1_流体力学及传热学基础知识
- 格式:ppt
- 大小:2.14 MB
- 文档页数:55
化工原理知识点总结1. 流体力学- 流体静力学:压力的概念、流体静力学平衡、马里奥特原理、流体静压力的测量。
- 流体动力学:连续性方程、伯努利方程、动量守恒、流动类型(层流与湍流)、雷诺数。
- 管道流动:管道摩擦损失、达西-韦斯巴赫方程、摩擦因子的确定、管道网络分析。
2. 传热学- 热传导:傅里叶定律、导热系数、热阻、稳态与非稳态导热。
- 对流热传递:对流热流密度、牛顿冷却定律、对流给热系数。
- 辐射传热:斯特藩-玻尔兹曼定律、黑体辐射、角系数、有效辐射面积。
- 热交换器:热交换器类型、效能-NTU方法、传热强化技术。
3. 物质分离- 蒸馏:基本原理、平衡曲线、麦卡布-锡尔比法、塔板理论、塔内设备。
- 萃取:液-液萃取、固-液萃取、溶剂萃取、萃取平衡、萃取过程设计。
- 过滤与沉降:沉降原理、过滤操作、离心分离、膜分离技术。
- 色谱与电泳:色谱原理、色谱柱、电泳分离、毛细管电泳。
4. 化学反应工程- 化学反应动力学:反应速率、速率方程、活化能、催化剂。
- 反应器设计:批式反应器、半连续反应器、连续搅拌槽式反应器(CSTR)、管式反应器。
- 反应器分析:稳态操作、非稳态操作、反应器的稳定性分析。
- 催化反应工程:催化剂特性、催化剂制备、催化剂失活与再生。
5. 质量传递- 扩散现象:菲克定律、扩散系数、分子扩散与对流扩散。
- 质量传递原理:质量守恒、质量传递微分方程、边界条件。
- 吸收与解吸:气液平衡、吸收塔操作、解吸过程。
- 干燥过程:湿空气系统、干燥过程分析、干燥器设计。
6. 过程控制- 控制系统基础:控制系统组成、开环与闭环系统、控制器类型。
- 控制器设计:PID控制器、串级控制系统、比值控制系统。
- 过程动态分析:拉普拉斯变换、传递函数、系统稳定性分析。
- 先进控制策略:模糊控制、自适应控制、预测控制。
7. 化工热力学- 热力学第一定律:能量守恒、热力学过程、热力学循环。
- 热力学第二定律:熵的概念、熵增原理、卡诺循环。
第三部分流体⼒学、传热学知识第三部分—流体⼒学、传热学知识⼀、单项选择题1、在⽔⼒学中,单位质量⼒是指(C)□A.单位⾯积液体受到的质量⼒;□B.单位体积液体受到的质量⼒;□C.单位质量液体受到的质量⼒;□D.单位重量液体受到的质量⼒。
2、液体中某点的绝对压强为100kN/m2,则该点的相对压强为( B ) □A.1 kN/m2 □B.2 kN/m2 □C.5 kN/m2 □D.10 kN/m23、有压管道的管径d与管流⽔⼒半径的⽐值d /R=(B)□A.8 □B.4 □C.2 □D.1 4、已知液体流动的沿程⽔⼒摩擦系数与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于( C )□A.层流区□B.紊流光滑区□C.紊流过渡粗糙区□D.紊流粗糙区5、现有以下⼏种措施:①对燃烧煤时产⽣的尾⽓进⾏除硫处理;②少⽤原煤做燃料;③燃煤时⿎⼊⾜量空⽓;④开发清洁能源。
其中能减少酸⾬产⽣的措施是(C)□A.①②③□B.②③④□C.①②④□D.①③④6、“能源分类相关图”如下图所⽰,下列四组能源选项中,全部符合图中阴影部分的能源是(C)□A.煤炭、⽯油、潮汐能□B.⽔能、⽣物能、天然⽓□C.太阳能、风能、沼⽓□D.地热能、海洋能、核能7、热量传递的⽅式是什么?(D)□A.导热□B.对流□C.热辐射□D.以上三项都是8、流体运动的连续性⽅程是根据(C)原理导出的?□A.动量守恒□B.质量守恒□C.能量守恒□D.⼒的平衡9、当控制阀的开⼝⼀定,阀的进、出⼝压⼒差Δp(B)□A.增加□B.减少□C.基本不变□D.⽆法判断10、热流密度q与热流量的关系为(以下式⼦A为传热⾯积,λ为导热系数,h为对流传热系数)(B)□A.q=φA □B.q=φ/A □C.q=λφ□D.q=hφ11、如果在⽔冷壁的管⼦⾥结了⼀层⽔垢,其他条件不变,管壁温度与⽆⽔垢时相⽐将( B )□A.不变□B.提⾼□C.降低□D.随机改变12、在传热过程中,系统传热量与下列哪⼀个参数成反⽐? ( D )□A.传热⾯积□B.流体温差□C.传热系数□D.传热热阻13、下列哪个不是增强传热的有效措施?(D)□A.波纹管□B.逆流□C.板翅式换热器□D.在对流传热系数较⼤侧安装肋⽚14、临界热绝缘直径是指:(A )□A.管道热损失最⼤时的热绝缘直径;□B.管道热损失最⼩时的热绝缘直径;□C.管道完全没有热损失时的热绝缘直径;□D.管道热阻最⼤时的热绝缘直径。
流体力学和传热学《流体力学和传热学》第一章流体力学1.1 流体介质流体(Fluid)是指可用来描述物质在物理状态机制上发生变形,具有形状改变能力的物质类型。
它们包括液体(Liquid)和气体(Gas),可以根据它们的性质将它们分为静力学流体( statically fluids)和动力学流体(dynamic fluids)。
1.2 流体流动流体力学研究的基础内容是流体流动,它是物质在物理空间内的连续改变,由于流体分布的不均匀性,会产生流动。
它是由于重力、压力差、粘度和其他因素引起的。
1.3 流体力学基本原理流体力学研究的基本原理,可以归纳为三大要素:物理定律、力学方程和保守定律。
物理定律指的是物理现象的基本准则,如流体的流动、密度、压力、速度、温度等,他们是流体力学研究的基本研究对象。
力学方程涉及的是流体的动力学特性,如流体内的力平衡方程、温度方程以及动量守恒方程等,是探索流体流动的机理的基础。
保守定律指的是流体受到外力的作用时,它的总动量、能量、动量和质量的变化,可从它们的定义和物理定律可以推出。
第二章传热学2.1 传热学的定义传热学(Thermodynamics)是研究物质在物理系统中的能量交换及其特性的学科,它是动力学、能源学以及工程热力学的一部分。
它涉及物体的物理特性、热质的传递机理及传热学定律。
2.2 传热学的基本原理传热学的基本原理,一般可以概括为三大要素:物理特性、热质传递机理和传热学定律。
物理特性是指传热学中有关物质的特性,如密度、温度和物性参数等,而热质传递机理是指它的传热原理,如热对流、热传导及热辐射等。
最后的传热学定律,根据物理原理推出了物体内部的热能的变化,也就是“物体内的热能不会凭空灰飞烟灭,只能够从一处转移到另外一处”这一定律。