31角的概念的推广 全国高中数学新课程创新教学设计优秀案例
- 格式:doc
- 大小:35.50 KB
- 文档页数:4
31 角的概念的推广教材分析这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.教学目标1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义.2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.任务分析这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握.教学设计一、问题情境[演示]1. 观览车的运动.2. 体操运动员、跳台跳板运动员的前、后转体动作.3. 钟表秒针的转动.4. 自行车轮子的滚动.[问题]1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角3. 钟表上的秒针(当时间过了时)是按什么方向转动的,转动了多大角4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.二、建立模型1. 正角、负角、零角的概念在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.2. 象限角当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.3. 终边相同的角在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即390°=30°+360°,(k=1);-330°=30°-360°,(k=-1).设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.三、解释应用[例题]1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-150°.(2)650°.(3)-950°5′.2. 分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.(1)60°.(2)-21°.(3)363°14′.3. 写出终边在y轴上的角的集合.解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为S2={β|β=270°+k·360°,k∈Z}={β|β=90°+(2k+1)·180°,k∈Z}.于是,终边在y轴上的角的集合为S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.注:会正确使用集合的表示方法和符号语言.[练习]1. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.(1)45°.(2)-30°.(3)420°.(4)-225°.2. 辨析概念.(分别用集合表示出来)(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角.3. 一角为30°,其终边按逆时针方向旋转三周后的角度数为.4. 终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.四、拓展延伸1. 若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.2. 如果α在第二象限时,那么2α,是第几象限角注:(1)不能忽略2α的终边可能在坐标轴上的情况.(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢)点评这篇案例运用多媒体展示了生活中常见的实例,极易激发学生学习的兴趣和热情.在对知识的探讨过程中,特别注意了知识的形成过程,重点突出.例题的设置比较典型,难易度适中.练习题注重基础,但也有一定的梯度,利于培养学生灵活处理问题的能力,并为学生学习以后章节做了较好的铺垫.。
31 角的概念的推广教材分析这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.教学目标1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义.2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.任务分析这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握.教学设计一、问题情境[演示]1. 观览车的运动.2. 体操运动员、跳台跳板运动员的前、后转体动作.3. 钟表秒针的转动.4. 自行车轮子的滚动.[问题]1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角?3. 钟表上的秒针(当时间过了1.5min时)是按什么方向转动的,转动了多大角?4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角?显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.二、建立模型1. 正角、负角、零角的概念在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.2. 象限角当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.3. 终边相同的角在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即390°=30°+360°,(k=1);-330°=30°-360°,(k=-1).设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k =0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.三、解释应用[例题]1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-150°.(2)650°.(3)-950°5′.2. 分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.(1)60°.(2)-21°.(3)363°14′.3. 写出终边在y轴上的角的集合.解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为S2={β|β=270°+k·360°,k∈Z}={β|β=90°+(2k+1)·180°,k∈Z}.于是,终边在y轴上的角的集合为S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.注:会正确使用集合的表示方法和符号语言.[练习]1. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.(1)45°.(2)-30°.(3)420°.(4)-225°.2. 辨析概念.(分别用集合表示出来)(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角.3. 一角为30°,其终边按逆时针方向旋转三周后的角度数为.4. 终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.四、拓展延伸1. 若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.2. 如果α在第二象限时,那么2α,是第几象限角?注:(1)不能忽略2α的终边可能在坐标轴上的情况.(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢?)点评这篇案例运用多媒体展示了生活中常见的实例,极易激发学生学习的兴趣和热情.在对知识的探讨过程中,特别注意了知识的形成过程,重点突出.例题的设置比较典型,难易度适中.练习题注重基础,但也有一定的梯度,利于培养学生灵活处理问题的能力,并为学生学习以后章节做了较好的铺垫.。
课例:角的概念的推广(一)河北香河一中薛亚茹一、教学目标:1.理解并掌握正角、负角、零角的定义;理解任意角的概念,掌握所有与α角终边相同的角(包括α角)的表示方法;树立运动变化观点,深刻理解推广后的角的概念。
2.揭示知识背景,引发学生学习兴趣;3.创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。
重点:理解正角、负角、零角的定义,掌握终边相同角的表示法。
难点:终边相同的角的表示。
二、情景介绍同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。
三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。
如本章章头图提到的问题,用三角学知识来解的话,会很简单,以后大家将会体会到。
三角学起源于对三角形边角关系的定量考察,这始于古希腊一批天文学家对天文的测量。
因此在相当长一个时期里,三角学隶属于天文学,而在它的形成过程中里同了当时已经积累得相当丰富的算术、几何和天文知识。
鉴于此种原因,作为独立的数学分支的三角学诞生之前,它的贡献者主要是一些天文学家,如梅内劳斯、托勒密等。
1631年三角学作为一门数学分支传入中国的。
明朝学者徐光启所编译的《大测》一书就是介绍三角学的。
徐光启的工作使中国开始接受欧洲科学知识,对我国的天文学和数学的发展有重大影响。
设计意图:通过情景介绍进一步了解数学来自于生活又高于生活,同时激发学生的好奇心以及探究心理,很好地调动学生学习的积极性。
三、复习导入师:初中时,我们已学习了0○~360○角的概念,它是如何定义的呢?生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
师:如图1,一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。
旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。
角的推广【核心素养】1.通过角的概念的学习,体现了数学抽象核心素养。
2.借助终边相同角的求解、象限角的判断等,培养学生的直观想象核心素养。
【教学目标】1.了解角的概念的推广,能正确区分正角、负角和零角。
2.理解象限角的概念。
3.掌握终边相同的角的表示方法,并能判断角所在的位置。
【教学重点】理解象限角的概念。
【教学难点】掌握终边相同的角的表示方法,并能判断角所在的位置。
【教学过程】一、问题导入当摩天轮在持续不断地转动时,(1)摩天轮所转过的角度大小是否会超过360°?(2)如果甲、乙两人分别站在摩天轮的两侧观察,那么他们所看到的摩天轮旋转方向相同吗?如果不同,你能用合适的数学符号表示这种不同吗?从这个实例出发,你能将以前所学的角进行推广吗?二、新知探究1.任意角的概念【例1】(1)已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是()。
A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C(2)下面与-850°12′终边相同的角是()。
A.230°12′B.229°48′C.129°48′D.130°12′[思路探究]利用角的概念进行判断。
【答案】(1)D;(2)B。
[(1)第一象限角可表示为·360°<α<·360°+90°,∪Z;锐角可表示为0°<β<90°;小于90°的角可表示为γ<90°;由三者之间的关系可知,选D。
(2)与-850°12′终边相同的角可表示为α=-850°12′+·360°(∪Z),当=3时,α=-850°12′+1080°=229°48′。
][教师小结]1.判断角的概念问题的关键与技巧:(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念。
2《三角函数的概念》课时1 一等奖创新教学设计《三角函数的概念》教学设计课时1三角函数的概念必备知识学科能力学科素养高考考向1.三角函数的概念学习理解能力观察记忆概括理解说明论证应用实践能力分析计算推测解释简单问题解决迁移创新能力综合问题解决猜想探究发现创新数学抽象【考查内容】任意角三角函数定义、三角函数值的符号,诱导公式(一)及同角三角函数的基本关系. 【考查题型】选择题、填空题2.三角函数值的符号逻辑推理数学运算3.诱导公式一逻辑推理数学运算4.同角三角函数的基本关系逻辑推理数学运算一、本节内容分析本节内容包含三角函数的定义、性质和同角三角函数的基本关系.通过本节的学习,使学生根据三角函数的有关知识求三角函数值、化简三角函数式、证明三角恒等式.本节包含的核心知识和体现的核心素养如下:核心知识1.三角函数的概念2.三角函数值的符号3.诱导公式一4.同角三角函数的基本关系数学抽象数学运算逻辑推理核心素养二、学情整体分析学生熟悉的函数是实数到实数的对应,这里给出的函数首先是实数(弧度数)到点的坐标的对应,然后才是实数(弧度数)到实数(横坐标或纵坐标)的对应,学生在理解上可能会有一定的困难.学情补充:______ _________________ _________三、教学活动准备【任务专题设计】1.三角函数的概念2.三角函数值的性质3.同角三角函数的基本关系式【教学目标设计】1.借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义.2.利用相似关系,由角α终边上任意一点的坐标得出任意角的正弦、余弦和正切的三角函数的定义.3.根据定义理解正弦、余弦和正切函数在各个象限及坐标轴上的符号,求一些特殊角的三角函数值.4.理解并掌握诱导公式(一),并会用公式(一)进行三角函数式的化简或恒等式的证明.5.利用同角三角函数的两个基本关系;解决较简单的求值、化简、恒等式证明等有关问题.【教学策略设计】1.理解三角函数的定义,并利用勾股定理得出同角三角函数的基本关系是本节课教学的关键,教学时,利用多媒体工具,可以很容易地建立起角的终边和单位圆的交点坐标的联系,并在角的变化过程中,将这种联系直观地体现出来,引导学生考虑当角的终边与坐标轴重合时怎么处理;引导学生通过自已的思维活动得出教材中“探究”栏目里问题的结论.2.在处理教材上的例题时,建议先让学生独立完成,然后教师指出其中出现的问题,再进行点评、总结、提升,另外,整个教学过程要向学生渗透分类讨论的意识.【教学方法建议】探究教学法,演示教学法,还有______【教学重点难点】重点:1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.2.理解并掌握同角三角函数基本关系式的推导及应用.难点:1.借助单位圆理解任意角三角函数的定义.2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.【教学材料准备】1.常规材料:多媒体课件____________2.其他材料:______ ____四、教学活动设计教学导入师:上新课之前,我们先来回答一下:函数的概念、弧度制的概念.【学生回顾旧知识,回答问题,教师给予肯定】师:如图,单位圆⊙O上的点P以A为起点逆时针方向旋转,如何刻画点P的位置变化情况呢带着这个问题,进行我们今天的学习.【设计意图】回顾函数的概念、孤度制的概念,设置单位圆上动点情境,引入任意角三角函数.教学精讲师:根据研究函数的经验,我们利用直角坐标系来研究上述问题.【教师提示:以单位圆的圆心为原点,以射线为轴的非负半轴,建立直角坐标系,点的坐标是,点的坐标是,射线从轴的非负半轴开始,绕点按逆时针方向旋转角,终止位置为,学生操作】【情境设置】探究任意角三角函数的定义如图,当时,点的坐标是什么当或时,点的坐标又是什么它们是唯一确定的吗一般地,任意给定一个角,它的终边与单位圆交点的坐标能唯一确定吗【学生思考,交流后,回答问题】生:当时,点的坐标是;当或时,点的坐标分别是和.它们都是唯一确定的.【设情境,巧激趣】学生通过观察图形,探究直角坐标系中角α的终边与单位圆的交点的横纵坐标之间的对应关系,为总结任意角三角函数的定义做准备,增加学习兴趣.师:结合函数的定义,你能得到什么结论【学生讨论,回答问题】生:点的横坐标,纵坐标都是角的函数.所以任意给定一个角,它的终边与单位圆交点的坐标都是能唯一确定的.师:接下来我们总结一下三角函数的定义【要点知识】三角函数的定义设是任意角,,它的终边与单位回交于点.(1)把点的纵坐标叫做的正弦函数(sine function),记作,即(2)把点的横坐标叫做的余弦函数(cosine function),记作,即(3)把点的纵坐标与横坐标的比值叫做的正切,记作,即,也称为正切函数(tangent function).【教师强调:当时,的终边在轴上,这时点的横坐标等于0,所以无意义.除此之外,对于确定的的值也是唯一确定的.也是以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为正切函数】【概括理解能力】通过对单位圆上点的坐标探究,总结三角函数定义,培养学生的概括理解、归纳总结能力.师:知道了三角函数的定义之后,我们要想表示它,还需要记准三角函数的表示.【要点知识】三角函数正弦函数、余弦函数、正切函数统称为三角函数(trigonometric function).记为:正弦函数:;余弦函数:;正切函数:.师:接下来我们将三角函数的定义深化一下,深度理解.【情境设置】三角函数定义的深化在初中我们学了锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数.设,把按锐角三角函数定义求得的锐角的正弦记为,并把按本节三角函数定义求得的的正弦记为与相等吗对于余弦、正切也有相同的结论吗【教师提示:建立直角坐标系,将锐角放在直角坐标系中,为第一象限角,如图,取的终边与单位圆的交点为,则它与原点的距离为.过点作轴的垂线,垂足为,则线段的长度为,线段的长度为,学生思考,回答问题】生:当为第一象限角时,按锐角三角函数定义和按三角函数定义求得的正弦、余弦、正切都相等.【深度学习】通过与初中所学的锐角三角函数的对比、进一步体会三角函数定义和深度理解.【以学论教】教师通过提示学生已有的单位圆中点的表示,启发学生思考,深化三角函数的定义,提升数学抽象素养.师:本节三角函数的定义是初中锐角三角函数的定义的推广,现在我们研究的三角函数的载体由直角三角形变成了直角坐标系,请看下面的例题.【典型例题】三角函数定义的应用例1 求的正弦、余弦和正切值.例2 如图,设是一个任意角,它的终边上任意一点(不与原点重合)的坐标,点与原点的距离为,求证:.【学生思考,确定利用定义解题的思路,自主完成例1,教师巡视,给予指导,并点评】生:在直角坐标系中,作,如图,则的终边与单位圆的交点坐标为.【对于例2,教师提示:由,根据三角函数的定义证明】【学生讨论,确定将任意点转化到单位圆上的点进行证明,完成例2,教师巡视,并总结】生:如图,设角a的终边与单位圆交于点.分别过点P,作轴的垂线,垂足分别为,则,,于是,即.因为与同号,所以,即.同理可得.师:根据勾股定理,由例2可知,只要知道角终边上任意一点的坐标,就可以求得角的各个三角函数值,并且这些函数值不会随点位置的改变而改变.【简单问题解决能力】通过例1对具体角度三角函数值的计算求解,以及例2对任意角三角函数值的证明,加深学生对三角函数定义的理解,同时培养学生的简单问题解决能力.【说明论证能力】通过例2让学生体会利用单位圆定义解题的过程,明确只有知道角α终边上任意一点坐标就可以求出角α的各个三角函数值,培养学生的说明论证能力,提升逻辑推理素养.师:好的,同学们,我们当堂做一些练习巩固一下.【巩固练习】三角函数的概念1.利用三角函数定义,求的三个三角函数值.2.利用三角函数定义,求的三个三角函数值.3.已知角的终边过点.求角的三角函数值.4.已知点在半径为2的圆上按顺时针方向做匀速圆周运动,角速度为.求时点所在的位置.师:请4名同学到黑板上做题.【学生板演,师生共同评价】生没有意义;,没有意义.生.生.生4:以坐标原点为圆心所在直线为轴正方向建立平面直角坐标系.时点所在位置记为.因为点是在半径为2的圆上按顺时针方向做匀速圆周运动,角速度为,所以圆心角.所以时,点在该平面直角坐标系中的位置为.【分析计算能力】计算具体角度的三角函数值,加深学生对三角函数概念的理解,增强对函数的应用的能力,培养学生的分析计算能力.师:这节课就上到这里,你学到了什么【课堂小结】三角函数的概念正弦函数:把点的纵坐标叫做的正弦函数,记作,即.余弦函数:把点的横坐标叫做的余弦函数,记作,即.正切函数:把点的纵坐标与横坐标的比值叫做的正切,记作,即.【设计意图】通过对任意角三角函数概念的学习,利用了设情境巧激趣、以学论教的教学策略和深度学习的学习策略,培养了学生说明论证能力、概括理解能力、分析计算能力、简单问题解决能力,提升了学生的直观想象、数学抽象、数学运算、逻辑推理核心素养.教学评价通过本节课的学习,学生理解三角函数的概念,能根据三角函数的定义确定三角函数的符号,同时也可以借助单位圆,利用定义推导出同角三角函数的基本关系式,知道同角三角函数的基本关系也反映了三角函数的基本性质,并会运用它们进行简单三角函数式的化简、证明和求值运算.应用所学知识,完成下题:已知:,且有意义.(1)试判断角所在的象限.(2)若角的终边上一点是,且(为坐标原点),求的值及的值.解析:(1)要判断角所在的象限,先确定角的三角函数值的符号.由,可知,由有定义,,所以,角在第四象限.(2)利用勾股定理可得关于的方程,进而解方程、利用定义计算即可.由得,解得.又角在第四象限,由正弦函数的定义可知.【设计意图】围绕本节知识点——三角函数的概念、三角函数的性质、同角三角函数的基本关系引导学生整理知识,体会知识的生成、发展、完善的过程,锻炼学生观察记忆、说明论证、概括理解、推测解释、分析计算,简单问题解决等学科能力,从而达到数学运算、数学抽象、逻辑推理的核心素养目标要求.教学反思本节内容分为3课时,主要是对三角函数这一部分知识的理解与认识,三角函数是一类最典型的周期函数,是解决实际问题的重要工具,同样也是学习数学、物理和天文等其他学科的重要基础.在本节的教学中,应注意强调以周期变化现象为背景,构建从抽象研究对象即定义三角函数概念到后续课程研究同角三角函数的基本关系再到实际应用的过程,借助单位圆,理解正弦、余弦、正切函数的概念,注重同角三角函数基本关系的推导,注重通过实例提升学生的逻辑推理、数学抽象、数学运算核心素养,【以学定教】综合三角函数的概念、性质和同角三角函数的基本关系式分析问题、解决问题.【以学论教】根据学生实际学习情况和课堂效果,总结得出教学过程中应结合实例多角度引发学生的思考,引导学生利用单位圆理解三角函数的概念,结合具体问题理解同角三角函数之间的基本关系.1 / 3。
人教版高中必修4(B版)1.1.1角的概念的推广课程设计课程概述本课程旨在帮助高中数学教师了解和掌握角的概念,通过实际例子和应用问题的解析,引领学生理解角的概念,学会绘制并比较不同类型角的大小。
同时,本课程也将引导学生深刻认识角的概念在日常生活与数学应用中的重要意义。
课程目标•理解角的概念,初步掌握角度的测量方法和计算方法。
•能够绘制不同类型角,了解大小和方向的关系。
•掌握求解角度的方法,实现图形角度的测量和计算。
•在实际生活和数学运用中理解角度的概念和用法。
课程重点1.什么是角度,如何度量角度。
2.不同类型角的性质和特点。
3.角度的加减法,以及使用角度求解相关问题。
4.角的应用实例。
课程内容第一节角的概念学习目标:了解角的概念、刻度和度量方法•角的产生及概念介绍;•夹角、对顶角、相邻角、平分角、正角、负角的概念;•角的单位——弧度和角度;•度数、弧度的相互转化。
第二节角的比较学习目标:会比较不同类型角的大小,掌握角的构造方法•角的比较和分类;•顶角、全等角、余角、补角、对锐角和钝角的构造;•角度的转化。
第三节角度的加减法学习目标:了解角度的加减法,掌握角度综合问题的解法•角度绕点旋转的概念及模拟实验;•常用角的正弦、余弦、正切函数定义;•角的加减法、角的倍数和分数及其应用;•角综合问题的处理。
第四节角的应用实例学习目标:了解角的应用,掌握角的相关问题的解决方法•在工艺、间隔时间、距离、角度转换等生活中的应用;•将角的概念和方法应用到解决实际问题中。
课程设计教学方法采用讲授-练习-巩固-应用的方式进行。
其中,讲授环节将通过演示、模拟实验、视频等方式来引导学生理解角的概念和相关知识。
练习环节将通过练习题、课堂测试等方式,帮助学生巩固所学内容。
巩固环节将通过实际问题解析和拓展,进一步帮助学生理解角度的概念和应用。
应用环节将通过展示实际生活与数学运用的案例,让学生感受并掌握角的实际应用。
教学步骤第一节角的概念1.演讲师用生动的比喻介绍角的概念。
31 角的概念的推广教材分析这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.教学目标1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义.2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.任务分析这节课概念很多,应尽可能让学生通过生活中的例子如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握.教学设计一、问题情境演示1. 观览车的运动.2. 体操运动员、跳台跳板运动员的前、后转体动作.3. 钟表秒针的转动.4. 自行车轮子的滚动.问题1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角3. 钟表上的秒针当时间过了时是按什么方向转动的,转动了多大角4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.二、建立模型1. 正角、负角、零角的概念在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.2. 象限角当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.3. 终边相同的角在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个k∈Z周角的和,即390°=30°+360°,k=1;-330°=30°-360°,k=-1.设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素此时k=0.容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.三、解释应用例题1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.1-150°.2650°.3-950°5′.2. 分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.160°.2-21°.3363°14′.3. 写出终边在y轴上的角的集合.解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为S2={β|β=270°+k·360°,k∈Z}={β|β=90°+2k+1·180°,k∈Z}.于是,终边在y轴上的角的集合为S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+2k+1·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.注:会正确使用集合的表示方法和符号语言.练习1. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.145°.2-30°.3420°.4-225°.2. 辨析概念.分别用集合表示出来1第一象限角.2锐角.3小于90°的角.40°~90°的角.3. 一角为30°,其终边按逆时针方向旋转三周后的角度数为.4. 终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.四、拓展延伸1. 若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.2. 如果α在第二象限时,那么2α,是第几象限角注:1不能忽略2α的终边可能在坐标轴上的情况.2研究在哪个象限的方法:讨论k的奇偶性.如果是呢点评这篇案例运用多媒体展示了生活中常见的实例,极易激发学生学习的兴趣和热情.在对知识的探讨过程中,特别注意了知识的形成过程,重点突出.例题的设置比较典型,难易度适中.练习题注重基础,但也有一定的梯度,利于培养学生灵活处理问题的能力,并为学生学习以后章节做了较好的铺垫.。
32 任意角的三角函数教材分析这节课是在初中学习的锐角三角函数的基础上,进一步学习任意角的三角函数.任意角的三角函数通常是借助直角坐标系来定义的.三角函数的定义是本章教学内容的基本概念和重要概念,也是学习后续内容的基础,更是学好本章内容的关键.因此,要重点地体会、理解和掌握三角函数的定义.在此基础上,这节课又进一步研讨了三角函数的定义域,函数值在各象限的符号,以及诱导公式一,这既是对三角函数的简单应用,也是为学习后续内容做了必要准备.教学目标1. 让学生认识三角函数推广的必要性,经历三角函数的推广的过程,增强对数的理解能力.2. 理解和掌握三角函数的定义,在此基础上探索与研究三角函数定义域、三角函数值的符号和诱导公式一,并能初步应用它们解决一些问题.3. 通过对任意角的三角函数的学习,初步体会数学知识的发生、发展和运用的过程,提高学生的科学思维水平.任务分析在初中,我们只是学习了锐角三角函数,现在学习的是任意角的三角函数.定义的对象从锐角三角函数推广到任意角的三角函数,从四种三角函数增加到六种三角函数.定义的媒介则从直角三角形改为平面直角坐标系.为了便于学生体会和理解,突出定义适用于任意角,通常要把终边出现在四个象限的情况都画出来注意表示角时不用箭头,学习时,必须弄清并强调:这六个比值的大小都与点P在角的终边上的位置无关,只与角的大小有关,即它们都是以角为自变量,以比值为函数值的函数,符合函数的定义,从而归纳和总结出任意角的三角函数的定义.对于三角函数的定义域、函数值在各象限内的符号和诱导公式一,可放手让学生探索、研究、讨论和归纳,用以培养学生的数学思维能力.教学设计一、情景设置初中我们学习过锐角三角函数,知道它们都是以锐角为自变量,由其所在的直角三角形的对应边的比值为函数值,并且定义了角α的正弦、余弦、正切、余切的三角函数.这节课,我们研究当α是一个任意角时的三角函数的定义.在初中,三角函数的定义是借助直角三角形来定义的.如图32-1,在Rt△ABC中,现在,把三角形放到坐标系中.如图32-2,设点B的坐标为x,y,则OC=b=x,CB=a=y,OB =,从而即角α的三角函数可以理解为坐标的比值,在此意义下对任意角α都可以定义其三角函数.二、建立模型一般地,设α是任意角,以α的顶点O为坐标原点,以角α的始边的方向作为x轴的正方向,建立直角坐标系xOy.Px,y为α终边上不同于原点的任一点.如图:那么,OP=,记作r,r>0.对于三个量x,y,r,一般地,可以产生六个比值:.当α确定时,根据初中三角形相似的知识,可知这六个比值也随之相应的唯一确定.根据函数的定义可以看出,这六个比值都是以角为自变量的函数,分别把称之为α角的正弦、余弦、正切、余切、正割和余割函数,记为对于定义,思考如下问题:1. 当角α确定后,比值与P点的位置有关吗为什么2. 利用坐标法定义三角函数与利用直角三角形定义三角函数有什么关系3. 任意角α的正弦、余弦、正切都有意义吗为什么三、解释应用例题1. 已知角α的终边经过P-2,3,求角α的六个三角函数值.思考:若P-2,3变为-2m,3m呢m≠02. 求下列角的六个三角函数值.注:强化定义.练习1. 已知角α的终边经过下列各点,求角α的六个三角函数值.1P3,-4.2Pm,3.2. 计算.15sin90°+2sin0°-3sin270°+10cos180°.四、拓展延伸1. 由于角的集合与实数集之间可以建立一一对应的关系,三角函数可以看成以实数为自变量的函数,如sina=,不论α取任何实数,恒有意义,所以sina的定义域为{α|α∈R}.类似地,研究cosa,tana,cota的定义域.2. 根据三角函数的定义以及x,y,r在不同象限内的符号,研究sina,cosa,tana,cota的值在各个象限的符号.3. 计算下列各组角的函数值,并归纳和总结出一般性的规律.1sin30°,sin390°.2cos45°,cos-315°.规律:终边相同的角有相同的三角函数值,即sinα+k360°=sina,cosα+k·360°=cosa,tanα+k·360°=tana,k∈Z.五、应用与深化例题1. 确定下列三角函数值的符号.2. 求证:角α为第三象限角的充要条件是sinθ<0,并且tanθ>0.证明:充分性:如果sinθ<0,tanθ>0都成立,那么θ为第三象限角.∵sinθ<0成立,所以θ的终边可能位于第三或第四象限,也可能位于y轴的负半轴上.又∵tanθ>0成立,∴θ角的终边可能位于第一或第三象限.∵sinθ<0,tanθ>0都成立,∴θ角的终边只能位于第三象限.必要性:若θ为第三象限角,由三角函数值在各个象限的符号,知sinθ<0,tanθ>0.从而结论成立.练习1. 设α是三角形的一个内角,问:在sina,cosa,tana,tan中,哪些三角函数可能取负值为什么2. 函数的值域是____________ .点评这节课在设计上特别注意了以下几点:①前后知识的联系,知识的产生、发展过程,如任意角的三角函数的定义,由初中所讲“0°~360°”的情况逐渐过渡到“任意角”的情况,讲清了推广的必要性及意义.②注重了知识的探究,如三角函数值在各象限的符号,及诱导公式一.这里由学生自己去研究,讨论,探索得出一般性结论,培养了学生获取知识、探究知识的能力,强化了自主学习的意识.③注意了跟踪练习的设计.例题典型,练习有层次和变化,巩固知识到位.总体来说,这是一节实用较强,形式又不乏新颖的较好案例.。
31 角的概念的推广
教材分析
这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.
教学目标
1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义.
2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.
3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.
任务分析
这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握.
教学设计
一、问题情境
[演示]
1. 观览车的运动.
2. 体操运动员、跳台跳板运动员的前、后转体动作.
3. 钟表秒针的转动.
4. 自行车轮子的滚动.
[问题]
1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?
2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角?
3. 钟表上的秒针(当时间过了1.5min时)是按什么方向转动的,转动了多大角?
4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角?
显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.
二、建立模型
1. 正角、负角、零角的概念
在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.
2. 象限角
当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.
3. 终边相同的角
在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即
390°=30°+360°,(k=1);
-330°=30°-360°,(k=-1).
设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.
三、解释应用
[例题]
1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.
(1)-150°.(2)650°.(3)-950°5′.
2. 分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.
(1)60°.(2)-21°.(3)363°14′.
3. 写出终边在y轴上的角的集合.
解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为
S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为
S2={β|β=270°+k·360°,k∈Z}=
{β|β=90°+(2k+1)·180°,k∈Z}.
于是,终边在y轴上的角的集合为
S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.
注:会正确使用集合的表示方法和符号语言.
[练习]
1. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.
(1)45°.(2)-30°.(3)420°.(4)-225°.
2. 辨析概念.(分别用集合表示出来)
(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角.
3. 一角为30°,其终边按逆时针方向旋转三周后的角度数为.
4. 终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.
四、拓展延伸
1. 若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.
2. 如果α在第二象限时,那么2α,是第几象限角?
注:(1)不能忽略2α的终边可能在坐标轴上的情况.
(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢?)
点评
这篇案例运用多媒体展示了生活中常见的实例,极易激发学生学习的兴趣和热情.在对知识的探讨过程中,特别注意了知识的形成过程,重点突出.例题的设置比较典型,难易度适中.练习题注重基础,但也有一定的梯度,利于培养学生灵活处理问题的能力,并为学生学习以后章节做了较好的铺垫.。