几何法求最值技巧
- 格式:doc
- 大小:134.50 KB
- 文档页数:4
几何求最大值的方法几何求最大值的方法是一个涵盖多个领域的复杂问题,涉及数学、物理、工程等多个学科。
在几何学中,求最大值的问题通常涉及到图形的性质、空间结构和优化理论。
下面将详细介绍一些常用的几何求最大值的方法,并阐述它们的原理和应用。
一、基础概念在几何学中,最大值问题通常涉及到距离、角度、面积、体积等几何量。
求这些量的最大值,需要理解几何对象的基本性质,如点、线、面、体之间的关系和性质。
二、基本方法解析几何法:通过建立坐标系,将几何问题转化为代数问题,利用代数方法求解最大值。
例如,在平面几何中,可以通过求解二次函数的极值来找到某个图形的最大面积或最大距离。
几何不等式法:利用几何不等式来求解最大值。
例如,在三角形中,利用三角形的三边关系、角度关系等不等式,可以求解三角形的最大面积或最大周长。
几何变换法:通过平移、旋转、对称等几何变换,将问题转化为更简单的形式,从而求解最大值。
例如,在立体几何中,可以通过旋转体来求解某个几何体的最大体积。
三、实际应用几何求最大值的方法在实际生活中有着广泛的应用。
例如,在建筑设计中,可以利用几何求最大值的方法来优化建筑的空间布局,提高建筑的使用效率;在交通运输中,可以利用几何求最大值的方法来规划最优的运输路线,降低运输成本;在机器人路径规划中,也可以利用几何求最大值的方法来找到机器人的最优运动轨迹。
四、案例分析以一个具体的案例为例,假设我们有一个固定的圆形区域,需要在其中放置尽可能多的相同大小的圆形物体。
这个问题可以转化为求解圆形区域内能够容纳的最大圆形物体数量。
通过解析几何法和几何不等式法,我们可以找到最优的排列方式,使得圆形区域内能够容纳的圆形物体数量达到最大。
五、结论与展望几何求最大值的方法是一个复杂而重要的领域,具有广泛的应用前景。
随着数学、物理、工程等学科的不断发展,几何求最大值的方法也将不断更新和完善。
未来,我们可以期待更多创新的方法和理论的出现,为实际问题的解决提供更多有效的工具和手段。
几何最值问题解题技巧
几何最值问题是一个常见的数学问题,它涉及到在给定的几何形状中找到一个或多个点的最大或最小值。
解决这类问题需要一定的技巧和策略。
以下是一些解决几何最值问题的技巧:
1. 转化问题:将最值问题转化为几何问题,例如求点到直线的最短距离,可以转化为求点到直线的垂足。
2. 建立数学模型:根据问题的具体情况,建立适当的数学模型,例如利用勾股定理、三角函数等。
3. 寻找对称性:在几何图形中寻找对称性,例如利用轴对称、中心对称等性质,可以简化问题。
4. 利用基本不等式:利用基本不等式(如AM-GM不等式)可以求出某些量的最大或最小值。
5. 转化为一元函数:将问题转化为求一元函数的最大或最小值,然后利用导数等工具求解。
6. 构造辅助线:在几何图形中构造辅助线,可以改变问题的结构,从而更容易找到最值。
7. 尝试特殊情况:在某些情况下,尝试特殊情况(例如旋转、对称等)可以找到最值。
8. 逐步逼近:如果无法直接找到最值,可以尝试逐步逼近的方法,例如二分法等。
以上技巧并不是孤立的,有时候需要综合运用多种技巧来解决一个问题。
在解决几何最值问题时,需要灵活运用各种方法,不断尝试和调整,才能找到最合适的解决方案。
初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。
以下将介绍9种常用的解法,帮助您更好地理解和学习。
一、轴对称法轴对称法是一种常用的解决最值问题的方法。
通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。
二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。
例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。
三、两点之间线段最短两点之间线段最短是几何学中的基本原理。
在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。
四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
利用这个关系,可以解决一些与三角形相关的最值问题。
五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。
通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。
六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。
利用这个不等式,可以解决一些与数列相关的最值问题。
七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。
例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。
八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。
例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。
九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。
利用几何变换的方法,可以解决一些与图形变换相关的最值问题。
例如,在矩形中,要使矩形的面积最大。
一、利用圆锥曲线的定义圆锥曲线的定义,是曲线上的动点本质属性的反映。
研究圆锥曲线的最值,利用圆锥曲线的定义,可使问题简化。
例1、若使双曲线上一点M到定点A(7,)的距离与M到右焦点F的距离之半的和有最小值,求M点的坐标。
解析:如图所示,由双曲线定义2可知,,所以|MF|=2|MP|。
令,即。
此问题转化为折线AMP的最短问题。
显然当A、M、P同在一条与x轴平行的直线上时,折线AMP最短,故M点的纵坐标为,代入双曲线方程得M(,)。
二、利用几何图形的对称性对称思想是研究数学问题常用的思想方法,利用几何图形的对称性去分析思考最值问题。
例2、已知点A(2,1),在直线和上分别求B点和C 点,使△ABC的周长最小。
分析:轴对称的几何性质以及两点间的距离以直线段为最短。
解析:先找A(2,1)关于直线、的对称点分别记为和,如图所示,若在、上分别任取点和,则△ABC周长=周长。
故当且仅当、、、四点共线时取等号,直线方程为:,与、的交点分别为B(,)、C(,0)。
三、利用参数的几何意义利用参数的几何意义,把它转化为几何图形中某些确定的几何量(如角度、长度、斜率)的最大值、最小值问题。
例3、椭圆内有两点A(4,0),B(2,2),M是椭圆上一动点,求|MA|+|MB|的最大值与最小值。
分析:若直接利用两点的距离公式,难度较大,通过椭圆定义转化后,利用几何性质可解决问题。
解析:|MA|+|MB|=2a-|MC|+|MB|=10+|MB|-|MC|,根据平面几何性质:||MB|-|MC||,当且仅当M、B、C共线时取等号,故|MA|+|MB|的最大值是,最小值是。
四、利用代数性质将问题里某些变化的几何量(长度、点的坐标、斜率、公比)设为自变量,并将问题里的约束条件和目标表示为自变量的解析式,然后利用代数性质(如配方法、不等式法、判别式法等)进行解决,可使问题简单化。
例4、过抛物线的焦点作两条互相垂直的弦AC、BD,求四边形ABCD面积的最小值。
初中几何最值问题解题技巧初中几何最值问题是一个比较常见的问题,通常涉及到线段、角度、面积等几何元素的最小值或最大值的求解。
下面将详细讲解一些常见的解题技巧:1.利用轴对称性转化:对于一些具有轴对称性的几何图形,可以利用轴对称性将问题转化为更简单的问题。
例如,对于一个关于直线对称的图形,可以找到对称轴,然后将问题转化为求解对称轴上的点到原图形的最短距离或最大距离。
2.利用三角形不等式:三角形不等式是解决几何最值问题的重要工具。
例如,对于一个三角形,任意两边之和大于第三边,任意两边之差小于第三边。
利用这些不等式,可以推导出一些关于几何元素的最值关系。
3.利用特殊位置和极端位置:在解决几何最值问题时,可以考虑特殊位置或极端位置的情况。
例如,对于一个矩形,当它的一条对角线与矩形的一条边垂直时,该对角线的长度达到最小值。
对于一个三角形,当它的一条边与另一条边的延长线垂直时,该三角形的面积达到最小值。
4.利用几何定理:几何定理是解决几何最值问题的有力工具。
例如,对于一个三角形,当它的一条边与另一条边的中线重合时,该三角形的周长达到最小值。
对于一个四边形,当它的一条对角线与另一条对角线的中线重合时,该四边形的面积达到最小值。
5.利用数形结合:数形结合是解决几何最值问题的常用方法。
通过将几何问题转化为代数问题,可以更容易地找到问题的解。
例如,对于一个圆上的点到圆心的距离的最大值和最小值,可以通过将问题转化为求解圆的半径的平方的最大值和最小值来解决。
以上是一些常见的初中几何最值问题的解题技巧,希望能够帮助你更好地解决这类问题。
几何最值问题常用解法初二几何最值问题是指在给定的几何条件下,求解出某个量的最大值或最小值。
这类问题在数学竞赛和应用问题中经常出现,对学生的综合能力和解题能力提出了要求。
下面将介绍几何最值问题常用的解法。
一、勾股定理求解最大值勾股定理是几何最值问题中应用最广泛的方法之一。
根据勾股定理,对于任意一个直角三角形,斜边的平方等于两直角边的平方和。
因此,当已知两条边的长度时,可以通过勾股定理求解另一条边的最大值或最小值。
例题1:在直角三角形ABC中,已知AB=3,BC=4,求AC的最大值。
解法:根据勾股定理,AC的平方等于AB的平方加BC的平方,即AC^2=3^2+4^2=9+16=25。
所以AC的最大值为5。
例题2:在直角三角形ABC中,已知AB=5,AC=13,求BC的最小值。
解法:根据勾股定理,BC的平方等于AC的平方减去AB的平方,即BC^2=13^2-5^2=169-25=144。
所以BC的最小值为12。
二、三角形面积法求解最大值三角形面积公式是几何最值问题中常用的方法之一。
根据三角形面积公式,三角形的面积等于底边乘以高的一半。
因此,当已知底边和高的一半时,可以通过三角形面积公式求解三角形面积的最大值或最小值。
例题3:已知一个三角形的底边长是6,高的一半是5,求这个三角形的最大面积。
解法:根据三角形面积公式,三角形的面积等于底边乘以高的一半,即面积=6*5=30。
所以这个三角形的最大面积是30。
例题4:已知一个三角形的底边长是10,面积是24,求这个三角形的最小高。
解法:根据三角形面积公式,三角形的面积等于底边乘以高的一半,即24=10*高/2,解得高=4.8。
所以这个三角形的最小高是4.8。
三、相似三角形属性求解最大值相似三角形属性是几何最值问题中常用的方法之一。
相似三角形是指具有相同形状但大小不同的三角形。
相似三角形的边长之比等于对应边的比值,面积之比等于对应边长的平方的比值。
例题5:已知两个相似三角形的面积分别是16和25,求这两个相似三角形的边长之比。
几何最值问题大一统追本溯源化繁为简目有千万而纲为一,枝叶繁多而本为一。
纲举则目张,执本而末从。
如果只在细枝末节上下功夫,费了力气却讨不了好。
学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。
关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。
一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形。
AD一定,所以D是定点,C是直线的最短路径,求得当CD⊥AC时最短为是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。
初中数学几何最值的方法有哪些摘要:1.特殊位置及极端位置法2.几何定理(公理)法3.数形结合法4.举例:求线段最短问题正文:在初中数学几何中,最值问题是一种常见的题型。
解决这类问题有几种常用的方法,下面我们将逐一进行介绍。
首先,我们要掌握的是特殊位置及极端位置法。
这种方法首先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情况下的推理证明。
例如,在求解线段最短问题时,我们可以先找到线段的特殊位置或极端位置,进而求出最值。
其次,几何定理(公理)法也是解决最值问题的一种有效方法。
这种方法应用几何中的不等量性质、定理,如两点之间线段最短、点到直线垂线段最短、三角形两边之和大于第三边、斜边大于直角边等。
通过运用这些几何定理,我们可以轻松地解决一些最值问题。
再者,数形结合法也是一种非常实用的方法。
通过分析问题变动元素的代数关系和几何性质,我们可以将最值问题转化为求解代数式的最值。
这种方法在解决几何最值问题时,能够充分挖掘问题中的几何特征,使问题变得简洁明了。
接下来,我们通过一个求线段最短问题的例子来说明上述方法的运用。
例题:已知菱形ABCD的对角线AC=8,BD=6,求MD(MD为对角线AC上的一个点)到点B的距离的最小值。
解:首先,我们可以通过特殊位置法找到MD线段的最短位置。
连接MD 与BD,我们可以得到直角三角形ABD。
由于菱形对角线两边对称,我们可以知道MD与BD垂直。
接着,我们通过数形结合法,将问题转化为求解代数式的最值。
设MD=x,那么MB=8-x。
根据勾股定理,我们可以得到MD^2+MB^2=AB^2。
将AB=√(8^2-6^2)=2√10代入,得到x^2+(8-x)^2=100。
通过求解这个二次方程,我们可以得到x=7/4时,MD取得最小值。
所以,MD到点B的最小距离为7/4。
总之,在解决初中数学几何最值问题时,我们可以根据具体情况选择特殊位置及极端位置法、几何定理(公理)法或数形结合法。
重难点几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。
考向一:将军饮马类最值一动”“两定异侧普通一动”“两定同侧普通动”两定“一动”两定“两两动”“两定同侧两动”“两定异侧满分技巧将军饮马:。
1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.【分析】由折叠性质可知AC=AC'=3,然后根据三角形的三边不等关系可进行求解.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.【分析】如图,连接OD,OC,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补∴FD=,在四边形ACBF中,∠ACB=∠AFB=90°,∴A、C、B、F四点共圆,∴∠ACF=∠ABF=45°,∠CAB=∠CFB,∵∠PCD=45°∴∠ACP=∠FCD,又∵△ABE∽△FBD,∴∠BAE=∠BFD,∴∠CAP=∠CFD,∴△CAP∽△CFD,∴,在四边形ACBF中,由对角互补模型得AC+CB=,∴CF=∴,∴AP=1,∴PE=2,故答案为:2考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.【分析】过点B作BP⊥AC于点P,连接PG,则可得△ABE∽△PBG,进而可知∠BPG为定值,因此CG⊥PG时,CG最小,通过设元利用三角函数和相似比可表示出PG、CP,即可求出结果.【解答】解:如图,过点B作BP⊥AC于点P,连接PG,∵,∠ABC=∠EBF,∴△ABC∽△EBF,∴∠CAB=∠FEB,∵∠APB=∠EGB=90°,∴△ABP∽△EBG,∴=,∠ABP=∠EBG,∴∠ABE=∠PBG,∴△ABE∽△PBG,∴∠BPG=∠BAE,即在点E的运动过程中,∠BPG的大小不变且等于∠BAC,∴当CG⊥PG时,CG最小,设此时AE=x,∵,∴PG=,∵CG⊥PG,∴∠PCG=∠BPG=∠BAC,∴,代入PG=,解得CP=x,∵CP=BC•sin∠CBP=BC•sin∠BAC=,∴x=,∴AE=∴CE=,故答案为:.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。
高中数学:几何最值问题求法最值问题是平面解析几何中的一个既典型又综合的问题.求最值常见的方法有两种:代数法和几何法.若题目条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.若题目条件和结论能明显体现某种函数关系,则可先建立目标函数,再求函数的最值,这就是代数法.一、几何法利用平面几何性质求解最值问题,这种解法若运用得当,往往显得非常简洁明快.例1、已知P(x,y)是圆上的一点,求的最大值与最小值。
分析:,于是问题就可以转化为在以A(2,0)为圆心,以为半径的圆上求点P,使它与原点连线的斜率为最大或最小。
由示意图可知,当OP与此圆相切时,其斜率达到最大值或最小值。
由OA=2,AP1=AP2=,且AP1⊥OP1,AP2⊥OP2,OP1=OP2=1,且∠AOP1=∠AOP2=60°,得。
二、代数法用代数法求最值常用的方法有以下几种:1、利用判别式法求最值、利用此法求最值时,必须同时求得变量的范围,因为方程有解,Δ≥0所指的是在()范围内方程有解,这一点应切记.例2、(同例1)分析:设,将y=kx代入圆方程得。
x为实数,方程有解,,解得,故。
即。
2、利用二次函数性质求最值.用此法求最值时,必须注意变量的取值范围.例3、已知椭圆及点P(0,5),求点P到椭圆上点的距离的最大值与最小值.分析:以(0,5)为圆心,若内切于椭圆的圆半径为r1,则r1为点P到椭圆上点的距离的最小值;若外切于椭圆的圆半径为r2,则r2为点P到椭圆上点的距离的最大值.因,故点P(0,5)在椭圆内部.设以(0,5)为圆心的圆方程为,与椭圆方程联立消去x2,得。
当时,,即;当y=7时,,即。
注:这里将距离的最大值、最小值的探求转化为半径r的函数,利用函数的性质求得定义域内的最大值、最小值.值得注意的是因为r的定义域的限制,这里不适合利用判别式法.3、利用基本不等式求最值.利用基本不等式求最值时,必须注意应用基本不等式的条件,特别要注意等号的条件以及“和”(或“积”)是不是常数,若连续应用不等式,那么要特别注意同时取等号的条件是否存在.若存在,有最值;若不存在,无最值.例4、过点A(1,4)作一直线,它在两坐标轴上的截距都为正数,且其和为最小,求这条直线的方程.分析:可用截距式设所求直线方程为。
几何法求最值技巧一、教学目标:使学生掌握几何法求最值的常规技巧.会用几何法求某些函数的最值. 二、教学重难点:如何平移线段和如何构造图形是本课的重点又是难点. 三、教学方法:探研法. 四、教 具:多媒体. 五、教学过程: 1.引入课题函数的最值(值域)是高中数学的重点内容,也是近几年高考的热点,对最值的求 解可分为两大类:对能写出解析式(较简单的)可用配方法、判别式法、有界法、函数单调性、重要 不等式、导数法.对不能写出解析式(或解析式较复杂)可用线段平移、构造图形、表面展开、线性 规划等方法. 2.例题选讲例1.在直线L:y= x+3上取一点P ,过点P 且以双曲线12x 2-4y 2=3的焦点为焦点作椭圆, 求椭圆长轴的最小值及此时P 点的坐标与椭圆方程.解:易求得双曲线的两焦点分别为F 1(-1,0),F 2(1,0),由此设椭圆为:)2,3('F L F 1),(a 11a yax 12222->=-+的对称点为关于直线易求得)34,35(P )1x (21y :'F F L o 2---=的交点为与直线则直线 由椭圆定义与平面几何的结论得:52)20()31(|F 'F ||P F ||P 'F ||P F ||P F |a 2222221=-++=≥+=+=当且仅当点P 重合于点P o 时,上式取"="号,)34,35(:P ,52)a 2(min -=为点为故椭圆长轴长的最小值.14y5x22=+椭圆方程为例2.如图,有一条河,两个工厂P 和Q 位于河岸L(直线)的同侧,工厂P 和Q 距离河岸L 分别为10km 和8km,两个工厂的距离为14km,现要在河岸的工厂一侧选一处R,在R 处修一个水泵站,从R 修建直线输水管分别到两个工厂和河岸,使直线输水管的总长度最小.请确定出水泵站R 的位置,并求出R 到各处的距离.解: 将⊿PRQ 绕P 点逆时针旋转60o到PR'Q'(如图) 当Q',R',R 三点共线且垂直L 时总长最小.此时∠PRQ=120o , ∠PRR'=∠QRR'=60o,延长QR 交P 到L 的垂线于A 点,则⊿PRA 为正三角形 作QB 垂直PA 于B,可求得BA=8,又PB=2,所以 PR=PA=10,R 到L 的距离为5,QR=QA-RA=6.回归:若R 点在河岸L 上时如何求解?结果如何? 引申:若将上述三个距离改为任意正数a,b,c 时如何求解?例3. . |72)-(t -42-2t |p 2的最值求函数+=解:222222)2(2|7)2t (42t 2|)2(2p )2t (4y t x -++---⋅-+=⎪⎩⎪⎨⎧--==则令为半圆:(x-2)2+y 2=4 (y ≥0)上的点P 到直线2x-2y+7=0的点Q 的距离.(如图)|BD|为最大值,|CE|为最小值.:)2(2,4215|BD |,4211|CE |22得同乘-+==.15y ,2411y max min =-=例4.如图,V -ABCD 为正四棱锥(∠A VB<45o),闭折线AEFGA 是过A 且沿正四棱锥侧面一周的细绳最短时的路径.问四点A,E,F,G 是否一定共面?并说明理由.解:将正四棱锥的侧面沿V A 剪开并铺平在一个平面上,(如图)则细绳长度的最短值即为线段AA 1,且E 1,F 1,G 1三点分别对应E,F,G 三点.假设A,E,F,G 四点共面.不妨设V A=1,.x 2cos VF ,VF AA ),4,0(x ,x AVB 111=⊥π∈=∠易知 .2x sin2AB =.V C AF ,AE FG V C ,FG V C ,E F V C ⊥∴⊥∴⊥⊥面又则则于平面作,2x sin2AC 21AO ,O ABCD VO ==⊥.x cos 2x sin21AOV AV O 222=-=-=在ΔA VC 中,∵VO •AC=VC •AF,x cos 2x sin81AFAV V F ,2x sin22x cos AF 222-=-=∴⋅=∴x 2cos x cos 2x sin81,V F V F ,21=-=即由比较两图.215arccosx .215x cos -=-=即解得时当且仅当不一定共面故四点215arccosAVB ,G ,F ,E ,A -=∠四点A,E,F,G 才可能共面. 六、小结:几何法求最值的常规方法有: 1.线段平移法 技巧为:对称点转移(或等腰三角形转移)正三角形转移. 2.数形结合法 3.表面展开法 4.线性规划法 (略) 七、作业1.相距40km 的两城镇A,B 之间有一个圆形湖泊,圆心落在AB 连线中点O,半径为10km,现要绕过湖泊修y V ABCDEFG建一条连结两镇的公路,这条公路的最短路程为( )km..3103D.203380C.10B.20 40.A π+π+ 答案: D2.是该椭圆的左焦点是椭圆的坐标为如果点P , 15y9x F ),1,1(A 221=+上的动点,则|PA|+|PF 1|的最小值是.2D.6 2C.3 2-B.6 29.A ++-答案: B3.已知A 为60o 二面角α-L-β内一点,点A 到两个平面的距离分别为2和3,P ,Q 分别在平面α,β内,求三角形APQ 周长的最小值.解:过A 点分别作两平面的对称A',A'',连接A',A'',设A'A''交两平面α,β分别为P,Q,此时的三角形APQ 即为周长的最小值的三角形,易证其周长为A'A'',192120cos 64264''A 'A :o22=⨯⨯⨯-+=可求得4.已知实数x,y 满足:x ≥1,y ≥1,log a 2x+log a 2y=log a (ax 2)+ log a (ay 2) (a>0且a ≠1)求log a (xy)的取值范围.解:原式可化为:(log a x-1)2+(log a y-1)2=4. 令u=log a x,v=log a y,k=u+v.点P(u,v)在(u-1)2+(v-1)2=4 (uv ≥0)一、三象限两段圆弧,k 为一组平行直线v=-u+k 在y 轴上的截距.(如图)k 31:,1a ,0v ,0u )1(≤+>≥≥由图形及判别式得时即当,31k )21(2:,1a 0,0v ,0u )2(-≤≤-<<≥≤同理得即当主讲人:李品国 2003年12月29日补充1.定长为3的线段AB 的两个端点在抛物线y 2=x 上移动,记线段的中点为M.求M 点到y 轴的最短距离,并求此时点M 的坐标.解:设L 为y 2=x 的准线,(如图).|AB |21|)BF ||AF (|21|)'BB ||'AA (|21|'MM |≥+=+=设点M 的坐标为(x o ,y o ),则.F AB .45x ,2341x o o 点时取等号过当且仅当≥∴≥+,25)x (2x x y y ,41p y y min o B A 2B 2A 2B A ==+=+-=-=∴,232y y y BA o =+=∴).23,45(M ,45 x y M o 为此时点轴的最短距离是点到=∴2..)v9u 2()v u (,0v ,2|u |,R v ,u 222的最小值求且--+->≤∈83.如图,L 1,L 2表示地面上两条河道,L 1,L 2垂直交于O 点,A,B 表示两村庄.A 到L 1,L 2的距离分别为2公里、1公里; B 到L 1,L 2的距离分别为4公里、3公里;现要在河流L 1,L 2上选一地点M 建一抽水站,分别铺设水管到A,B 两村,问M 应选在何处水管造价最少?解:如图,以L 1,L 2分别为x 轴,y 轴建成立坐标系,则A(1,2),B(3,4),A 关于x 轴,y 轴的对称点分别为A 1(-1,2),A 2(1,-2).),25,0(M ,102|B A |52|B A |21点为故=<=4.在一条直线路径上有A 1,A 2,A 3,A 4,A 5五个机器人在工作,为节约时间,提高效率,工厂欲在此直线路径上设一零件供应点M,使M 与五个机器人的距离总和最小,则M 应设在何处? 解:M 应设在A 1,A 5之间的A 3处.5.已知正三棱锥P-ABC 的底面边长为4,侧棱长为8,E,F 分别是PB,PC 上的点,求ΔAEF 的周长最小值.解:如图,沿PA 展平正棱锥的侧面,则原ΔAEF 的 周长最小值等于线段AA'的长, 设∠APB =∠BPC=∠A'PC=θ,则.16112sin 42sin323sin,412sin3=θ-θ=θ=θ.11161182)23sinPA (2'AA =⨯⨯=θ⋅=∴6..x 4x 6x 6x y 2值的最值及对应的求函数+--+=解:4)(u 9)3v ()4u ( ,6x v ,4x 6x u 222≥=-+-+=+--=则有令)7u 4(9)3v ()4u (uv y ,22≤≤=-+-=表示右半圆如图上的动点P(u,v)与坐标原点O 的线段的斜率K OP ,,23y ,0x ,)6,4(A )1(max ==时当过(2)当过B(4,0)时,x=-6,y min =0.P ABCEFPABA 'E F 488θL 1 L 2 O B A。