2019春八年级数学下册第十七章勾股定理17.1勾股定理第2课时勾股定理在实际生活中的应用导学案新人教版
- 格式:doc
- 大小:1.23 MB
- 文档页数:4
第十七章勾股定理
在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角
两点间的距离.
上任意两点
处放上了点儿火腿肠粒,你
的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多
求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.
第1题图第2题图
如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是
的长度可能是()
A.9cm
B.12cm
C.15cm
D.18cm
10cm和6cm,A和B是。
初中数学第17章勾股定理 努力学习,改变自己,从easy 精英学习网开始第十七章 勾股定理17.1 勾股定理:a ²+b ²=c ²应用:①已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c ,b ,a )②已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
17.2 勾股定理的逆定理(1)逆定理:如果三角形的三边长a 、b 、c 满足,a ²+b ²=c ²,那这个三角形是直角三角形。
应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
(2)勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②常见勾股数,如3,4,5;6,8,10;5,12,13;7,24,25等(3)直角三角形的性质①直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90° ②在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°+∠C=90°⇒BC=21AB ③直角三角形斜边上的中线等于斜边的一半∠ACB=90°+D 为AB 的中点⇒CD=21AB=BD=AD (4)经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)(5)证明判断一个命题的正确性的推理过程叫做证明。
(6)证明的一般步骤①根据题意,画出图形。
②根据题设、结论、结合图形,写出已知、求证。
③经过分析,找出由已知推出求证的途径,写出证明过程。
第十七章勾股定理
2.如图,学校教学楼前有一块长方形长为4米,宽为3米的草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草. (1)求这条“径路”的长;
(2)他们仅仅少走了几步(假设2步为1米)?
探究点2:利用勾股定理求两点距离及验证“HL ”
思考:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?
证明:如图,在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C =∠C ’=90°, AB =A ’ B ’,AC =A ’ C ’.
求证:△ABC ≌△A ’ B ’ C ’ .
证明:在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C=∠C ’=90°,
根据勾股定理得BC =_______________,B ’ C ’=_________________. ∵AB=A ’ B ’,AC=A ’ C ’,∴_______=________. ∴____________≌____________ (________).
例2 如图,在平面直角坐标系中有两点A (-3,5),B (1,2)求A ,B 两点间的距离.
探究点3:利用勾股定理求最短距离
想一想:1.在一个圆柱石凳上,若小明在吃东西时留下一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,蚂蚁怎么走最近(在以下四条路线中选择一条)?
处放上了点儿火腿肠粒,你
的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多
求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径. m
2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()
A.9cm
B.12cm
C.15cm
D.18cm
3.已知点(2,5),(-4,-3),
则这两点的距离为_______.
4.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?
5.如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?
能力提升
6.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?。