材料力学双语教学学习资料
- 格式:doc
- 大小:1.55 MB
- 文档页数:11
Chapter 4 Internal Forces in BendingMECHANICS OF MATERIALS 材料力学(双语)Content§4.1 Concept of symmetrical bending and calculation sketch of the beam §4.2 The shearing force and bending moment of the beam §4.3 The shearing-force and bending-moment equations · the shearing-force and bending-moment diagrams §4.4 Relations among the shearing force、the bending moment and the density of the distributed load and their applications §4.5 Plot the bending-moment diagram by the theorem of superposition §4.6 The internal-force diagrams of the planar rigid frames and curved rods2目录§4.1 对称弯曲的概念及梁的计算简图 §4.2 梁的剪力和弯矩 §4.3 剪力方程和弯矩方程 ·剪力图和弯矩图 §4.4 剪力、弯矩与分布荷载集度间的关系及应用 §4.5 按叠加原理作弯矩图 §4.6 平面刚架和曲杆的内力图34.1 Concept of symmetrical bending and calculation sketch of the beam1. Concepts of Bending 1). BENDING(弯曲): The action of the external force or the external couple vector perpendicular to the axis of the rod makes the axis of the rod change into curve from original straight lines, this deformation is called bending. 2). BEAM(梁): The member of whose deformation is mainly bending is generally called beam.43). Practical example in engineering about bending564). Symmetric bending(平面弯曲) After deformation the curved axis of the beam is still in the same plane with the external forces. P1 q P2MThe plane of symmetry7Unsymmetrical bending: If a beam does not possess any plane of symmetry, or the external forces do not act in a plane of symmetry of the beam with symmetric planes, this kind of bending is called unsymmetrical bending.82. Calculation sketch of the beamIn general supports and external forces of the beam are very complex. We should do some necessary simplification for them for our convenient calculation and obtain the calculation sketch.1). Simplification(简化) of the beamsIn general case we take the place of the beam by its axis.2). Simplification of the loads (荷载)The loads (including the reaction) acting on the beam may be reduced into three types:concentrated force、concentrated force couple and distributed force.3). Simplification of the supports (支座条件)9①Fixed hinged support固定铰支座2 constraints,1 degree of freedom. Such as the fixed hinged support under bridges.②Movable hinged support可动铰支座1 constraint,2 degree of freedom. Such as the movable hinged support under the bridge.10θA BDB R RA A AB B B0.50.50.5P0.5PP0.50.50.5P0.5PP 0。
材料力学双语教学学习资料材料力学是工程院校中的一门重要课程,主要研究材料的力学特性和变形行为。
在学习材料力学的过程中,双语教学学习资料能够帮助学生更好地理解和掌握相关知识。
以下是一份关于材料力学双语教学学习资料,帮助学生深入了解材料力学的基本概念、原理和应用。
材料力学的基本概念-弹性模量:弹性模量是材料力学中衡量材料刚性的重要参数,表示单位面积内材料应力和应变的比例。
弹性模量越大,材料的刚性越高。
-屈服强度:屈服强度是材料在受力过程中的临界点,超过该强度材料会发生塑性变形或破坏。
-韧性:韧性是材料在受力下能够吸收能量的能力。
韧性越高,材料在受力下变形的能力越好。
-硬度:硬度是材料抵抗划伤或磨损的能力。
硬度越大的材料,其表面越不容易被刮花或磨损。
材料力学的原理-应力和应变:应力是材料内部单位面积上的力,应变是单位长度的变形量。
材料力学研究的是材料在接受外力时的应力分布和应变行为。
-弹性和塑性:材料力学区分材料的应变行为,弹性是指材料受力后能恢复原状的能力,塑性是指材料在受力后发生永久性变形的能力。
-破坏和失效:材料力学研究材料受力后失效和破坏的原因和机制,例如强度不足、断裂、疲劳等。
材料力学的应用-结构设计:材料力学的基本原理可应用于工程结构的设计和分析,确保结构在受力时能够满足安全和稳定的要求。
-金属材料加工:材料力学研究金属材料的塑性变形行为,可应用于金属材料的成形和加工工艺的优化和控制。
-材料选择和性能评估:材料力学可以帮助工程师选择合适的材料,根据材料的力学性能评估材料的适用性和可靠性。
Material Mechanics Bilingual Teaching and Learning Materials Material mechanics is an important course in engineering schools, which mainly studies the mechanical properties and deformation behavior of materials. Bilingual teaching and learning materials can help students better understand and master the relevant knowledge in the process of learning material mechanics. Here is a bilingual teaching and learning material on material mechanics to help students deepen their understanding of the basic concepts, principles, andapplications of material mechanics.Basic Concepts of Material Mechanics- Elastic modulus: The elastic modulus is an important parameter in material mechanics that measures the rigidity of the material. It represents the ratio of stress to strain within a unit area. The higher the elastic modulus, the higher the rigidity of the material.- Yield strength: Yield strength is the critical point of the material during the application of force. If the stress exceeds this strength, the material will undergo plastic deformation or failure.- Toughness: Toughness is the ability of the material to absorb energy under stress. The higher the toughness, the better the material's ability to deform under stress.- Hardness: Hardness is the material's resistance to scratching or abrasion. A material with higher hardness is less likely to be scratched or worn on the surface.Principles of Material Mechanics- Stress and strain: Stress is the force per unit area inside the material, and strain is the change in length per unit length. Material mechanics study the stress distribution and strain behavior of materials under external forces.- Elasticity and plasticity: Material mechanics distinguishes the strain behavior of materials. Elasticityrefers to the ability of a material to recover its original shape after being subjected to force, while plasticity refers to the ability of a material to undergo permanent deformation under stress.- Failure and fracture: Material mechanics studies the causes and mechanisms of failure and fracture of materials under stress, such as insufficient strength, fracture, fatigue, etc.Applications of Material Mechanics- Structural design: The basic principles of material mechanics can be applied to the design and analysis of engineering structures to ensure that the structures can meet safety and stability requirements under stress.- Metal material processing: Material mechanics studies the plastic deformation behavior of metal materials, which can be applied to the optimization and control of metal materials' forming and processing techniques.- Material selection and performance evaluation: Material mechanics helps engineers select suitable materials and evaluate their applicability and reliability based on the mechanical properties of materials.。
材料力学A双语实验课程介绍1.教学单位名称:机械科学与工程学院2.实验中心名称:力学实验中心3.课程名称:材料力学A(双语)4,课程代码:412155,课程类别:学科基础课6,课程性质:必修7,课程学时:96学时,其中含实验12学时8,课程学分:69,面向专业:机械工程、工程力学、机械工程(卓越工程师教育培养计划);车辆工程、工业设计、能源与动力工程、车辆工程(卓越工程师教育培养计划);交通工程(汽运)土木工程(路桥)汽车服务工程;农业机械化及其自动化、包装工程、农业机械化及其自动化(卓越工程师教育培养计划)10.实验课程的教学任务、要求和教学目的教学任务材料力学实验是《材料力学》教学中的一个重要环节,通过实验丰富学生的书本知识,增强学生的实践能力;更重要的是,提高学生应用实验的手段与方法去分析、研究和解决工程问题的能力;提高学生建立或者修正完善力学模型的能力。
通过力学实验还可以培养学生对一些新材料和新结构的研究能力,为以后解决力学研究中的实险问题打下一定的基础。
教学要求对低碳钢和铸铁等材料的拉伸、压缩、扭转力学性质有基本了解;学习材料力学性能测试的常规检测设备和基本操作方法;了解应变测量的电测原理,掌握电测基本方法;增强对组合变形及超静定结构力学特征的认识;对光测力学,疲劳破坏,冲击韧性测量等有初步了解。
教学目的材料力学实验课是材料力学课程的重要组成部分,是理工科专业技术基础课的基本实践教学环节。
通过该实践教学环节,验证课程中的相关知识,巩固和加深对材料力学基本理论的理解,增强力学分析意识与分析能力,提高力学检测、诊断和设计水平。
同时,学生在实验过程中,学习材料力学实验的基本内容,学会实验的实际操作,特别是材料试验机的操作,以及数据采集和分析的技能,掌握对材料进行基本力学性能测试的方法。
H.学生应掌握的实验技术及实验能力(1)掌握万能电子材料试验机及扭转试验机的基本原理和使用方法;(2)掌握在不同受力条件下材料力学性能的测试方法;了解不同材料在不同受力下破坏形式及其破坏原因;(3)掌握电测实验应力分析的基本方法;(4)掌握常用仪器的基本原理及使用方法;(5)掌握受力构件表面应力的测量方法;(6)了解光弹性应力分析、动应力测量、冲击和疲劳实验的基本原理和方法;(7)培养具有熟练整理实验数据、分析误差和独立完成实验报告的能力。
Material Mechanics 9 材料力学9概述:材料力学是研究材料在外力作用下受力、变形及破坏规律的学科。
目前,材料力学已成为材料科学最为基础和重要的学科之一。
在现代科技和工业生产中,材料力学的应用越来越广泛。
材料力学的分支很多,其中包括了应力、变形、破坏、断裂、塑性、蠕变、疲劳、材料动力学、非线性力学等等。
一、应力应力指材料内部受到的载荷作用下发生的内力状态。
应力可以分为三种:正应力、剪应力和体应力。
正应力分为正向和负向两种,是指载荷由材料内部向外发出的面的垂直方向对面积的比值。
剪应力则是指载荷由材料内部向外发出的面的切向(平行于面)对面积的比值。
而体应力则是指材料内部所有面受到的载荷的合力对体积的比值。
二、变形变形是材料在外力作用下所发生的形状、尺寸、位置以及物理和化学性质等方面的变化。
变形可分为弹性变形和塑性变形,其中弹性变形指当材料受到外力之后,只会形成可逆的变形,即在释放外力后会回复到原有的形态。
而塑性变形,则是指在材料受到外力作用之后,会引起形态上的不可逆性变化。
三、破坏材料在受到外力作用下,可能会引起破坏,破坏可分为静态破坏和疲劳破坏。
静态破坏指在一定载荷作用时间后,材料内部发生的破坏现象,常见的有拉断、压碎、弯曲破坏等。
而疲劳破坏则是指在材料受到周期性变化载荷作用时,材料内部会发生渐进性的破坏现象,常见的有金属疲劳、材料疲劳等。
四、断裂断裂是指材料在外力作用下分裂开来的现象。
材料的断裂可以分为两种:韧性断裂和脆性断裂。
韧性断裂指在材料断裂的时候,能够发生一定程度的拉伸和变形,属于可塑性断裂。
而脆性断裂,则是指在材料发生断裂时,无法发生显著的塑性变形,即属于不可塑性断裂。
五、塑性塑性是指在材料受到外力作用时发生的非弹性变形,可以分为一般塑性、温度塑性和蠕变塑性等。
材料的塑性受到许多因素的影响,如温度、内部缺陷等。
六、蠕变蠕变是指材料在常温和高温下,在一定应力作用下呈现出的随时间延长而发生的塑性变形。
材料力学双语教学学习资料1 第一章绪论Chapter 1 Introduction§1-1 材料力学的任务The Tasks of Mechanics of Materials1*. 材料力学: Mechanics of Materials2. 构件: Structural Members3. 变形: Deformation4*. 强度: Strength5*. 刚度: Rigidity6*. 稳定性: Stability§1-2 变形固体的基本假设Fundamental Assumptions of SolidDeformation Bodies1. 连续性假设: Continuity2. 均匀性假设: Homogeneity3. 各向同性假设: Isotropy§1.3 外力及其分类External Forces and Classification1. 分布力: Distributed Force2. 集中力: Point Force3. 静载荷: Static Load4. 动载荷: Dynamic Load§1.4 内力、截面法和应力的概念Concepts of Internal Forces,Method ofSection and Stress1*. 内力: Internal Force2*. 截面法: Method of Section3. 截面法的三个步骤:截开,代替,平衡Three steps of method of section: cut off, substitute , and equilibrium.4*. 应力: Stress5. 平均应力:Average stress6. 应力(全应力):Whole stress(sum stress)7*. 正应力: Normal Stress8*. 剪应力(切应力):Shearing Stress§1.5 变形与应变Deformation and Strain1.线应变: Strain2.剪应变: Shearing Strain§1.6 杆件变形的基本形式Basic Types of Deformations of Rods1*. 拉伸或压缩: Tension or Compression2*. 剪切: Shear3*. 扭转: Torsion4*. 弯曲: Bending第二章拉伸、压缩与剪切Chapter 2 Tension,Compression andShear§2.1 轴向拉伸与压缩的概念和实例The Concept and Examples of AxialTension and Compression1. 拉杆: Tensile Rod2. 压杆: Compressive Rod3. 受力特点:外力合力的作用线与杆轴线重合Characteristic of the External Forces: The acting line of the resultant of external forces is coincided with the axis of the rod.4. 变形特点:杆沿轴向伸长或缩短Characteristic of Deformation: Rod will elongate or contract along the axis of the rod.§2.2 轴向拉伸或压缩时横截面上的内力和应力Internal Force and Stress of Axial Tension or Compression on the Cross Section1*. 横截面: Cross Section2*. 轴力: Normal Force3*. 轴力图: Diagram of Normal Force§2.3 直杆轴向拉伸或压缩时斜截面上的应力Stress of Axial Tension or Compressionon the Skew Section1. 斜截面: Skew Section2.ασσα2cos = αστα2s i n 2=§2.4 材料在拉伸时的力学性能Mechanical Properties of Materialswith Tensile Load1. 标准试件: Specimen2. 低碳钢(C ≤0.3%): Low Carbon Steel3. 弹性阶段:Elastic Region4. 屈服阶段:Yielding Stage5. 强化阶段:Hardening Stage6. 颈缩阶段: Necking Stage 7*.σp ----比例极限: Proportional Limit 8*.σe ----弹性极限: Elastic Limit 9*.σs ----屈服极限: Yielding Stress 10*.σb ----强度极限: Ultimate Stress 11. 延伸率: Percent Elongation12. 断面收缩率: Percent Reduction of Area 13. 塑性材料: Ductile Materials 14. 脆性材料: Brittle Materials 15. 铸铁:Cast iron§2.7 失效、安全系数和强度计算 Failure, Safety factor and Strengthcalculation1*. 许用应力: Allowable Stress 2. 安全系数: Safety Factor 3*. 强度条件: Strength Condition][max σσ≤=AF N4*. 强度校核: Check strength][max σσ≤5*. 截面设计: Section design][σNF A ≥6*. 确定许可载荷:Determine allowable load][σA F N ≤§2.8 轴向拉伸或压缩时的变形 Deformation in Axial Tension orCompression1. 弹性变形: Elastic Deformation2. 塑性变形: Plastic Deformation3. 纵向应变: Longitudinal Strainll l l l -=∆=1ε 4. 横向应变: Lateral Straindd d d d -=∆=''ε5.线弹性变形:Linear Elastic Deformation6.泊松比:Poisson’s ratioεεμ'=7*.弹性模量-E :表示材料抵抗拉压变形的 能力 E - modulus of elasticity :Indicates the capability of materials for resisting tension or compression 8*.抗拉刚度-EA :表示构件抵抗拉压变形的能力EA -the axial rigidity: Indicates the capability of constructive members for resisting tension or compression 9*. 胡克定律(Hooke’s Law ):当应力不超过材料的比例极限时,应力与应变成正比.The stress is proportional to the strain within the elastic region.εσE =§2.12 应力集中的概念The Concept of Stress Concentration 1.由于截面尺寸的突然变化,使截面上的应力分布不再均匀,在某些部位出现远大于平均值的应力,称应力集中。
Discontinuities of cross section may result in high localized or concentrated stresses. 2. 理论应力集中系数K :TheoreticalEA L F L N=∆Stress-concentration Factor - K§2.13剪切和挤压的实用计算Practical Calculation of Shear and Bearing 1*. 剪切:Shear2.剪切面:Shearing Plane 3*. 剪切面上的内力-剪力:Internal Force in Shearing Plane-Shearing Force4. 剪切的实用计算:Practical Calculation of Shear][ττ≤=AF S5. 挤压的实用计算:Practical Calculation of Bearing][bs bsbs A Fσσ≤=6. 挤压强度条件:工作中的挤压应力不应超过许用挤压应力。
Strength condition of bearing :Working bearing stress should not exceed the allowable bearing stress.第三章 扭 转 Chapter Three Torsion§ 3.1 扭转的概念和实例 Concept and Examples of Torsion 1. 电动机: Generator 2. 涡轮: Turbine 3*. 扭转的受力特点:杆件的两端作用着大小相等,方向相反,且作用面垂直于杆件轴线的力偶。
Characteristic of loads: Shaft is loaded by a torsional couple in planes that are perpendicular to the axis of the shaft. 4*. 变形特点:杆件的任意两个横截面发生绕轴线的相对转动。
Characteristic of deformation: any two cross sections will twist along the axis. 5*. 轴: Shaft§ 3.2外力偶矩的计算 扭矩和扭矩图 Calculation of the external torqueInternal torque and Its diagram1.扭转外力偶矩的计算:Calculation of the external torque 2*. 扭矩:Internal Torque 3. 符号规定:Sign convention 4*. 右手螺旋法则: Right hand screw rule 5*. 扭矩图:Diagram of Internal Torque§ 3.3 纯剪切 Pure Shear1. 薄壁圆筒的扭转实验:Experiment of thin-walled circular tube under torsion2. 变形特点: Characters of deformations : 截面间的距离不变;所有横截面的位置不变;所有纵向线转过了一个角度γ。