流体力学基本知识
- 格式:pptx
- 大小:1.13 MB
- 文档页数:34
流体力学知识点大全流体力学是研究流体运动规律的一门学科,涉及流体的力学性质、流体力学方程、流体的温度、压力、速度分布等等。
以下是流体力学的一些主要知识点:1.流体的性质和分类:流体包括液体和气体两种状态,液体具有固定体积,气体具有可压缩性。
液体和气体都具有易于流动的特点。
2.流体力学基本方程:流体力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程描述了流体质量的守恒,动量守恒方程描述了流体动量的守恒,能量守恒方程描述了流体能量的守恒。
3.流体的运动描述:流体的运动可以通过速度场描述,速度场是空间中每一点上的速度矢量的函数。
速度矢量的大小和方向决定了流体中每一点的速度和运动方向。
4. 流体静力学:流体静力学研究的是处于静止状态的流体,通过压力分布可以确定流体的力学性质。
压力是流体作用在单位面积上的力,根据Pascal定律,压力在流体中均匀传播。
5.流体动力学:流体动力学研究的是流体的运动,通过速度场和压力分布可以确定流体的速度和运动方向。
流体动力学包括流体的运动方程、速度场描述和流动量的计算等。
6.流体的定常流和非定常流:流体的定常流指的是流体的运动状态随时间不变,速度场和压力分布在任意时刻均保持不变。
而非定常流则是指流体的运动状态随时间变化,速度场和压力分布在不同的时刻会有所改变。
7.流体的层流和湍流:流体的层流是指在流体中存在着明确的层次结构,流体颗粒沿着规则的路径流动。
而湍流则是指流体中存在着随机不规则的流动,流体颗粒方向和速度难以预测。
8.流体的黏性:流体的黏性是指流体内部存在摩擦力,影响流体的流动性质。
流体的黏度越大,流体粘性越大,流动越缓慢。
黏性对于流体的层流和湍流特性有重要影响。
9.流体的雷诺数:雷诺数是用于描述流体运动是否属于层流还是湍流的参数。
当雷诺数小于临界值时,流体运动属于层流;当雷诺数大于临界值时,流体运动为湍流。
10.流体的边界层:边界层是指在流体靠近固体表面的地方,速度和压力的变化比较大的区域。
第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。
其单位是牛顿,N。
单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。
其单位是N/kg。
2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。
3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。
4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。
其单位为N/(㎡·s),以符号Pa·s表示。
运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
国际单位制单位㎡/s。
动力黏度μ与运动黏度ν的关系:μ=ν·ρ。
5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。
毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。
6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。
(P12,还需看看书,了解什么是以上三种模型!)。
第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。
2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。
两水头中的压强P必须采用相对压强表示。
b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。
3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。
工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。
它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。
2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。
它是流体物理学的基本内容,是工程流体力学的基础理论。
它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。
3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。
它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。
4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。
流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。
它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。
5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。
它是工程流体力学中的重要内容,也是工程设计的重要基础。
二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。
它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。
流体入门知识点总结图解一、流体的基本概念1. 流体概念流体是一种物质的状态,是指在外力作用下能够流动的物质,包括液体和气体。
流体具有流动性、变形性和粘性。
2. 流体性质密度:流体的质量与单位体积的比值。
比重:流体的密度与水的密度的比值。
粘度:流体的内部阻力,决定了流体的黏稠度。
3. 流体静力学基本假设(1)流体是连续的。
(2)流体是不可压缩的。
(3)流体是静止的或者静止状态的流体。
二、流体静力学1. 压力(1)压力的定义:单位面积上的力。
(2)压强:单位面积上的压力。
(3)流体的压力:液体或气体内各点的压力都相等,且在不同深度的液体中,压力与深度成正比。
2. 压力的传递液体传压:液体内各点的压力是平行的,且在各点的压力相等。
气体传压:气体内各点的压力也是平行的,但是气体的密度非常的小,所以气体的传压效应并不显著。
3. 浮力物体在液体中浸没时,液体对物体产生的向上的浮力。
浮力的大小与物体的体积成正比。
三、流体动力学1. 流体的动力学特性流体力学包括了流体的流动、旋转、涡动和湍流等特性。
2. 流体流动的分类(1)按流动程度分类:层流流动和湍流流动。
(2)按流动速度分类:亚临界流动、临界流动和超临界流动。
(3)按流动方向分类:一维流动、二维流动和三维流动。
3. 流速和流量流速:单位时间内流体通过单位横截面积的速度。
流量:单位时间内流体通过横截面的体积。
四、基本流体方程1. 连续性方程连续性方程描述了流体的流动过程中质量的守恒,表现为质量流量的守恒。
\[A_1 v_1 = A_2 v_2\]2. 动量方程动量方程描述了流体在流动过程中的动量守恒。
动量方程可以用来计算流体在流动中所受的压力和阻力。
\[F = \frac{{\Delta p}}{{\Delta t}}\]3. 质能方程质能方程描述了流体在流动过程中的能量守恒。
质能方程可以用来计算流体内能和外力对流体的功率变化。
五、流体流动的控制方程1. 泊松方程泊松方程描述了流体的流动与液体的静力平衡。
流体力学基础知识一、流体的物理性质1、流动性流体的流动性是流体的基本特征,它是在流体自身重力或外力作用下产生的。
这也是流体容易通过管道输送的原因2、可压缩性流体的体积大小会随它所受压力的变化而变化,作用在流体上的压力增加,流体的体积将缩小,这称为流体的可压缩性。
3、膨胀性流体的体积还会随温度的变化而变化,温度升高,则体积膨胀,这称为流体的膨胀性。
4、粘滞性粘滞性标志着流体流动时内摩擦阻力的大小,它用粘度来表示。
粘度越大,阻力越大,流动性越差。
气体的粘度随温度的升高而升高,液体的粘度随温度的升高而降低。
二、液体静力学知识1、液体静压力及其基本特性液体静压力是指作用在液体内部距液面某一深度的点的压力。
液体静压力有两个基本特性:①液体静压力的方向和其作用面相垂直,并指向作用面。
②液体内任一点的各个方向的静压力均相等。
2、液体静力学基本方程P=Pa+ρgh式中Pa----大气压力ρ-----液体密度上式说明:液体静压力的大小是随深度按线性变化的。
3、绝对压力、表压力和真空①绝对压力:是以绝对真空为零算起的。
用Pj表示。
②表压力(或称相对压力):以大气压力Pa为零算起的。
用Pb表示。
③真空:绝对压力小于大气压力,即表压Pb为负值。
绝对压力、表压力、真空之间的关系为:Pj=Pa+Pb三、液体动力学知识1、基本概念①液体的运动要素:液体流动时,液体中每一点的压力和流速,反映了流体各点的运动情况。
因此,压力和流速是流体运动的基本要素。
②流量和平均流速:假定流体在流过断面时,其各点都具有相同的流速,在这个流速下所流过的流量与同一断面各点以实际流速流动时所流过的流量相当,这个流速称为平均流速,记作V。
单位时间内,通过与管内液流方向相垂直的断面的液体数量,称为流量。
流量可分为体积流量Qv和质量流量Qm。
Qv=V AQm=ρV A③稳定流和非稳定流:稳定流是指流体流速和压力不随时间的变化而变化的流动,反之则为非稳定流。
流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。
流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。
密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。
重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。
比容是密度的倒数,它表示单位质量流体所占有的体积。
流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。
通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。
对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。
膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。
用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。
二、流体静力学流体静力学主要研究静止流体的力学规律。
静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。
2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。
流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。
作用在平面上的静水总压力可以通过压力图法或解析法来计算。
对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。
三、流体动力学流体动力学研究流体的运动规律。
连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。
对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。
伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。
其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。
第一章流体流动§1.1.1、概述1、流体—液体和气体的总称。
流体具有三个特点①流动性,即抗剪抗张能力都很小。
②无固定形状,随容器的形状而变化。
③在外力作用下流体内部发生相对运动。
2、流体质点:含有大量分子的流体微团。
流体分子自由程<流体质点尺寸<设备大小,流体质点成为研究流体宏观运动规律的考察对象。
3、流体连续性假设:假设流体是由大量质点组成的彼此间没有空隙,完全充满所占空间的连续介质。
连续性假设的目的是为了摆脱复杂的分子运动,而从宏观的角度来研究流体的流动规律,这时,流体的物理性质及运动参数在空间作连续分布,从而可用连续函数的数学工具加以描述。
流体流动规律是本门课程的重要基础,这是因为:①流体的输送研究流体的流动规律以便进行管路的设计、输送机械的选择及所需功率的计算。
②压强、流速及流量的测量为了了解和控制生产过程,需要对管路或设备内的压强、流量及流速等一系列的参数进行测量,这些测量仪表的操作原理又多以流体的静止或流动规律为依据的。
③为强化设备提供适宜的流动条件化工生产中的传热、传质过程都是在流体流动的情况下进行的。
设备的操作效率与流体流动状况有密切的联系。
因此,研究流体流动对寻找设备的强化途径具有重要意义。
本章将着重讨论流体流动过程的基本原理及流体在管内的流动规律,并运用这些原理及规律来分析和计算流体的输送问题。
第二节流体静力学方程流体静力学是研究流体在外力作用下处于平衡的规律。
本节只讨论流体在重力和压力作用下的平衡规律。
§1.2.1流体的密度和比容1、流体的密度:单位体积的流体所具有的质量。
/m V ρ=∆∆当V ∆趋近于零时,/m V ∆∆的极限值为流体内部某点的密度,可以写成:0limV mVρ∆→∆=∆各种流体的密度可以从物理化学手册和有关资料中查得。
气体具有可压缩性及膨胀性,故其密度随温度及压强而变化,因此对气体密度必须标出其所处的状态。
从手册中查出的气体密度是某指定状态下的数值 ,应用时一定要换算到操作条件下的数值。
流体力学水力学知识点总结一、流体力学基础知识1. 流体的定义:流体是一种具有流动性的物质,包括液体和气体。
流体的特点是没有固定的形状,能够顺应容器的形状而流动。
2. 流体的性质:流体具有压力、密度、粘性、浮力等基本性质。
这些性质对于流体的流动行为具有重要的影响。
3. 流体静力学:研究流体静止状态下的力学性质,包括压力分布、压力力和浮力等。
流体静力学奠定了流体力学的基础。
4. 流体动力学:研究流体在外力作用下的运动规律,包括速度场、流线、流量、动压、涡量等。
流体动力学研究的是流体的流动行为及其相关问题。
5. 流动方程:流体力学的基本方程包括连续方程、动量方程和能量方程。
这些方程描述了流体的运动规律,是解决流体力学问题的基础。
6. 流体模型:流体力学的研究对象是真实流体,但通常会采用模型来简化问题。
常见的模型包括理想流体模型、不可压缩流体模型等。
二、水力学基础知识1. 水的性质:水是一种重要的流体介质,具有密度大、粘性小、表面张力大等特点。
这些性质对于水力学问题具有重要影响。
2. 水流运动规律:水力学研究水的流动规律,包括静水压力分布、流速分布、流线形状等。
3. 基本水力学定律:包括质量守恒定律、动量守恒定律和能量守恒定律。
这些定律是解决水力学问题的基础。
4. 水流的计算方法:水力学中常用的计算方法包括流速计算、水头损失计算、管道流量计算等,这些方法是解决水力学工程问题的重要手段。
5. 水力学工程应用:水力学在工程中具有广泛的应用,包括水利工程、水电站设计、城市供水排水系统等方面。
6. 液体静力学:水力学中涉及了静水压力、浮力、气压等液体静力学问题。
这些问题对水力工程设计和建设具有重要影响。
三、近年来的流体力学与水力学研究进展1. 流固耦合问题:近年来,液固耦合问题成为流体力学与水力学领域的重点研究方向。
在这个方向上的研究主要涉及流固耦合现象的模拟、流固耦合系统的动力学特性等方面。
2. 多相流动问题:多相流动是指不同相的流体在空间和时间上相互混合流动的现象。