7年级上册-几何图形初步提高题(最新整理)
- 格式:docx
- 大小:398.86 KB
- 文档页数:36
《6.1 几何图形初步认识的常见题型》题型1 物体的特征在构建几何体模型中的应用1.如图的四种物体中,最接近于圆柱的是()A.B.C.D.题型2 生活中的情境在构建平面几何模型中的应用2.如图是一座房子的平面图,这幅图的组成是()A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形题型3 图形的特征在认识平面图形、认识几何体中的应用3.下列各组图形中,都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体题型4 常见立体图形的特征在分类中的应用4.如图a,请帮助甲、乙、丙三名同学从图b中选出合适的立体图形.题型5 常见几何体的特征在说明面、顶点、棱的关系中的应用5.如图:由此可推测n(n为大于或等于3的正整数)棱柱有多少个面?多少个顶点?多少条棱?题型6 常见立体图形的特征的应用6.如图是一个直七棱柱,它的底面边长都是2cm,侧棱长是5cm,观察这个棱柱,回答下列问题:(1)这个七棱柱共有多少个面,它们分别是什么形状?哪些面的形状相同、面积相等?侧面的面积是多少?(2)这个七棱柱一共有多少条棱?它们的长度分别是多少?(3)这个七棱柱一共有多少个顶点?(4)通过对棱柱的观察,你能说出n棱柱的顶点数与n的关系及棱的条数与n的关系吗?题型7 图形的展开与折叠在辨识相对面中的应用7.现有4枚相同的骰子,骰子的展开图如图①所示,这4枚骰子摞在一起后,如图②,相互接触的两个面点数之和都是8,这4枚骰子每枚骰子都有一个面被遮住了(阴影部分),你能说出每个被遮住的面各是几点吗?题型8 图形的形成在计算中的应用8.如图,将一个长方形沿它的长或宽所在的直线l旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm和4cm,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少(结果保留m)?参考答案1.答案:A2.答案:C3.答案:C4.答案:见解析解析:甲选(2)和(4);乙选(1);丙选(1)和(3).5.答案:见解析解析:n 棱柱有(2n +)个面,2n 个顶点,3n 条棱.6.答案:见解析解析:(1)这个七棱柱共有九个面,上、下两个底面是七边形,七个侧面都是长方形.上、下两个底面的形状相同、面积相等;七个侧面的形状相同、面积相等.225770()S cm =⨯⨯=侧.(2)这个七棱柱一共有21条棱,侧棱长为5cm ,其余棱长为2cm.(3)这个七棱柱一共有14个顶点.(4)通过观察棱柱可知,n 棱柱共有2n 个顶点,3n 条棱.7.答案:见解析解析:1为1点,2为6点,3为4点,4为3点.8.答案:见解析解析:(1)得到的几何体是圆柱.(2)绕宽所在直线旋转一周得到的圆柱的底面半径为6cm ,高为4cm ,体积=2364144()cm ππ⨯⨯=;绕长所在直线旋转一周得到的圆柱的底面半径为4cm ,高为6cm ,体积=234696()cm ππ⨯⨯=.《6.2 线段的计算的四大技法》素养练技法1 和差关系法1.如图,已知线段AB ,按下列要求完成画图和计算:(1)延长线段AB 到点C ,使2BC AB =,取AC 中点D ;(2)在(1)的条件下,如果4AB =,求线段BD 的长度.2.如图,已知线段24AB =cm ,点P 是线段AB 上任意一点,与点,A B 都不重合,点C 是线段AP 的中点,点D 是线段PB 的中点,计算CD 的长度.3.如图,点C 为线段AB 的中点,点D 在线段CB 上.(1)图中共有_______条线段;(2)图中,AD AC CD BC AB AC =+=-,类似地,请你再写出两个有关线段的和与差的关系式;(3)若8, 1.5AB DB ==,求线段CD 的长.技法2 设元列方程法4.如图,点C 为线段AB 上一点,且:2:3AC BC =,N 是BC 的中点,若35AN =,求AB 的长.5.如图,线段AB 被点,C D 分成3:4:5的三部分,且AC 的中点M 和BD 的中点N 之间的距离是40cm ,求AB 的长.6.已知线段AB ,延长AB 到点C ,使12BC AB =,延长BA 到点D ,使2AD AB =,点,M N 分别是,BC AD 的中点,若MN =18cm ,求AB 的长.技巧3 整体求值法7.如图,点,C D 是线段AB 上的两点,,M N 分别是AC 与BD 的中点.(1)若2418AB CD ==,,求MN 的长;(2)若,AB a CD b ==,请用含,a b 的式子表示MN 的长.8.如图,点C 在AB 的延长线上,,M N 分别是AC 和BC 的中点.(1)若6cm,4cm AB BC ==,则线段MN 的长是_______;(2)若cm,cm AB a BC b ==,则线段MN 的长是_______;(3)若AB m =cm ,求线段MN 的长;(4)若点C 是线段AB 的延长线上任意一点,其他条件不变,请你用一句简洁的话描述你发现的结论.技法4 分类讨论法9.已知线段AB =60cm ,在直线AB 上画线段BC ,使BC=20cm ,点D 是AC 的中点,求CD 的长度.10.已知,点,,A B C 在同一条直线上,且AC =10,BC =6,,M N 分别是,AC BC 的中点.(1)画出符合题意的图形;(2)依据(1)中的图形,求线段MN 的长.参考答案1.答案:见解析解析:(1)图略(2)因为2BC AB =,且AB =4,所以BC =8,所以8412AC AB BC =+=+=.因为点D 为AC 的中点,所以162AD AC ==,所以642BD AD AB =-=-=. 2.答案:见解析解析:设AP 的长度是x cm ,则PB 的长度是(24-x )cm ,则12CP AP ==12x cm ,12PD PB = =12(24-x )cm ,则CD =12x +12(24-x )=111222x x +-=12(cm ).3.答案:见解析解析:(1)6(2)答案不唯一,如:① BC CD BD =+;②AD AB DB =-. (3)因为点C 为线段AB 的中点,AB =8,所以12CB AB ==4,所以CD =CB DB - 2.5=.4.答案:见解析解析:设AC =2x ,BC =3x ,则5AB AC BC x =+=,因为N 是BC 的中点, 所以12CN BC ==13322x x ⨯=. 因为AN AC CN =+, 所以32352x x +=,解得x =10,所以AB=5x =5×10=50.5.答案:见解析解析:设AB 的长为xcm.因为线段AB 被点C ,D 分成3:4:5的三部分, 所以3141,124123AC x x CD x x ====,512DB =x ,因为AC 的中点M 和DB 的中点N 之间的距离是40cm ,又18MC x =,524DN x =, 所以115408324x x x ++=,解得x =60,所以AB 的长为60cm. 6.答案:见解析解析:设AB x =cm ,则122x BC AB ==cm ,124x BM BC ==cm ,2AD x =cm ,12AN AD x ==cm ,由18MN =cm ,得184x x x ++=,解得x =8,则8AB =cm . 7.答案:见解析解析:(1)因为24AB AC CD BD =++=,CD =18,所以24186AC BD +=-=.因为M 是AC 的中点,N 是BD 的中点,所以11,22CM AC DN BD ==,所以11163222CM DN AC BD +=+=⨯=,所以31821MN MC DC DN =++=+=. (2)由(1)知AC BD a b +=-,111()222CM DN AC BD a b +=+=-. 所以111()222MN CM DN DC a b b a b =++=-+=+. 8.答案:见解析解析:(1)3cm(2)12a cm (3)因为,M N 分别是AC 和BC 的中点, 所以12CM AC =,12CN BC =,又因为AC AB BC =+,所以111()222MN CM CN AC BC AB BC =-=-=+111222BC AB m -== cm. (4)若点C 是线段AB 延长线上的任意一点,点,M N 分别是AC 和BC 的中点,则线段MN 的长等于12AB . 9.答案:见解析解析:当点C 在线段AB 上时,如图①,111()(6020)222CD AC AB BC ==-=-=140202⨯=(cm ); 当点C 在线段AB 的延长线上时,如图②,111()(6020)222CD AC AB BC ==+=+180402=⨯=(cm ). 所以CD 的长度为20cm 或40cm .10.答案:见解析解析:(1)画图如下:(2)如图①:因为,M N 分别是,AC BC 的中点, 所以152MC AC ==,132NC BC ==, 所以8MN MC NC =+=;如图②:同理可求5MC =,3NC =,所以2MN MC NC =-=,答:MN 的长是8或2.。
(名师选题)整理七年级数学上册第四章几何图形初步带答案常考点单选题1、己知点M 是线段AB 上一点,若AM =14AB ,点N 是直线AB 上的一动点,且AN −BN =MN ,则MN AB的( )A .34B .12C .1或12D .34或22、如图,小明从A 处沿南偏西65∘30′方向行走至点B 处,又从点B 处沿北偏西72∘30′方向行走至点E 处,则∠ABE =( )A .114∘30′B .108∘C .137∘D .138∘3、下列几何体都是由4个相同的小正方体搭成的,其中从正面和左面看到的形状图相同的是( )A .B .C .D .4、桌面上有一个正方体,每个面均有一个不同的编号(1,2,3,…,6),且每组相对面上的编号和为7.将其按顺时针方向滚动(如图),每滚动90°算一次,则滚动第2022次后,正方体朝下一面的数字是( )A .5B .4C .3D .25、若∠A =23°,则∠A 的补角是( ) A .57°B .67°C .157°D .167°6、正方体的截面形状不可能是( )A.三角形B.五边形C.六边形D.七边形7、如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()A.跟B.百C.走D.年8、如图,某正方体三组相对的两个面的颜色相同,分别为红,黄,蓝三色,其展开图不可能是()A.B.C.D.9、我们知道过平面上两点可以画一条直线,过平面上3点最多可以画3条直线,过平面上4点最多可以画6条直线,过平面上5点最多可以画10条直线.如果平面上有6个点,且任意3个点均不在同一直线上,那么最多可以画多少条直线?()A.15B.21C.30D.3510、如图,从∠AOB的顶点引出两条射线OC,OD,图中的角共有()A.3个B.4个C.6个D.7个解答题11、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型得__________________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是__________.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.12、如图,C是线段AB外一点,用没有刻度的直尺和圆规画图.(1)画射线CB;(2)画直线AC;(3)①延长线段AB到点E,使AE=3AB;②在①的条件下,如果AB=5cm,那么BE的长为__________.13、【感受新知】如图1,射线OC在∠AOB在内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中一个角的度数是另一个角度数的三倍,则称射线OC是∠AOB的“和谐线”.[注:本题研究的角都是小于平角的角.](1)一个角的角平分线_______这个角的“和谐线”.(填是或不是)(2)如图1,∠AOB=60°,射线OC是∠AOB的“和谐线”,求∠AOC的度数.【运用新知】(3)如图2,若∠AOB=90°,射线OM从射线OA的位置开始,绕点O按逆时针方向以每秒15°的速度旋转,同时射线ON从射线OB的位置开始,绕点O按顺时针方向以每秒7.5°的速度旋转,当一条射线回到出发位置的时候,整个运动随之停止,旋转的时间为t(s),问:当射线OM、ON旋转到一条直线上时,求t的值.【解决问题】(4)在(3)的条件下,请直接写出当射线ON是∠BOM的“和谐线”时t的值.整理七年级数学上册第四章几何图形初步带答案(四十三)参考答案1、答案:C分析:根据N在线段AB上和线段AB外分情况讨论,再结合线段关系即可解题.当N在射线BA上时,AN<BN,不合题意当N在射线AB上时,AN−BN=AB=MN,此时MNAB=1当N在线段AB上时,由图可知AN=MN+AM,BN=BM−MN∴AN−BN=MN+AM−BM+MN=2MN+AM−BM=MN,∴MN=BM−AM∵AM=14AB∴BM=34AB∴MN=BM−AM=12AB∴MNAB =12故选:C.小提示:本题考查线段和差计算,解题的关键是画出图形根据图像找到线段直接的和差关系.2、答案:D分析:先根据方位角以及平行线的性质可得∠2=∠3=65∘30′、∠1=72∘30′,则∠ABE=∠1+∠2,最后计算即可.解:如图:∵小明从A处沿南偏西65∘30′方向行走至点B处,又从点B处沿北偏西72∘30′方向行走至点E处∴∠2=∠3=65∘30′,∠1=72∘30′∴∠ABE=∠1+∠2=138°.故答案为D.小提示:本题主要考查了方位角和角的运用,正确认识方位角成为解答本题的关键.3、答案:A分析:分别画出四个选项从正面看和从左面看的形状,即可得到答案.解:A、从正面看的形状,从左面看的形状,故A符合题意;B、从正面看的形状,从左面看的形状,故B不符合题意;C、从正面看的形状,从左面看的形状,故C 不符合题意;D、从正面看的形状,从左面看的形状,故D 不符合题意;故选A.小提示:本题主要考查了小正方块组成的几何体的三视图,熟知三视图的定义是解题的关键.4、答案:B分析:先找出正方体相对的面,然后从数字找规律即可解答.解:由图可知:3和4相对,2和5相对,1和6相对,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,骰子朝下一面的点数依次为5,4,2,3,且依次循环,∵2022÷4=505......2,∴滚动第2022次后,骰子朝下一面的点数是:4,故选:B.小提示:本题考查了正方体相对两个面上的文字,先找出正方体相对的面,然后从数字找规律是解题的关键.5、答案:C分析:根据补角的定义,即若两个角的和等于180°,就称这两个角互补,即可解答.解:∵∠A=23°,∴∠A的补角等于180°−∠A=180°−23°=157°,故选:C小提示:本题主要考查了补角的定义,解题的关键是熟练掌握若两个角的和等于180°,就称这两个角互补.6、答案:D分析:正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形.解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为七边形.故选:D.小提示:本题考查正方体的截面.熟记正方体的截面的四种情况是解题的关键.7、答案:B分析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“建”字相对的面上的汉字是“百”.故选B.小提示:本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.8、答案:C分析:利用正方体的展开图中,间隔是对面判断即可.解:根据正方体的展开图中,间隔是对面可知,选项A、B、D中都符合正方体三组相对的两个面的颜色相同,只有选项C中,蓝与蓝是相邻的面,故选:C.小提示:本题考查了正方体的展开图中间隔是对面的规律,理解掌握该规律是解题的关键.9、答案:A分析:根据图示的规律用代数式表示即可.根据图形得:第①组最多可以画3条直线;第②组最多可以画6条直线;第③组最多可以画10条直线.条直线.如果平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画1+2+3+…+n-1=n(n−1)2当n=6时,6×5=15=15.2即:最多可以画15条直线.故选:A.小提示:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并找到其中的规律.10、答案:C分析:按一定的规律数角的个数即可.解:以OA为一边的角有:∠AOD,∠AOC,∠AOB,以OD为一边的角有:∠DOC,∠DOB,以OC为一边的角有:∠COB,所以,图中共有6个角,故选:C.小提示:本题通过数角的个数,巩固角的概念,难度适中.11、答案:(1)V+F−E=2;(2)20;(3)14分析:(1)根据表格中的数据分析即可得出顶点数(V)、面数(F)、棱数(E)之间存在的关系;(2)根据(1)的结论求解即可;(3)先求得棱数,再代入(1)的关系式求解即可.(1)∵4+4−6=2,8+6−12=2,6+8−12=2,20+12−30=2,∴V+F−E=2,所以答案是:V+F−E=2;(2)由题意得:F−8+F−30=2,解得F=20,所以答案是:20;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线,∴共有24×3÷2=36条棱,∴24+F−36=2,解得F=14;设该多面体外表三角形的个数为x个,八边形的个数为y个,则x+y即为多面体的面数,∴x+y=14.小提示:本题考查了多面体的顶点数,面数,棱数之间的关系,理解题意,找到规律是解题的关键.12、答案:10cm.分析:(1)根据射线的概念作图可得;(2)根据直线的概念作图可得;(3)①在射线AB上用圆规截取AE=3AB即可;②先求出AE的长,再根据BE=AE-AB求解即可.解:(1)如图所示,射线CB即为所求;(2)如图所示,直线AC即为所求;(3)①如图所示,线段AE即为所求;②∵AB=5cm,AE=3AB,∴AE=15cm.则BE=AE﹣AB=10cm.所以答案是:10cm.小提示:本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,要求同学们一定要认真作图,特别是直线向两方无限延伸,不需要延长,射线向一方无限延伸,不需延长,但可以反向延长;而线段不延伸,既可以延长,也可以反向延长.13、答案:(1)不是;(2)15°,45°,20°,40°;(3)4,12,20;(4)7.2,6,10.8,727分析:(1)结合“和谐线”和角平分线的定义,即可得到答案;(2)分四种情况讨论,由“和谐线”的定义,列出方程可求∠AOC的度数;(3)根据题意,分三种情况讨论,列出方程可求t的值;(4)根据题意,分四种情况进行讨论,列出方程,分别解方程,即可求出t的值.解:∵一个角的平分线平分这个角,且这个角是所分两个角的2倍,∴一个角的角平分线不是这个角的“和谐线”;所以答案是:不是;(2)根据题意,∵∠AOB=60°,射线OC是∠AOB的“和谐线”,可分为四种情况进行分析:①当∠AOB=3∠AOC=60°时,∴∠AOC=20°;②当∠AOB=3∠BOC=60°时,∴∠BOC=20°,∴∠AOC=40°;③当∠AOC=3∠BOC时,∵∠AOC+∠BOC=∠AOB=60°,∴∠AOC=45°;④当∠BOC=3∠AOC时,∵∠AOC+∠BOC=∠AOB=60°,∴∠AOC=15°;(3)由题意得,∵360°÷15°=24(秒),∴运动时间范围为:0<t≤24,则有①当OM与ON第一次成一个平角时,90+15t+7.5t=180,解得:t=4(秒);②当OM与ON成一个周角时,90+15t+7.5t=360,解得:t=12(秒);③当OM与ON第二次成一个平角时,90+15t+7.5t=180+360,解得:t=20(秒)综上,t的值为4或12或20秒;(4)当OM与OB在同一条直线上时,有t=(180°−90°)÷15°=6(秒),当OM与ON成一个周角时,有t=12,∴6≤t≤12;根据“和谐线”的定义,可分为四种情况进行分析:①当∠MON=3∠BON时,如图:∵∠MON=360°−90°−15t−7.5t,∠BON=7.5t,∴360°−90°−15t−7.5t=3×7.5t,解得:t=6;②当∠BOM=3∠BON时,如图:∵∠BOM=360°−90°−15t,∠BON=7.5t,∴360°−90°−15t=3×7.5t,解得:t=7.2;③当∠BOM=3∠MON时,如图:∵∠BOM=360°−90°−15t,∠MON=(360°−90°)−(15t+7.5t)=270°−22.5t,∴360°−90°−15t=3×(270−22.5t),;解得:t=727④当∠BON=3∠MON时,如图:∵∠BON=7.5t,∠MON=270°−22.5t,∴7.5t=3×(270−22.5t),解得:t=10.8;小提示:本题考查一元一次方程的应用,和谐线的性质,角之间的和差关系,找等量关系列出方程是解决问题的关键,属于中考常考题型。
数学《几何图形初步》综合提高题2021-2022学年人教版数学七年级上册一、细心选一选1. 下图中所示的几何体的正视图是()A.B.C.D.2. 如图所示的物体从上面看到的形状是()3. 一个六棱柱的顶点个数、棱的条数、面的个数分别是()A.6、12、6B.12、18、8C.18、12、6D.18、18、244. 如图,有一个正方体纸巾盒,它的平面展开图是()5. 如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3B.∠1=1800-∠3C.∠1=900+∠3D.以上都不对6. 两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm7. 下列说法中错误的有().(1)线段有两个端点,直线有一个端点;(2)角的大小与我们画出的角的两边的长短无关;(3)线段上有无数个点;(4)同角或等角的补角相等;(5)两个锐角的和一定大于直角.A.1个 B.2个 C.3个 D.4个8. 两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点9. 如图,点A 位于点O 的( )方向上.A .南偏东35° B.北偏西65° C.南偏东65° D.南偏西65°10. 将如图所示的直角三角形ABC 绕直角边AC 旋转一周,所得的几何体从正面看是图中( ) B A C A B C D二、耐心填一填11. 如图,已知OB 是∠AOC 的角平分线,OC 是∠AOD 的角平分线,∠AOB =35°,那么∠BOD 的度数为________.12. 如图,将一副三角尺叠放在一起,使直角顶点重合于O ,则∠AOC +∠DOB=________.13. 若时针由2点30分走到2点55分,则时针转过_______度,分针转过______度.14. 已知∠α=13°,则∠α的余角的大小是__________.15. 如图所示,点C 在线段AB 的延长线上,且BC =2AB ,D 是AC 的中点,若AB =2cm ,求BD 的长.解:∵AB =2cm ,BC =2AB ,∴BC =4cm .∴AC=AB +____________=____________cm .∵D 是AC 的中点,∴AD=____________=____________cm.∴BD=AD-____________=____________cm.16. 用A,B,C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°方向上,小红家在小明家的正东方向上,小红家在学校的北偏东35°方向上,则∠ACB=________.17. 由若干个小立方块搭成的几何体的三视图如图所示,则该几何体中小立方块的个数是_____________个。
数学《几何图形初步》综合提高题 2021-2022学年人教版数学七年级上册一、精心选一选1. 若一个角的补角的余角是28°,则这个角的度数为( )A.62°B.72°C.118°D.128°2. 下列语句错误的是( )A .延长线段AB B .延长射线ABC .直线m 和直线n 相交于点PD .在射线AB 上截取线段AC ,使AC =3cm3. 如图,已知C 是线段AB 的中点,D 是线段BC 的中点,下列各式不正确的是( )A .CD =AC -DB B .CD =AD -BC C .CD =12AB -BD D .CD =13AB4. 如左图所示的正方体沿某些棱展开后,能得到的图形是( ). 9.如果∠α=26°,那么∠α余角的补角等于 ( ).A.20°B.70°C.110°D.116°5. 如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )A.1B.2C.3D.46. 物体的形状如图所示,则从上面看此物体形状是( ).7. 将两块直角三角板的直角顶点重合,如图所示,若128AOD ∠,则∠BOC 的度数是( ).A.45°B.52°C.60°D.50°8. 如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,OF 平分∠AOE ,∠1=15°30′,则下列结论中不正确...的是( )A .∠2=45°B .∠1=∠3C .∠AOD 与∠1互为补角 D .∠1的余角等于75°30′9. 如果A 、B 、C 三点在同一直线上,且线段AB =6cm ,BC =4cm ,若M ,N 分别为AB ,BC 的中点,那么M ,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定10. 已知∠AOB=30°,自∠AOB 的顶点O 引射线OC ,若∠AOC:∠AOB=4:3,则∠BOC=( )A.10°B.40°C.40°或70°D.10°或70°二、细心填一填11. 已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm ,M 是线段BC 的中点,则AM 的长是___________cm .12. 已知α∠与β∠互余,且40α=∠,则β∠为________.13. 上午6点45分时,时针与分针的夹角是__________度.14. 乘火车从A 站出发,沿途经过3个车站可到达B 站,那么在AB ,两站之间最多共有________种不同的票价;15. 若时针由2点30分走到2点55分,则时针转过_______度,分针转过______度.16. 如图,点O 是直线l 上一点,作射线OA ,过O 点作OB⊥OA 于点O ,则图中∠1,∠2的数量关系为________.17. 已知线段AB =8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC =_______cm .18. 如果一个角是64°,那么这个角的余角为___°.三、用心做一做19. 如图已知:线段AB 上有一点D ,且C 为线段DB 的中点,点D 分线段AC 为1:3,若CD=9cm,则AB等于多少厘米?20. 已知∠α=76°,∠β=41°31′,求:(1)∠β的余角;(2)∠α的2倍与∠β的12的差.21. 如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.D C BA22. 计算:(1)48°39'+67°31';(2)180°-21°17'×5;(3)72°35'÷2+18°33'×4.23. 如图所示.长方形ABCD的周长是32cm,且5AD=3AB,把长方形ABCD绕直线AB旋转一周,然后用平面沿线段AB的方向截所得的几何体,求截面的最大面积.24. 如图,已知点O在线段AB上,点C,D分别是AO,BO的中点.(1)AO=________CO;BO=________DO;(2)若CO=3cm,DO=2cm,求线段AB的长度;(3)若线段AB=10,小明很轻松地求得CD=5.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5”是否仍然成立呢?请帮小明画出图形分析,并说明理由.。
一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知AB∥CD,∠A=40°,点P是射线B上一动点(与点A不重合),CM,CN分别平分∠ACP和∠PCD,分别交射线AB于点M,N.(1)求∠MCN的度数.(2)当点P运动到某处时,∠AMC=∠ACN,求此时∠ACM的度数.(3)在点P运动的过程中,∠APC与∠ANC的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.【答案】(1)解:∵A B∥CD,∴∠ACD=180°﹣∠A=140°,又∵CM,CN分别平分∠ACP和∠PCD,∴∠MCN=∠MCP+∠NCP= (∠ACP+∠PCD)= ∠ACD=70°,故答案为:70°.(2)解:∵AB∥CD,∴∠AMC=∠MCD,又∵∠AMC=∠ACN,∴∠MCD=∠ACN,∴∠ACM=∠ACN﹣∠MCN=∠MCD﹣∠MCN=∠NCD,∴∠ACM=∠MCP=∠NCP=∠NCD,∴∠ACM= ∠ACD=35°,故答案为:35°.(3)解:不变.理由如下:∵AB∥CD,∴∠APC=∠PCD,∠ANC=∠NCD,又∵CN平分∠PCD,∴∠ANC=∠NCD= ∠PCD= ∠APC,即∠APC:∠ANC=2:1.【解析】【分析】(1)由AB∥CD可得∠ACD=180°-∠A,再由CM、CN均为角平分线可求解;(2)由AB∥CD可得∠AMC=∠MCD,再由∠AMC=∠ACN可得∠ACM =∠NCD(3)由AB∥CD可得∠APC=∠PCD,再由CN为角平分线即可解答.2.如图1, .如图2,点分别是上的点,且, .(1)求证: F;(2)若的角平分线与的角平分线交于点,请补全图形并直接写出与之间的关系为________.【答案】(1)证明:如图,延长EH,交CD的延长线与M,(2)∠BFE=2∠P.【解析】【解答】解:(2)结论:∠BFE=2∠P,理由如下:如图,设∠B=∠HEF=y.∠BFE=x=,故答案为:∠BFE=2∠P.【分析】(1)延长EH,交CD的延长线与M,根据平行线的性质及等量代换即可证明;(2)设∠B=∠HEF=y,∠BFE=x,根据平行的性质结合三角形的内角和定理得出∠BFE=2∠P.3.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.4.如图,四边形ABCD的内角∠DCB与外角∠ABE的平分线相交于点F.(1)若BF∥CD,∠ABC=80°,求∠DCB的度数;(2)已知四边形ABCD中,∠A=105º,∠D=125º,求∠F的度数;(3)猜想∠F、∠A、∠D之间的数量关系,并说明理由.【答案】(1)解:∵∠ABC=80°,∴∠ABE=180°-∠ABC=100°,∵BF平分∠ABE,∴∠EBF= ∠ABE=50°,∵BF∥CD∴∠BCD=∠EBF=50°(2)解:∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF= ∠ABE=,∠ECF= ∠BCD,∵∠ABE=180°-∠ABC,∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F= [180°-(360°-∠A-∠D)],∴∠F= (∠A+∠D-180°),∵∠A=105º,∠D=125º,∴∠F= (105º +125º -180°)=25°(3)解:结论:∠F= (∠A+∠D-180°)理由如下:∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF= ∠ABE=,∠ECF= ∠BCD,∵∠ABE=180°-∠ABC,∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F= [180°-(360°-∠A-∠D)],∴∠F= (∠A+∠D-180°)【解析】【分析】(1)由角平分线的性质和邻补角的定义可得:∠FBE=∠FBA= ∠ABE=(180°-∠ABC);由平行线的性质可得∠BCD=∠FBE可求解;(2)由平行线的性质可得:∠ABC+∠A=180°;∠BCD+∠D=180°;由已知条件可得:∠ABC=180°-∠A;∠BCD=180°-∠D;由角平分线的性质和邻补角的定义可得:∠FBE=∠FBA= ∠ABE=(180°-∠ABC);∠BCF=∠BCD,由三角形外角的性质可得∠FBE=∠F+∠BCF,于是∠F=∠FBE-∠BCF,把求得的∠FBE和∠BCF的度数代入计算即可求解;(3)结合(1)和(2)的结论可求解:∠F=(∠A+∠D-180°)。
一、初一数学几何模型部分解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.3.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为________度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.【答案】(1)90(2)解:如图3,∠AOM﹣∠NOC=30°.设∠AOC=α,由∠AOC:∠BOC=1:2可得∠BOC=2α.∵∠AOC+∠BOC=180°,∴α+2α=180°.解得α=60°.即∠AOC=60°.∴∠AON+∠NOC=60°.①∵∠MON=90°,∴∠AOM+∠AON=90°.②由②﹣①,得∠AOM﹣∠NOC=30°;(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,由OD平分∠AOC,可得∠BON=30°.因此三角板绕点O逆时针旋转60°.此时三角板的运动时间为:t=60°÷15°=4(秒).(ⅱ)如图5,当直角边ON在∠AOC内部时,由ON平分∠AOC,可得∠CON=30°.因此三角板绕点O逆时针旋转240°.此时三角板的运动时间为:t=240°÷15°=16(秒).【解析】【解答】解:(1)由旋转的性质知,旋转角∠MON=90°.故答案是:90;【分析】(1)根据旋转的性质知,旋转角是∠MON;(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON在∠AOC内部时,旋转角是240°.4.如图(1),将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=25°,∠ACB=?;若∠ACB=150°,则∠DCE=?;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.【答案】(1)【解答】∵∠ECB=90°,∠DCE=25°∴∠DCB=90°﹣25°=65°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=155°.∵∠ACB=150°,∠ACD=90°∴∠DCB=150°﹣90°=60°∵∠ECB=90°∴∠DCE=90°﹣60°=30°.故答案为:155°,30°(2)【解答】猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°(3)【解答】∠DAB+∠CAE=120°理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.【解析】【分析】(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.5.综合题(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度.(2)对于(1)问,如果我们这样叙述:“已知点C在直线AB上,且AC=6cm,BC=4cm,点M、N分别是AC,BC的中点,求线段MN的长度.”结果会有变化吗?如果有,求出结果;如果没有,说明理由.【答案】(1)解:∵AC=6cm,且M是AC的中点,∴MC= AC= 6=3cm,同理:CN=2cm,∴MN=MC+CN=3cm+2cm=5cm,∴线段MN的长度是5m(2)解:分两种情况:当点C在线段AB上,由(1)得MN=5cm,当C在线段AB的延长线上时,∵AC=6cm,且M是AC的中点∴MC= AC= ×6=3cm,同理:CN=2cm,∴MN=MC﹣CN=3cm﹣2cm=1cm,∴当C在直线AB上时,线段MN的长度是5cm或1cm.【解析】【分析】(1)根据线段的中点定义,由M是AC的中点,求出MC、CN的值,得到MN=MC+CN的值;(2)当点C在线段AB上,由(1)得MN的值;当C在线段AB 的延长线上时,再由M是AC的中点,求出MC、CN的值,得到MN=MC﹣CN的值.6.如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE平分∠CAD 交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=,∠ADC= .(1)求证:∠EFC=∠FEC;(2)①若∠B=30°,∠CAD=50°,则=________,=________;②试探究与的关系,并说明理由;(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出与的关系.【答案】(1)证明:∵∠ABC=∠BAC,EH⊥AB.∴∠EFC=∠AFH=90°-∠BAC,∠FEC=90°-∠ABC,∴∠EFC=∠FEC.(2)35°;70°;解:② , 理由如下: 由(1)可知:, 又∵ , ∴ . ∴ .(3)解:图形如下:∵∠ABC=∠BAC,∠BHE=90°-∠ABC,∠F=90°-∠BAC,∴ .又∵,∴在△CEF中有:∠ECF+2∠CEF=180°,即 ..∵2∠EAC=∠DAC, ,∴ .∴即 .∴ .【解析】【解答】解:(2)①∵∠CAD=50°,AE平分∠CAD,∴∠ =∠AFH-∠EAC=90°-∠BAC-∠EAC=90°-30°-25°=35°.∵∠ACB=∠ABC+∠BAC=60°,∠CAD=50°,∴∠ =180°-∠ACB-∠CAD=180°-60°-50°=70°.故答案为:35°,70°.【分析】(1)利用等角的余角相等的性质证明即可.(2)①利用外角定理和角平分线的性质求解即可;②分别用∠和∠表示出∠AEC即可解.(3)画出图形,将所有的角度集中在△CEF 的内角和上,列出等式求解即可.7.探究与发现:(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.(3)探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(4)探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:▲ .【答案】(1)解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;(2)探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC= ∠ADC,∠PCD= ∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠ACD,=180°- (∠ADC+∠ACD),=180°- (180°-∠A),=90°+ ∠A;(3)探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC= ∠ADC,∠PCD= ∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠BCD,=180°- (∠ADC+∠BCD),=180°- (360°-∠A-∠B),= (∠A+∠B);(4)探究四:六边形ABCDEF的内角和为:(6-2)•180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC= ∠EDC,∠PCD= ∠BCD,∴∠P=180°-∠PDC-∠PCD=180°- ∠EDC- ∠BCD=180°- (∠EDC+∠BCD)=180°- (720°-∠A-∠B-∠E-∠F)= (∠A+∠B+∠E+∠F)-180°,即∠P= (∠A+∠B+∠E+∠F)-180°.【解析】【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC= ∠ADC,∠PCD= ∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可.8.如图,∠AOB=40°,点C在OA上,点P为OB上一动点,∠CPB的角平分线PD交射线OA于D。
初中数学七年级几何图形图形初步练习题一、单选题(共20题;共40分)1. 如图,已知,将一个含45°角的三角尺按图中方式放置,度数为()A .21°B .24°C .30°D .66°2. 如图,数轴上点A、B分别表示1、√3,若点B关于点A的对称点为点C,则点C所表示的数为( )A .√3-1B .1-√3C .√3-2D .2-√33. 如图所示,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E.若∠BAC = 60°,∠C = 80°,则∠EOD的度数为 ( )A .20°B .30°C .10°D .15°4. 如图,CD、BD分别平分∠ACE、∠ABC ,∠A=70°,则∠BDC=()A .35°B .25°C .70°D .60°5. 下面几何体中,是长方体的为()A .B .C .D .6. 下列说法不正确的是()A .四棱柱是长方体B .八棱柱有10个面C .六棱柱有12个顶点D .经过棱柱的每个顶点有3条棱7.()8. 如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤S△BDE:S△ACD=BD:AC,其中正确的个数()A .5个B .4个C .3个D .2个9.()10. 下列命题中,是真命题的是()A .两直线平行,内错角相等B .两个锐角的和是钝角C .直角三角形都相似D .正六边形的内角和为360°11. 如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.下列说法不正确的是()A .与∠1互余的角只有∠2B .∠A与∠B互余C .∠1=∠BD .若∠A=2∠1,则∠B=30°12. 如图,点O为直线AB上一点,OC⊥OD.如果∠1=35°,那么∠2的度数是()A .35°B .45°C .55°D .65°13. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A .138°B .136°C .134°D .132°14. 如图,∠AOD﹣∠AOC=()A .∠ADCB .∠BOCC .∠BODD .∠COD15.①两点之间线段最短;②同旁内角互补;③若 AC=BC,则点 C 是线段AB 的中点;④经过一点有且只有一条直线与这条直线平行,其中正确的说法有( )A .1 个B .2 个C .3 个D .4 个16. 如图,()A .102°B .110°C .142°D .148°17. 若AB∥CD,∠CDE=∠CDF,∠ABE=∠ABF,则∠E:∠F=()A .1:2B .1:3C .3:4D .2:318.如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论:①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A .①②③④B .①②C .①③④D .①②④19. 如图,在等边△ABC中,AB=6,点D是BC的中点,将△ABC绕点A逆时针旋转后得到△ACE ,那么线段DE的长为()A .B .6C .D .20. 一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A .140°B .130°C .50°D .40°二、解答题21.如图,已知D为△ABC的边BC延长线上一点,DF⊥AB于F交AC于E,若∠A =48°,∠D=56°,求∠B和∠ACD的度数.22.如图,在△ABC中,已知∠B=40°,∠C=60°,AE⊥BC于E ,AD平分∠BAC ,求∠DAE的度数.23. 如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.24. 作图:如图,平面内有A,B,C,D四点.按下列语句画图:(1)画射线AB,直线BC,线段AC;(2)连接AD与BC相交于点E.参考答案1、【答案】A2、【答案】D3、【答案】A4、【答案】A5、【答案】B6、【答案】A7、【答案】B8、【答案】C9、【答案】A10、【答案】A11、【答案】A12、【答案】C13、【答案】C14、【答案】D15、【答案】C16、【答案】C17、【答案】C18、【答案】B19、【答案】B20、【答案】C21、∠B=34°∠ACD=82°22、∠DAE=10°23、∠BOD=22°。
一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B 的长度为( )A .0B .1C .2D .3 2.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm3.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处4.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .6 5.平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A .16B .22C .20D .186.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-17.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A .圆锥,正方体,三棱锥,圆柱B .圆锥,正方体,四棱锥,圆柱C .圆锥,正方体,四棱柱,圆柱D .圆锥,正方体,三棱柱,圆柱 8.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 9.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .410.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°11.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .4 12.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 13.如图,图中射线、线段、直线的条数分别为( )A .5,5,1B .3,3,2C .1,3,2D .8,4,114.用一个平面去截一个圆锥,截面的形状不可能是( )A .B .C .D . 15.把一张长方形的纸片按如图所示的方式折叠,EM ,FM 为折痕,C 点折叠后的C '点落在MB '的延长线上,则EMF ∠的度数是( )A .85°B .90°C .95°D .100°二、填空题16.若∠A=4817︒',则它的余角是__________;它的补角是___________。
一、解答题1.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =, ①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =; (2)如果2t s =时,1CD cm =,试探索AP 的值. 解析:(1)①3cm ;②见解析;(2)9AP =或11cm. 【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论. 【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=, ∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=, ∴2433CD CP PB DB cm =+-=+-=; ②∵8,12AP AB ==,∴4,82BP AC t ==-, ∴43DP t =-,∴2434CD DP CP t t t =+=+-=-, ∴2AC CD =; (2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=, ∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=, 综上所述,9AP =或11cm. 【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.2.如图,C ,D ,E 为直线AB 上的三点.(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;(2)若一条直线上有n个点,则这条直线上共有多少条线段,多少条射线?解析:(1)有10条线段,10条射线.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.(2)(1)2n n-条线段,2n条射线.【解析】【分析】对于(1),这条直线上共5个点,求直线上的线段条数,相当于求从5个点中任取两个点的不同取法有多少种,可从点A开始,用划曲线的方法从左向右依次连接其它各点,再从点C开始,用同样的划曲线方法,直到将线段EB画出为止,即可找到所有的线段,由于每个点对应两条射线,由直线上的5个点即可知有多少条射线;对于(2),和(1)类似,当一条直线上有n个点时,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,结合其中有一半重合的线段,则可计算出n个点所组成的线段条数;一个点对应延伸方向相反的两条射线,可表示出当一条直线上有n个点时的射线条数.【详解】解:(1)图中有10条线段,10条射线.如图所示.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.能用大写字母表示的射线:射线AC、射线CD、射线DE、射线EB、射线CA、射线DC、射线ED、射线BE.(2)因为n个点,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,所以n个点就组成n(n-1)条线段.因为其中有一半重合的线段,如线段AC与线段CA,所以这条直线上共有(1)2n n-条线段.因为一个端点对应延伸方向相反的两条射线,所以当一条直线上有n个点时,共有2n条射线.【点睛】此题考查直线、射线、线段,解题关键在于掌握直线上射线、线段条数的求法. 3.如图所示,长度为12cm的线段AB的中点为点M,点C将线段MB分成:1:2MC CB=,求线段AC的长度.解析:8cm【解析】 【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长. 【详解】设MC =xcm ,则CB =2xcm , ∴MB =3x .∵M 点是线段AB 的中点,AB =12cm , ∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC , ∴AC =3x +x =4x =4×2=8(cm ). 故线段AC 的长度为8㎝. 【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.4.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?” 解析:34个 【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个. 【详解】 用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个) 【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.5.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A 处发现一只虫子在D 处,立刻赶去捕捉,你知道它怎样去的吗?请在图中画出它的爬行路线,如果虫子正沿着DI 方向爬行,蚂蚁预想在点I 处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.解析:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.蜗牛爬树一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x天,爬到树顶不下滑,列出方程即可解答.【详解】设蜗牛需x天才爬到树顶不下滑,即爬到九丈八需x天,可列方程(10-7.8)(x-1)+10=98,解得x=41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程.8.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B、面C相对的面分别是和;(2)若A=a3+15a2b+3,B=﹣12a2b+a3,C=a3﹣1,D=﹣15(a2b+15),且相对两个面所表示的代数式的和都相等,求E、F代表的代数式.解析:(1)面F,面E;(2)F=12a2b,E=1【分析】(1)根据“相间Z端是对面”,可得B的对面为F,C的对面是E,(2)根据相对两个面所表示的代数式的和都相等,三组对面为:A与D,B与F,C与E,列式计算即可.【详解】(1)由“相间Z端是对面”,可得B的对面为F,C的对面是E.故答案为:面F,面E.(2)由题意得:A与D相对,B与F相对,C与E相对,A+D=B+F=C+E将A=a315+a2b+3,B12=-a2b+a3,C=a3﹣1,D15=-(a2b+15)代入得:a315+a2b+315-(a2b+15)12=-a2b+a3+F=a3﹣1+E,∴F12=a2b,E=1.【点睛】本题考查了正方体的展开与折叠,整式的加减,掌握正方体展开图的特点和整式加减的计算方法是正确解答的前提.9.如图,点B、C在线段AD上,且::2:3:4AB BC CD=,点M是线段AC的中点,点N是线段CD上的一点,且9MN=.(1)若点N是线段CD的中点,求BD的长;(2)若点N是线段CD的三等分点,求BD的长.解析:(1)14;(2)37823或37831.【分析】(1)设AB=2x,则BC=3x,CD=4x.根据线段中点的性质求出MC、CN,列出方程求出x,计算即可;(2)分两种情况:①当N在CD的第一个三等分点时,根据MN=9,求出x的值,再根据BD=BC+CD求出结果即可;②当N在CD的第二个三等分点时,方法同①.【详解】设AB=2x,则BC=3x,CD=4x.∴AC=AB+BC=5x,∵点M是线段AC的中点,∴MC=2.5x,∵点N是线段CD的中点,∴CN=2x,∴MN=MC+CN=2.5x+2x=4.5x∵MN=9,∴4.5x=9,解得x=2,∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x ,∴MN=MC+CN=54239236x x x +== 解得,5423x =, ∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x , ∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.10.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数; (2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数. 解析:(1)∠CAE =18°;(2)∠ACD =120°. 【分析】(1)由题意根据∠BAC =90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE =∠2,从而得解;(2)根据∠ACB 和∠DCE 的度数列出等式求出∠ACE ﹣∠BCD =30°,再结合已知条件求出∠BCD ,然后由∠ACD =∠ACB+∠BCD 并代入数据计算即可得解. 【详解】解:(1)∵∠BAC =90°, ∴∠1+∠2=90°, ∵∠1=4∠2, ∴4∠2+∠2=90°, ∴∠2=18°, 又∵∠DAE =90°,∴∠1+∠CAE =∠2+∠1=90°, ∴∠CAE =∠2=18°;(2)∵∠ACE+∠BCE =90°,∠BCD+∠BCE =60°, ∴∠ACE ﹣∠BCD =30°, 又∠ACE =2∠BCD ,∴2∠BCD ﹣∠BCD =30°,∠BCD =30°, ∴∠ACD =∠ACB+∠BCD =90°+30°=120°. 【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.11.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点. (1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析 【分析】(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案. (3)据题意画出图形,利用MN=MC-NC 即可得出答案. 【详解】解:(1)点M 、N 分别是AC 、BC 的中点, ∴CM=12AC=4.5cm , CN=12BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm . 所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b , 根据图形和题意可得: MN=MC-NC=12AC-12BC=12(AC-BC )=12b .【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.12.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.解析:(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-【分析】(1)由题意根据角平分线的定义,平角的定义,角的和差定义计算即可. (2)由题意根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题. (3)根据题意分点G 在点F 的右侧以及点G 在点F 的左侧两种情形分别求解即可. 【详解】解:(1)因为EN 平分AEF ∠,EM 平分BEF ∠, 所以12NEF AEF ∠=∠,12MEF BEF ∠=∠, 所以1111()2222MEN NEF MEF AEF BEF AEF BEF AEB ∠=∠+∠=∠+∠=∠+∠=∠.因为180AEB ︒∠=, 所以1180902MEN ︒︒∠=⨯=. (2)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF ∠=∠,12MEG BEG ∠=∠, 所以1111()()2222NEF MEG AEF BEG AEF BEG AEB FEG ∠+∠=∠+∠=∠+∠=∠-∠.因为180AEB ︒∠=,30FEG ︒∠=, 所以()118030752NEF MEG ︒︒︒∠+∠=-=, 所以7530105MEN NEF FEG MEG ︒︒︒∠=∠+∠+∠=+=. (3)因为EN 平分AEF ∠,EM 平分BEG ∠,所以12NEF AEF AEN ∠=∠=∠,12MEG BEG BEM ∠=∠=∠, 若点G 在点F 的右侧,MEN NEF FEG MEG α∠=∠+∠+∠=,()()(180)2180FEG NEF MEG AEN BEM ααααα︒︒∠=-∠+∠=-∠+∠=-=--;若点G 在点F 的左侧,MEN NEF MEG FEG α∠=∠+∠-∠=1801802FEG NEF MEG AEN BEM ααααα︒︒∠=∠+∠-=∠+∠-=--=-.【点睛】本题考查角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.13.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF .解析:【分析】根据题意和图形可以求得线段EB 、BC 、CF 的长,从而可以得到线段EF 的长. 【详解】∵E ,F 分别是线段AB ,CD 的中点, ∴AB=2EB=2AE ,CD=2CF=2FD ,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4, ∴AC+2CF=6, 解得,CF=1, 同理可得:EB=1, ∴BC=2,∴EF=EB+BC+CF=1+2+1=4. 【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.解析:120°【分析】此题可以设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOB=120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.AB=点C在线段AB上,点D,E分别是AC和BC的中点.17.线段12cm(1)若点C恰好是AB中点,求DE的长;AC=,求DE的长;(2)若4cm(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 解析:(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点, 所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点,所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =.(3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 18.如图,点C 为线段AD 上一点,点B 为CD 的中点,且6cm AC =,2cm BD =.(1)图中共有多少条线段?(2)求AD 的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.19.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.20.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<,所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠. 因为108AOC ∠=︒,所以54BOD ∠=︒【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,21.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b . MN=2b . 【点睛】 本题考查两点间的距离.22.已知线段AB =10cm ,直线AB 上有一点C ,BC =6cm ,M 为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.解析:2cm 或8cm【分析】分两种情况:(1)点C 在线段AB 上时,(2)点C 在AB 的延长线上时,分别求出线段MN 的值,即可.【详解】解:(1)若为图1情形,∵M 为AB 的中点,∴MB =MA =5cm ,∵N 为BC 的中点,∴NB =NC =3cm ,∴MN =MB ﹣NB =2cm ;(2)若为图2情形,∵M 为AB 的中点,∴MB =AB =5cm ,∵N 为BC 的中点,∴NB =NC =3cm ,∴MN =MB +BN =8cm .【点睛】本题主要考查线段的和差倍分和线段的中点概念,根据题意,画出图形,分类讨论,是解题的关键.23.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析.【分析】 (1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠,90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 24.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.解析:答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.25.已知,A 、B 是线段EF 上两点,已知EA :AB :BF=1:2:3,M 、N 分别为EA 、BF 的中点, 且MN=8cm ,求EF 的长.解析:12cm【解析】【分析】由已知设设EA=x ,AB=2x ,BF=3x ,根据线段中点性质得MN=MA+AB+BN=12x+2x+32x=4x=8,可得EF=EA+AB+BF=6x=12. 【详解】解:∵EA :AB :BF=1:2:3,可以设EA=x ,AB=2x ,BF=3x ,而M 、N 分别为EA 、BF 的中点,∴MA=12EA ,NB=12BF , ∴MN=MA+AB+BN=12x+2x+32x=4x , ∵MN=8cm ,∴4x=8,∴x=2, ∴EF=EA+AB+BF=6x=12,∴EF 的长为12cm .【点睛】本题考核知识点:线段的中点.解题关键点:根据线段中点性质和线段的和差关系列出方程.26.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)解析:(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.27.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)解析:见解析.【分析】根据正方体展开图直接画图即可.【详解】解:【点睛】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.28.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.解析:(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线, 11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,①当射线OP 在BOC ∠内部时(如图3-1),1005050COP BOC BOP ∠=∠-∠=︒-︒=︒;②当射线OP 在BOC ∠外部时(如图3-2),10050150COP BOC BOP ∠=∠+∠=︒+︒=︒.综上所述,COP ∠的度数为50︒或150︒.【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.29.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.30.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
O B《几何图形初步》提高复习题基础强化训练1. 把两块三角板按如图所示那样拼在一起, 则∠ABC 等于( )A第 1 题图BA .70°B .90°C .105°D .120°2. 在灯塔 O 处观测到轮船 A 位于北偏西 54°的方向,同时轮船北AB 在南偏东 15°的方向,那么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°3. 一个角的余角比这个角的 1少 30°,请你计算出这个角的大小.2第 2 题图4. 如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE .求:∠COE 的度数.5. 如图,已知线段 AB 和 CD 的公共部分1BD = AB = 3 1CD ,线段 4间距离是 10cm ,求 AB 、CD 的长AE DBFCAB 、CD 的中点 E 、F CCB E D之1.一个角的余角是它的补角的 2,这个角的补角是5()A.30°B.60°C.120°D.150°6.若一个角的余角比这个角大 31°20′,则这个角大小为 ,其补角大小。
7. 一副三角板如图摆放,若∠AGB=90°,则∠AFE=度。
8. 在一条直线上顺次取 A ,B ,C 三点,使得 AB=5cm ,BC=3cm 。
如果点D 是线段AC 的中点,那么线段DB 的长度是cm 。
9. 如图,点 A ,O ,E 在同一条直线上,∠AOB=40°,∠COD=28°,OD 平分∠COE。
求∠DOB的度数。
10. 一个角的补角与 20°角的和的一半等于这个角的余角的 3 倍,求这个角.2.一份数学试卷有 20 道选择题,规定答对一道得 5 分,不做或做错一题扣 1 分,结果某学生得分为 76 分,则他做对题数为 ( )道A.16B.17C.18D.193.∠1 和∠2 互余,∠2 和∠3 互补,∠1=63°,∠3=.4. 已知轮船在逆水中前进的速度为 m 千米/时,水流的速度为 2 千米/时,则这轮船在顺水中航行的速度是千米/时5. 金佰客超市举办迎新春送大礼的促销活动,全场商品一律打 8 折,宋老师花了992 元买了热水器,那么该商品的原售价为_元.6.假设有足够多的黑白围棋子,按照一定的规律排列成一行……请问第2007 个棋子是黑的还是白的?答:_ .17.若∠AOB=∠COD=∠AOD,已知∠COB=80°,求∠AOB、∠AOD的度数.63.已知关于 x 的方程(m+3)x|m|-2+6m=0…①与 nx-5=x(3-n) …②的解相同,其中方程①是一元一次方程,求代数式(m+x)2000·(-m2n+xn2)+1 的值.4.某一家服装厂接受一批校服订货任务,按计划天数进行生产,如果每天平均生产 20 套,就比订货任务少生产 100 套,如果每天平均生产 23 套,就可超过订货任务 20 套,问这批服装订货任务是多少套?原计划多少天完成?线段与角习题精选BCDAO E1、如图,,,点B、O、D 在同一直线上,则的度数为()(A)(B)(C)(D)2、如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF⊥AB.则(1)∠AOC 的补角是;(2)是∠AOC 的余角;(3)∠DOC 的余角是;(4)∠COF 的补角是.3、如图,点A、O、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE,求∠COB 的度数(7 分)4、如图,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE ,∠COF 34 ,求∠BOD 的度数.5、如图,点O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,若∠AOD=14°,求∠DOE、∠BOE 的度数.少?AMCNB6、如图 10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE, A 求∠ACF的度数.B7、把一张正方形纸条按图中那样折叠后,若得到∠AOB /=700,则∠B /OG =CE图 10.8、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD.9、如图 14,将一副三角尺的直角顶点重合在一起.第15 题图(1) 若∠DOB 与∠DOA 的比是 2∶11,求∠BOC 的度数.(2) 若叠合所成的∠BOC =n°(0<n<90),则∠AOD 的补角的度数与∠BOC 的度数之比是多10、如图,点 C 在线段 AB 上,AC = 8 厘米,CB = 6 厘米,点 M 、N 分别是 AC 、BC 的中点。
B 'F(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB =a 厘米,其它条件不变,你能猜想MN 的长度吗?并说明理由。
(3)若C 在线段AB 的延长线上,且满足AC BC =b 厘米,M、N 分别为AC、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。
11、如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB=10cm,求AD 的长度。
12、如图9,AD=1BD,E是BC的中点,BE=2cm,AC=10cm,求线段D2E的长.A CD B E图913、有一张地图(如图),有 A、B、C 三地,但地图被墨迹污损,C 地具体位置看不清楚了,但知道 C 地在A地的北偏东30°,在 B 地的南偏东45°,你能确定 C 地的位置吗?14、如图8,东西方向的海岸线上有A、B 两个观测站,在A 地发现它的北偏东30°方向上有一条渔船,同一时刻,在B 地发现这条渔船在它的北偏西60°方向上,试画图说明这条渔船的位置.15、如图,OA 的方向是北偏东15°,OB 的方向是西偏北50°。
(1)若∠AOC=∠AOB,则OC 的方向是;(2)OD 是OB 的反向延长线,OD 的方向是;(3)∠BOD可看作是 OB 绕点O 逆时针方向至 OD,作∠BOD的平分线OE,并用方位角表示OE 的方向是。
(4)在(1)、(2)、(3)的条件下,求∠COE。
18、(1)棱长为a 的正方体,摆成如图所示的上下三层.请求出该物体的表面积.(2)若依图中摆放方法类推,如果该物体摆放了上下10 层,你能求出该物体的表面积吗?19、如下图,在已知角内画射线,画1 条射线,图中共有个角;画2 条射线,图中共有个角;画3 条射线,图中共有个角,求画n 条射线所得的角的个数。
(一)数线段——数角——数三角形问题1、直线上有n 个点,可以得到多少条线段?分析:点线段2 13 3 =1+2(A) 3(B) 4 (C) 5 (D) 64 6=1+2+3510=1+2+3+4615=1+2+3+4+5……n1+2+3+ … +(n-1)=n (n - 1) 2问题 2.如图,在∠AOB 内部从 O 点引出两条射线 OC 、OD ,则图中小于平角的角共有( D )个拓展:1、 在∠AOB 内部从 O 点引出 n 条射线图中小于平角的角共有多少个?射线 角 13 =1+226=1+2+3310=1+2+3+4……n1+2+3+ … +(n+1)=(n + 1)(n + 2)2类比:从 O 点引出 n 条射线图中小于平角的角共有多少个?射线 角 2133 =1+246=1+2+3510=1+2+3+4……n 1+2+3+ … +(n-1)=n (n - 1)2AB类比联想:如图,可以得到多少三角形?(二)与线段中点有关的问题线段的中点定义:文字语言:若一个点把线段分成相等的两部分,那么这个点叫做线段的中点A图形语言:几何语言: ∵ M 是线段 AB 的中点∴ AM = BM = 1AB ,2 AM = 2BM = AB 2典型例题:1. 由下列条件一定能得到“P 是线段的中点”的是( D )其 )个示 C 是 AB 中点的有( C )个4.已知线段 M N ,P 是 M N 的中点,Q 是 P N 的中点,R 是 M Q MN .分析:据题意画出图形A.1 中能表示B 是线段 AC 的中点的有( A A .1 个B .2 个C .3 个D .4 个 B.2 个 C.3 个 D.4AD 设 QN=x ,则 PQ=x ,MP=2x ,MQ=3x ,5.如图所示,B 、C 是线段 AD 上任意两点,M 是 AB 的中点,N 是CD 中点,若MN=a ,BC=b ,则线段 的长是( )AMBCNA 2(a-b )B 2a-bC a+bD a-b分析:不妨设 CN=ND=x ,AM=MB=y因为 MN=MB+BC+CN所以 a=x+y+b因为 AD=AM+MN+ND所以 AD=y+a+x=a-b+a=2a-b(三)与角有关的问题1. 已知:一条射线 O A ,若从点 O 再引两条射线 O B 、OC ,使∠AOB=600,∠B OC =200,分类讨论)2. A 、O 、B共线,OM 、ON 分别为∠ AOC 、∠ BOC 的平分线,猜想∠ MON 的度数, 试证明你的结论.猜想:_90°M证明:因为 OM 、ON 分别为∠ AOC 、∠ BOC 的平分线1 1所以∠MOC= ∠AOC ,∠CON= ∠COB22因为∠MON=∠MOC+∠CON1 1 1所以∠MON= ∠AOC + ∠COB= ∠AOB=90°2 2 23.如图,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE ,∠COF=34 ,求∠BOD 的度数.分析:因为∠COE 是直角,∠COF=34 ,所以∠EOF=56°因为OF 平分∠AOE所以∠AOF=56°因为∠AOF=∠AOC+∠COF所以∠AOC=22°因为直线AB 和CD 相交于O 点所以∠BOD =∠AOC=22°4.如图,BO、CO 分别平分∠ABC 和∠ACB,(1)若∠A = 60°,求∠O;(2)若∠A =100°,∠O 是多少?若∠A =120°,∠O 又是多少?(3)由(1)、(2)你又发现了什么规律?当∠A 的度数发生变化后,你的结论仍成立吗?(提示:三角形的内角和等于180°)1答案:(1)120°;(2)140°、150°(3)∠O=90°+ ∠A25.如图,O是直线A B上一点,OC、OD、OE是三条射线,则图中互补的角共有( B )对(A) 2 (B) 3 (C) 4 (D) 56.互为余角的两个角( B )(A)只和位置有关(B)只和数量有关(C)和位置、数量都有关(D)和位置、数量都无关7.已知∠1、∠2互为补角,且∠1>∠2,则∠2的余角是( C )A.1 (∠1+∠2) B. 1 ∠1 C. 1 (∠1-∠2) D. 1 ∠22 2 2 2分析:因为∠1+∠2=180°,所以1 (∠1+∠2)=90°290°-∠2=1 (∠1+∠2)-∠2=21 (∠1-∠2)221、已知:如图(6)∠ABC=30°,∠CBD=70°BE 是∠ABD 的平分线,求∠DBE 的度数。