拉曼(Raman)光谱2000
- 格式:ppt
- 大小:3.01 MB
- 文档页数:36
四、低维纳米体系的理论基础和光谱特征在边界处,晶体材料的平移对称性被打破了,导致了表面和界面振动模式的出现。
此外,加工处理和生长过程中,晶粒的外层原子常常与相邻原子再作用(点阵重构、钝化/腐蚀层、污染物等)而经受陡峭的热化学梯度,产生了新相,这些新相产生了新谱。
这些因素在体材料Raman谱中常常被忽略了,但可以预言在纳米晶体中它们将变得非常有意义,因为对纳米结构这些贡献是非常大的。
12纳米粒子的特征:1 维度、尺寸与特征长度1)几何维度和几何大小2)特征长度指物力长度:退相长度(dephasing length )L φ、扩散长度(diffused length )L d 以及电子(激子)的波尔半径r e 、粒子的德布罗意波长λd 和电磁波长λ等。
不同外界条件下的同一特征长度的几何尺寸可能会不同,如:氢原子中电子的波尔半径只有0.05nm ,而在GaAs 中传导电子的波尔半径可达10nm 。
4.1低维纳米体系的晶格动力学和光散射理论研究1949年Frohlich第一个提出并研究了有限,尺寸晶体声子谱,理论。
Frohlich研究一个双原子球形样品,球半径大于晶格常数但小于红外波长,他证明:1)球内的计划是均匀的;2)在体材料的纵、横光学声子频率ωL和ωT之间出。
现一个新的光学模——称为Frohlich模ωF随后,小尺寸晶体的晶格动力学和拉曼散射的工作不断进展,形成新的学科分支。
564.1.1 超晶格半导体超晶格结构如图所示,此结构将导致与体材料不同的新的色散和光谱特征。
1)沿生长方向,构成了光学声子势阱,阱中声子的能量特征与势阱中的电子相类似;2)新的晶格周期L = (n 1a 1+n 2a 2), (其中,n 1和n 2是单层数,a 1和a 2分别是单层厚度,一般,L >> a;体材料-π/a —π/a 的大布里渊区变为-1/L —1/L 的小布里渊区。
对1和2体材料色散曲线差别不大(声学声子通常如此),则体色散曲线“折叠”入小布里渊区,超晶格中材料1和2的声子的能量分别“分裂”成n 1+n 2个能级。