手机电池等日常生活的各个方面,各国都投入巨资进行研发。
1839年,英国人格罗夫(W. R . Grove )发明了燃料电池,历经近两百年,在材料,结构,工艺不断改进之后,进入了实用阶段。
按燃料电池使用的电解质或燃料类型,可将现在和近期可行的燃料电池分为碱性燃料电池,质子交换膜燃料电池,直接甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池6种主要类型,本实验研究其中的质子交换膜燃料电池。
燃料电池的燃料氢可通过电解水获得,也可由矿物或生物原料转化制成,燃料氧可从空气中获得。
本实验包含太阳能电池发电(光能-电能转换),电解水制取氢气(电能-氢能转换),燃料电池发电(氢能-电能转换)几个环节,形成了完整的能量转换、储存和使用的链条。
【实验目的】1. 了解燃料电池的工作原理,观察能量转换的过程。
2. 测量质子交换膜电解池的特性,验证法拉第电解定律。
3. 测量质子交换膜燃料电池的输出特性。
4. 测量太阳能电池的输出特性。
【实验原理】1.燃料电池质子交换膜(PEM ,ProtonExchange Membrane )燃料电池在常温下工作,具有启动快速,结构紧凑的优点,最适宜作汽车或其它可移动设备的电源,近年来发展很快,其基本结构如图1所示。
目前广泛采用的全氟璜酸质子交换膜为固体聚合物薄膜,厚度0.05~0.1mm ,它提供氢离子(质子)从阳极到达阴极的通道,而电子或气体不能通过。
催化层是将纳米量级的铂粒子用化学或物理的方法附着在质子交换膜表面,厚度约0.03mm ,对阳极氢的氧化和阴极氧的还原起催化作用。
膜两边的阳极和阴极由石墨化的碳纸或碳布做成,厚度0.2~0.5mm ,导电性能良好,其上的微孔提供气体进入催化层的通道,又称为扩散层。
质子交换膜燃料电池铂基电催化剂的电化学性能测试一、实验目的与内容1、了解质子交换膜燃料电池的工作原理和研究现状;2、掌握循环伏安法(CV)和旋转圆盘电极技术(RDE)评价质子交换膜燃料电池铂基电催化剂的电化学性能的基本原理和操作过程;3、掌握电化学中三电极体系的基本概念,学会利用CV法测定铂基电催化剂的电化学活性表面积(ESA);了解极限电流密度的概念,学会通过RDE技术研究铂基电催化剂的氧还原本征活性。
二、实验原理概述1、燃料电池技术进展及工作原理燃料电池(Fuel Cell)是一种在等温状态下直接将化学能转变成电能的电化学装置。
它不同于普通的二次电池,其工作过程是燃料和氧化剂分别在阳极和阴极上发生电化学反应,由电解质传导的离子和外电路的电子构成回路,从而将化学能直接转化成电能。
燃料电池作为一种高效、环境友好的发电装置,自1839年英国科学家William Grove首次发现氢气在铂黑电极上的电化学氧化现象以来,人们对它的研究已有100多年的历史,但除了用于航天领域外,并未受到广泛关注。
自上世纪90年代开始,随着化石能源的枯竭和环境的日益恶化,人们对燃料电池的研究热情也随之高涨,也取得了巨大的进步。
目前,全世界约有20多个国家已投入巨额经费用于燃料电池的研究开发,技术处于领先的国家为美国、日本和欧盟,其中美国把燃料电池列为国家发展的27个关键技术之一,《时代周刊》将燃料电池列为21世纪的高科技之首。
燃料电池之所以成为研究热点,主要是基于以下优点:(1) 能量转换效率高。
由于燃料电池反应过程中不涉及燃烧,不经过热机转换过程,因此其能量转换效率不受“卡诺循环”的限制,可高达60-80%。
(2) 环境友好。
由于燃料电池是按电化学原理发电,不经过燃烧过程,所以它几乎不排放NOx和SOx和颗粒物,减轻了对大气的污染。
而且燃料电池CO2排放量也比热机过程减少40%以上,这对缓解地球的温室效应有重大意义。
(3) 比能量或比功率高。
H 2-O 2燃料电池催化剂的研制与活性评价一、氢氧燃料电池现状分析1.由于当前各国能源的供给紧张,世界环境的污染严重,温室效应等一系列的环境问题迫使人们不断寻找开发新的能源(燃料电池),以求代替日益增长的对石油煤炭的需要。
2.在能源日益短缺的今天,新能源受到愈来愈多的关注,而氢氧燃料电池则是一种有着很大优点的一种能源。
其具有对环境友好的特点受到极大亲睐。
但在生产过程中,对催化剂的要求十分迫切,本实验力求在这一方面做一些研究,并对催化剂的催化效率与MnO2作一些比较。
二、实验目的1.学习和了解H 2—O 2燃料电池催化剂的研制现状,展望高环保要求清洁能源。
2.用沉淀法制备Cu x Fe 3-x O 4,CoxFe 3-2xO 4等对O 2的还原具有较高活性的催化剂。
3.以H2O2的催化分解反应评价所制备的催化剂的活性。
三、实验原理1.H 2—O 2燃料电池可以用下式表示: _ )Pt| H 2(g)|H +||H 2O,OH -|O 2(g)|Pt(+ 电池反应为:H 2 电极 2H 2 + 4OH - === 4H 2O + 4e - O 2 电极 O 2 + 2 H 2O + 4e - === 4OH -2.室温下O 2在一般电极材料上还原很慢,必须使用有效的催化剂加速这一反应,才能使燃料电池具有实用价值。
铂黑和银黑有很高的催化活性,但价格太高,不适宜工业生产;经过实验研究发现具有尖晶石结构的Cu x Fe 3-x O 4,CoxFe 3-2xO 4等对O 2的还原具有较高活性,而用沉淀法制备这类催化剂并不难。
3.根据对O 2 电极反应机理研究得出,电极催化反应过程要生成中间产物H 2O 2(碱性溶液中主要以HO 2- 形式存在),反应如下:O 2 + 2 H 2O + 2e - === H 2O 2 + 2OH -或 O 2 + H 2O + 2e - === HO 2- + OH -H 2O 2 继续分解:H2O2=== 1/2 O2+ H2OHO2- === 1/2 O2+ OH-再生的O2又循环继续发生反应。
直接乙二醇燃料电池阳极催化材料的研究进展赵亚飞;马宪印;李云华;李巧霞【摘要】The mechanism of electrooxidation of ethylene glycol in direct ethylene glycol fuel cell(DEGFC) was reviewed.The performance of supported Pt and non-Pt series anode electrocatalysts for electrooxidation of ethylene glycol,including single metal,binary and ternary alloys dopted with Ru,Sn,Ni,Rh,WO3 and TiO2 was introduced.The developing direction of electrocatalysts for ethylene glycol electrooxidation was discussed.%综述直接乙二醇燃料电池催化剂的催化反应机理,以及不同载体负载Pt、Pd单金属催化剂,掺杂金属Ru、Sn、Ni、Rh及金属氧化物WO3、TiO2等合成二元和多元Pt 系和非Pt系阳极电催化材料对乙二醇电催化氧化性能的研究现状,并对乙二醇电催化剂的研究方向进行展望.【期刊名称】《电池》【年(卷),期】2017(047)001【总页数】4页(P48-51)【关键词】直接乙二醇燃料电池;乙二醇电氧化;阳极电催化剂【作者】赵亚飞;马宪印;李云华;李巧霞【作者单位】上海电力学院环境与化学工程学院,上海市电力材料防护与新材料重点实验室,上海200090;上海电力学院环境与化学工程学院,上海市电力材料防护与新材料重点实验室,上海200090;上海电力学院环境与化学工程学院,上海市电力材料防护与新材料重点实验室,上海200090;上海电力学院环境与化学工程学院,上海市电力材料防护与新材料重点实验室,上海200090【正文语种】中文【中图分类】TM911.46燃料和催化剂对燃料电池性能有着重要的影响。