变压器纵差保护原理及不平衡电流分析(2)
- 格式:doc
- 大小:17.00 KB
- 文档页数:3
热电厂主变压器的纵差动保护原理及整定方法浙江旺能环保股份有限公司 作者:周玉彩一、构成变压器纵差动保护的基本原则我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。
由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。
例如在图1中,应使图 '2I =''2I = 。
同的。
这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。
二、变压器纵差动保护的特点变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。
但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。
励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。
因此必须想办法解决。
为了消除励磁涌流的影响,首先应分析励磁涌流有哪些特点。
经分析得出,励磁涌流具有以下特点:(1) 包含有很大成分的非周期分量,往往使涌流偏向于时间轴的一侧 ; (2) 包含有大量的高次谐波,而以二次谐波为主; (3) 波形之间出现间断,在一个周期中间断角为ɑ。
根据以上特点,在变压器纵差动保护中,防止励磁涌流影响的方法有: (1) 采用具有速饱和铁心的差动继电器;İ1′′ n İ1′(2) 利用二次谐波制动;(3) 鉴别短路电流和励磁涌流波形的差别等。
变压器纵差保护原理
变压器纵差保护是保护变压器的一种重要保护方式,目的是在发生变压器内部故障时,及时切除故障区域,保护变压器不受进一步的损害。
其基本原理是利用变压器偏差电流的存在来检测变压器内部故障,并对故障进行判别和定位。
变压器偏差电流是指变压器正常运行时,由于磁路不对称或绕组接地等原因,发生的不平衡电流。
该电流包含了负荷电流和因不平衡而产生的额外电流。
变压器纵差保护利用偏差电流的大小和方向进行保护判据的建立。
一般情况下,变压器内部短路故障会导致变压器的绕组短路,使得电流在绕组内形成环流。
这样,由于短路故障产生的偏差电流会使得变压器两侧的偏差电流不平衡,通过测量偏差电流的不平衡程度,可以判断出故障的位置及类型。
变压器纵差保护系统主要由绕组电流变比、差动电流继电器和相关的电路组成。
绕组电流变比将绕组电流变换成适合差动电流继电器测量的信号,差动电流继电器则进行信号的比较和判别,当测量到的差动电流超过事先设定的阈值时,差动电流继电器将产生动作指令,使断路器切除故障点。
总之,变压器纵差保护的原理是基于测量变压器偏差电流的不平衡程度来判断变压器内部是否存在故障,并通过差动电流继电器进行判别和动作,以实现对变压器的保护。
分析变电站主变压器差动保护的不平衡电流产生的原因摘要:本文从变电站主变压器差动保护的应用现状出发,通过分析引起主变压器差动保护的不平衡电流产生的原因,并提出了相应的应对措施,从而正确的应用主变压器的差动保护。
关键词:主变压器;差动保护;不平衡电流;原因近年来,随着我国电力事业不断进步,变电站中主变压器作为电力系统的电压转换装置,其容量越来越大,并且具有电压等级高、结构复杂、造价昂贵等特点,因此在运行过程中一旦发生破坏,将会产生一系列的故障问题,并且检修难度非常大,不仅会直接影响用户的用电质量,还会消耗大量的人力、物力,产生严重的经济损失。
因此,加强变压器的保护工作十分重要。
目前,在主变压器的保护措施中,包括安装主保护和后备保护装置,其中应用比较广泛的是配置差动保护,这也构成了变压器保护的核心部分。
然而在实际应用过程中,由于主变压器差动保护会产生不平衡电流,对变压器造成一定的影响。
1变电站主变压器的差动保护原理变电站主变压器的差动保护是其主保护,主要是保护变压器单相匝间、变压器绕组内部以及引出线上发生的各种短路故障。
理论上来讲,正常运行及外部故障时,差动回路电流为零,而两侧的电流互感器按差接法接线,在正常和外部故障时,流入继电器的电流为两侧电流之差,其值接近为零,继电器不动作。
内部故障时,流入继电器的电流为两侧电流之和,其值为短路电流,继电器动作。
2变电站主变压器差动保护的应用现状在变电站的主变压器差动保护装置中有速断保护、本体保护和差动保护三种,主要是在变压器发生故障的时候采取一系列的保护动作,首先是瞬间跳开高低压断路器,然后把变压器和电源隔离开,从而实现主变压器的保护,避免造成不必要的损坏。
从理论上讲,主变压器差动保护的应用基于基尔霍夫电流定律,能够在较短的时间内灵敏的切除主变压器的内部故障;在切除外部故障的时候,可靠的避免励磁涌流;此外,无论是在正常运行的情况下,还是在遇到外部故障的时候,都能够躲避不平衡电流,不会产生因过励磁而造成的误动作。
热电厂主变压器的纵差动保护原理及整定方法浙江旺能环保股份有限公司 作者:周玉彩一、构成变压器纵差动保护的基本原则我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。
由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。
例如在图1中,应使图1 变压器纵差动保护的原理接线'2I =''2I =1'1l n I =21''l n I 或 12l l n n 1'1''I I =B n 式中:1l n —高压侧电流互感器的变比;2l n —低压侧电流互感器的变比;B n —变压器的变比(即高、低压侧额定电压之比)。
由此可知,要实现变压器的纵差动保护,就必须适当地选择两侧电流互感器的变比,使其比值等于变压器的变比B n ,这是与前述送电线路的纵差动保护不同的。
这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。
二、变压器纵差动保护的特点变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于İ1′′ n İ1′差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。
但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。
励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。
分析主变纵差动保护不平衡电流原因及解决方法(2)对于由电流互感器计算变比与实际变比不同而产生的不平衡电流可采用2种方法来克服:一是采用自耦变流器进行补偿。
通常在变压器一侧电流互感器(对三绕组变压器应在两侧)装设自耦变流器,将LH输出端接到变流器的输入端,当改变自耦变流器的变比时,可以使变流器的输出电流等于未装设变流器的LH的二次电流,从而使流入差动继电器的电流为零或接近为零。
二是利用中间变流器的平衡线圈进行磁补偿。
通常在中间变流器的铁心上绕有主线圈即差动线圈,接入差动电流,另外还绕一个平衡线圈和一个二次线圈,接入二次电流较小的一侧。
适当选择平衡线圈的匝数,使平衡线圈产生的磁势能完全抵消差动线圈产生的磁势,则在二次线圈里就不会感应电势,因而差动继电器中也没有电流流过。
采用这种方法时,按公式计算出的平衡线圈的匝数一般不是整数,但实际上平衡线圈只能按整数进行选择,因此还会有一残余的不平衡电流存在,这在进行纵差保护定值整定计算时应该予以考虑。
2、由变压器两侧电流相位不同而产生的不平衡电流的克服方法对于由变压器两侧电流相位不同而产生的不平衡电流可以通过改变LH接线方式的方法(也称相位补偿法)来克服。
对于变压器Y形接线侧,其LH采用△形接线,而变压器△形接线侧,其LH采用Y形接线,则两侧LH二次侧输出电流相位刚好同相。
但当LH采用上述连接方式后,在LH接成△形侧的差动一臂中,电流又增大了3倍,此时为保证在正常运行及外部故障情况下差动回路中没有电流,就必须将该侧LH的变比扩大3倍,以减小二次电流,使之与另一侧的电流相等。
3、由变压器外部故障暂态穿越性短路电流产生的不平衡电流的克服方法在变压器外部故障的暂态过程中,使纵差保护产生不平衡电流的主要原因是一次系统的短路电流所包含的非周期分量,为消除它对变压器纵差保护的影响,广泛采用具有不同特性的差动继电器。
对于采用带速饱和变流器的差动继电器是克服暂态过程中非周期分量影响的有效方法之一。
电力变压器纵差保护常见问题分析(1)首先有必要一提的是最常见的问题便是安装过程中消失的问题;目前常见的电流互感器,出厂时都在外壳上明确标注P1、P2;抽头S1、S2;意思是当CT一次侧的电流由P1流向P2时,二次侧感应电流的方向为S1到S2。
差动装置取的是爱护区域两端的两个CT的二次侧感应电流进行计算,此时就肯定要留意差动爱护装置本身的固有特性:是180度接线还是0度接线。
所谓180度接线要求,就是对两端两个CT进入爱护装置的电流求和,和为零时不动作;0度接线要求就是对两端两个CT进入爱护装置的电流求差值,差值为零时不动作。
安装作业人员甚至一些设计人员经常由于对该原理的模糊导致对于发电机的差动爱护习惯性设置为0接线,对变压器采纳180接线;这就与很有可能与差动爱护装置本身的计算属性要求不符,继而造成差动爱护的误动作。
虽然现在的自适应接线方式的差动爱护装置很好的解决了这个问题,但这种装置电厂普及度不高,极易消失问题,这就要求现场人员在施工过程中要严格校验。
(2)差动继电器的电流回路接线问题,现在电力变压器主要分为干式变压器和油浸式变压器两类,在变压器的规格参数中有一项被称之为联接组标号。
也就是平常说的接线方式。
暂以常规的Dyn11来阐明差动继电器电流回路接线问题。
依据基础电路理论,角型接法的线电压比星型接法的相电压超前30度,所以就变压器自身来说高压侧的电流会超前低压侧30度。
那么假如两侧的CT采纳相同的接线方式的话,在高压侧CT处产生的二次电流也会比低压侧CT产生的二次电流在相位上相差30度,那么正常运行时也就可能超过爱护定值造成误动。
对此问题现在普遍采纳转变CT二次绕组接线方式的方法来解决。
以Dyn11为例来说明,高压侧采纳三角形接线,那么高压侧对应的CT的二次绕组就采纳星型接线;低压侧采纳星型接线,那么低压侧对应的二次绕组就采纳角型接线;这样一次侧虽然高压侧的感应的线电压虽然会比低压侧感应的相电压超前30度;但由于接线方式,星型接法的CT的感应电流会比角型接法的CT的感应电流滞后30度。
变压器纵差保护的基本原理作者:司庆忠来源:《中国科技博览》2013年第35期【摘要】本文在阐述变压器纵差保护基本原理的基础上,对纵差保护不平衡电流进行了分析,并提出了变压器纵差保护中不平衡电流的克服方法。
【关键词】变压器;纵差保护;不平衡电流中图分类号:TU855 文献标识码:A 文章编号:1009―914X(2013)35―572―01前言:纵差保护是一切电气主设备的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。
但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为超高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,变压器纵差保护的固有原理性矛盾更加突出。
1变压器纵差保护基本原理1.1纵差保护在发电机上的应用比较简单,但是作为变压器内部故障的主保护,纵差保护将有许多特点和困难。
变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。
1.2当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于0,但是实际上在外部发生短路时还存在一个不平衡电流。
事实上,外部发生短路故障时,因为外部短路电流大,非凡是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。
因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。
1.3 由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。
变压器的纵联差动保护众所周知,纵差保护是一切电气主设备的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。
它可以用来反映变压器绕组的相间短路故障、中性点接地侧绕组的接地故障以及引出线的相间短路故障、中性点接地侧引出线的接地故障。
但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为超高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,变压器纵差保护的固有原理性矛盾更加突出。
纵差保护还受到互感器采集不平衡电流的影响,在本章将研究纵差保护的基本原理、不平衡电流的产生及克服方案。
1变压器纵差保护基本原理按照反应电流和电压量变化构成的保护装置,测量元件限于装设在被保护元件的一侧,无法区别被保护范围末端和相邻范围始端的故障。
为了保证动作的选择性,在整定动作参数时必须与相邻元件的保护相配合,一般采用缩短保护区(降低灵敏度)或延长动作时限(降低速动性)的方法来获得选择性。
但从保证系统稳定运行和减轻故障变压器的损失及避免扩大事故的要求来看,希望能快速切除被保护范围内任意地点发生的故障。
如果保护装置的测量元件能同时反应被保护设备两端的电量时,就能正确判断被保护范围区内和区外的故障。
被保护元件发生内部和外部故障时,其各侧功率方向或电流相位是有差别的,因而根据比较被保护元件各端电流大小和相位差别的方法而构成的纵联差动保护,获得了广泛的应用。
采用差动继电器作保护的测量元件,用来比较被保护元件各端电流的大小和相位之差,从而判断保护区内是否发生短路。
由于纵联差动保护只在保护区内短路时才动作,不存在与系统中相邻元件保护的选择性配合问题,因而可以快速切除整个保护区内任何一点的短路,这是它的可贵优点。
但是,为了构成纵联差动保护装置,必须在被保护元件各端装设电流互感器,并将它们的二次线圈用辅助导线连接起来,接差动继电器。
由于受助导线条件的限制,纵向连接的差动保护仅限于用在短线路上,对于发电机、变压器及母线等,则可广泛采用纵联差动保护实现主保护。
第三节变压器纵差动保护一、变压器纵差动保护工作原理由于变压器的高压侧和低压侧的额定电流不,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两二次电流相等。
要实现变压器的纵差动保护,就必须适当地选择两侧电流互感器的变比,使其比值等于变压器的变比,此区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。
图6-2 (a)双绕组变压器正常运行时的电流分布(b)三绕组变压器区内故障时的电流分布图6-3纵差保护特殊问题-引起不平衡电流增大原因:变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流。
引起不平衡电流增大原因:(1)变压器两侧绕组接线方式不同;(2)变压器、电流互感器的计算变比与实际变比不同;(3)变压器带负荷调节分接头;(4)电流互感器传变误差的影响;(5)变压器励磁电流产生的不平衡电流;(6)变压器励磁涌流。
二、励磁电流的影响正常运行时,励磁电流仅为变压器额定电流的3%~5%,所以对保护无影响。
当变压器空载合闸或外部故障切除后电压恢复过程中,由于变压器铁心中的磁通急剧增大,使变压器铁心瞬时饱和,出现数值很大的励磁涌流。
励磁涌流可达变压器额定电流的 6~8 倍,如不采取措施变压器纵差保护将会误动。
涌流产生原因: 铁芯中的磁通不能突变。
图6-4稳态时,磁通滞后电压90°;当 U=0 时投入变压器,铁心出现磁通–Φm,铁心中磁通不能突变,必须产生+Φm的非周期分量,以抵消–Φm 使得Φ=0 ,考虑到剩磁Φsy的影响,半个周波后,铁心中的磁通达到最大值,严重饱和,对应的励磁涌流此时也达到最大。
图6-5单相变压器励磁涌流的特征:(1)数值较大,可达额定电流的6~8倍,偏于时间轴一侧;(2)含有较大的直流分量;(3)励磁涌流中含有大量的谐波分量;(4)励磁涌流的波形中有间断。
图6-6防止励磁涌流方法:在变压器纵差动保护中防止励磁涌流影响的方法有;采用具有速饱和铁心的差动断电器;鉴别短路电流和励磁涌流波形的差别;利用二次谐波制动等。
1、变压器差动保护的工作原理与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。
2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。
因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。
变压器纵差动保护的特点1 、励磁涌流的特点及克服励磁涌流的方法1)励磁涌流在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。
2)产生励磁涌流的原因因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。
但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。
此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。
3)励磁涌流的特点:①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。
②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。
③励磁涌流的波形出现间断角。
4)克服励磁涌流对变压器纵差保护影响的措施:①采用带有速饱和变流器的差动继电器构成差动保护;②利用二次谐波制动原理构成的差动保护;③利用间断角原理构成的变压器差动保护;④采用模糊识别闭锁原理构成的变压器差动保护。
2、不平衡电流产生的原因(1)稳态情况下的不平衡电流①变压器两侧电流相位不同电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。
纵联差动保护不平衡电流产生的原因
1. 电流互感器的误差,哎呀,就好比你量身高,尺子有点不准,那结果能对吗?比如变压器两侧的电流互感器特性不完全一致,这就容易导致不平衡电流产生啦!
2. 变压器的励磁电流,这就好像车子启动时那一下子的抖动,是会有额外的东西出来呀!在变压器空载合闸时,励磁电流急剧增大,这不就引起不平衡电流了嘛!
3. 变压器各侧绕组的接线方式不同,这就跟几个人站的位置不一样似的。
如果接线方式不一样,那电流能平衡才怪呢,不平衡电流不就来了嘛!
4. 变压器的带负荷调整分接头,这就如同你不断地调整收音机的音量旋钮,肯定会有波动呀!这样也会使不平衡电流产生哦!
5. 两侧电流互感器的型号不同,这好比一个是大力士,一个是小瘦子,能一样吗?肯定会造成不平衡电流呀!比如一侧是高精度的,另一侧不是,那不就有差别了。
6. 运行中改变变压器的变比,哇,这就像突然改变了游戏规则,那不乱套了嘛!就会导致不平衡电流出现呀!
7. 变压器的负荷电流大小及功率因数变化,这就跟天气一会儿晴一会儿阴似的,不稳定呀!那不平衡电流就容易产生啦!
8. 电流互感器的饱和,这就像人吃饱了走不动道一样,它饱和了能正常工作吗?自然就有不平衡电流啦!
9. 外界环境对电流互感器的影响,就像你在大风中走路会歪歪扭扭一样,环境一变,它也可能出问题呀,不平衡电流就来了!
10. 二次回路的电阻、电抗等参数差异,这就类似两条路一条平坦一条崎岖,肯定不一样呀!这也会引起不平衡电流的产生哟!
我觉得呀,这些原因都得重视,不然纵联差动保护可就不准确啦,那多危险呀!。
浅析变压器差动保护在运行过程中出现的不平衡电流摘要:变压器是电力系统的重要组成部分。
随着电力工业的迅速发展,对供电系统的稳定性有了更高的要求,因此,变压器的稳定运行也越来越重要,也对变压器的保护提出了更高的要求。
本文从变压器的保护入手,主要分析了变压器继电保护中的差动保护,并对运行中存在的不平衡电流进行了简要的分析。
关键词:变压器;继电保护;差动保护;不平衡电流引言:近几年,为适应国家在城乡电网改造的需求,发展了一批新型、优质的配电变压器,使配电网络的变压器装备更趋先进,供电更可靠,农村用电更趋低价。
近年发展的配电变压器的损耗值在不断下降,尤其空载损耗值下降更多,这主要归功于磁性材料导磁性能的改进,其次是导磁结构铁心型式的多样化。
如较薄高导磁硅钢片或非晶合金的应用,阶梯接缝全斜结构铁心、卷铁心(平面型、立体型)、退火工艺的应用等。
在降低损耗的同时也注意噪声水平的降低。
在干式配电变压器方面又将局部放电试验列为例行试验,用户又对局部放电量有要求,作为干式配电变压器运行可靠性的一项考核指标,这比国际电工委员会规定的现行要求要严格。
因此,在现有基础上预测我国各类配电变压器的发展趋势,推动配电变压器进一步发展应是一件比较重要工作。
变压器的继电保护是利用当变压器内外发生故障时,由于电流、电压、油温等随之发生变化,通过这些突然变化来发现、判断变压器故障性质和范围,继而作出相应的反应和处理。
若发现是差动保护动作,需对动作原因进行判断。
要准确判断出是变压器套管等原因造成的,还是变压器内部故障的原因。
继电保护动作断路器跳闸后,不要随即将掉牌信号复归,而应检查保护动作情况,并查明原因,在消除故障恢复送电前,方可将所有的掉牌信号全部复归。
1.1 差动保护差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。
当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。
变压器纵联差动保护原理变压器纵联差动保护是一种用于保护变压器的重要保护装置,主要用于检测变压器绕组之间的电流差异,以便快速准确地判断是否发生了内部故障。
以下是变压器纵联差动保护的基本原理:1. 基本原理:-纵联差动保护通过比较变压器绕组之间的电流来检测潜在的内部故障。
正常工作状态下,变压器的输入电流等于输出电流,即两侧绕组电流相等。
当发生内部故障时,如绕组短路或绝缘故障,绕组之间的电流差异将导致纵联差动电流。
2. 电流比较:-纵联差动保护系统会同时监测变压器高压绕组和低压绕组的电流。
这些电流通过电流互感器(CT)测量,并传输到差动保护设备中。
设备将两侧电流进行比较,正常情况下两侧电流应该平衡。
3. 设定电流和灵敏性:-差动保护设备设有一定的电流差动保护设定值。
当变压器内部发生故障时,导致两侧电流不平衡,超过设定值时,差动保护将启动,产生差动保护动作信号。
4. 差动保护动作:-一旦检测到电流差异超过设定阈值,差动保护设备会发出保护动作信号。
这通常包括切断电源、关闭刀闸等措施,以隔离变压器并防止故障蔓延。
5. 灵敏性和稳定性:-纵联差动保护需要在足够灵敏的同时保持稳定性,以防止误动作。
因此,设定值的选择、电流互感器的准确性和保护装置的灵敏性都是设计中需要考虑的关键因素。
6. 复合差动保护:-为了提高保护的可靠性,有时会采用复合差动保护,结合其他保护元件,如零序电流保护、过流保护等。
这样可以增加差动保护的鲁棒性,减少误动作的可能性。
变压器纵联差动保护是确保变压器正常运行和防止故障蔓延的关键保护装置之一。
通过及时、准确地检测内部故障,它有助于提高电力系统的可靠性和稳定性。
(1)由变压器励磁涌流产生
变压器的励磁电流仅流经变压器接通电源的某一侧,对差动回路来说,励磁电流的存在就相当于变压器内部故障时的短路电流[3]。
因此,它必然给纵差保护的正确工作带来不利影响。
正常情况下,变压器的励磁电流很小,故纵差保护回路的不平衡电流也很小。
在外部短路时,由于系统电压降低,励磁电流也将减小。
因此,在正常运行和外部短路时励磁电流对纵差保护的影响常常可忽略不计。
但是,在电压突然增加的特殊情况下,比如变压器在空载投入和外部故障切除后恢复供电的情况下,则可能出现很大的励磁电流,这种暂态过程中出现的变压器励磁电流通常称励磁涌流。
(2)由变压器外部故障暂态穿越性短路电流产生
纵差保护是瞬动保护,它是在一次系统短路暂态过程中发出跳闸脉冲。
因此,必须考虑外部故障暂态过程的不平衡电流对它的影响。
在变压器外部故障的暂态过程中,一次系统的短路电流含有非周期分量,它对时间的变化率很小,很难变换到二次侧,而主要成为互感器的励磁电流,从而使互感器的铁心更加饱和。
3.变压器纵差保护中不平衡电流的克服方法
从上面的分析可知,构成纵差保护时,如不采取适当的措施,流入差动继电器的不平衡电流将很大,按躲开变压器外部故障时出现的最大不平衡电流整定的纵差保护定值也将很大,保护的灵敏度会很低。
若再考虑励磁涌流的影响,保护将无法工作。
因此,如何克服不平衡电流,并消除它对保护的影响,提高保护的灵敏度,就成为纵差保护的中心问题。
(1)由电流互感器变比产生的不平衡电流的克服方法
对于由电流互感器计算变比与实际变比不同而产生的不平衡电流可采用2
种方法来克服:一是采用自耦变流器进行补偿。
通常在变压器一侧电流互感器(对三绕组变压器应在两侧)装设自耦变流器,将LH输出端接到变流器的输入端,当改变自耦变流器的变比时,可以使变流器的输出电流等于未装设变流器的LH的二次电流,从而使流入差动继电器的电流为零或接近为零。
二是利用中间变流器的平衡线圈进行磁补偿。
通常在中间变流器的铁心上绕有主线圈即差动线圈,接入差动电流,另外还绕一个平衡线圈和一个二次线圈,接入二次电流较小的一侧。
适当选择平衡线圈的匝数,使平衡线圈产生的磁势能完全抵消差动线圈产生的磁势,则在二次线圈里就不会感应电势,因而差动继电器中也没有电流流过。
采用这种方法时,按公式计算出的平衡线圈的匝数一般不是整数,但实际上平衡线圈只能按整数进行选择,
因此还会有一残余的不平衡电流存在,这在进行纵差保护定值整定计算时应该予以考虑。
(2)由变压器两侧电流相位不同而产生的不平衡电流的克服方法
对于由变压器两侧电流相位不同而产生的不平衡电流可以通过改变LH接线方式的方法(也称相位补偿法)来克服。
对于变压器Y形接线侧,其LH采用△形接线,而变压器△形接线侧,其LH采用Y形接线,则两侧LH二次侧输出电流相位刚好同相。
但当LH采用上述连接方式后,在LH接成△形侧的差动一臂中,电流又增大了3倍,此时为保证在正常运行及外部故障情况下差动回路中没有电流,就必须将该侧LH的变比扩大3倍,以减小二次电流,使之与另一侧的电流相等。
(3)由变压器外部故障暂态穿越性短路电流产生的不平衡电流的克服方法
在变压器外部故障的暂态过程中,使纵差保护产生不平衡电流的主要原因是一次系统的短路电流所包含的非周期分量,为消除它对变压器纵差保护的影响,广泛采用具有不同特性的差动继电器。
对于采用带速饱和变流器的差动继电器是克服暂态过程中非周期分量影响
的有效方法之一。
根据速饱和变流器的磁化曲线可以看出,周期分量很容易通过速饱和变流器变换到二次侧,而非周期分量不容易通过速饱和变流器变换到二次侧。
因此,当一次线圈中通过暂态不平衡电流时,它在二次侧感应的电势很小,此时流入差动继电器的电流很小,差动继电器不会动作。
另外,采用具有磁力制动特性的差动继电器。
这种差动继电器是在速饱和变流器的基础上,增加一组制动线圈,利用外部故障时的短路电流来实现制动,使继电器的起动电流随制动电流的增加而增加,它能可靠地躲开变压器外部短路时的不平衡电流,并提高变压器内部故障时的灵敏度。
因此,继电器的启动电流随着制动电流的增大而增大。
通过正确的定值整定,可以使继电器的实际启动电流不论在任何大小的外部短路电流的作用下均大于相应的不平衡电流,变压器纵差保护能可靠躲过变压器外部短路时的不平衡电流。
由于励磁涌流产生的不平衡电流仍然是纵差保护的重点,不平衡电流的影响导
致纵差保护方案的设计也不尽相同。
因此,在实践的变压器差动保护中,应结合不同方案进行具体的设计。