m序列与OVSF码
- 格式:pptx
- 大小:380.13 KB
- 文档页数:32
学习目标:1、了解移动通信信道2、初步掌握扩频通信系统的技术特点3、了解数字调制技术、信源编码技术、信道编码技术4、了解功率控制技术、发送接收技术、蜂窝组网技术随着社会的不断进步、经济的飞速发展,对信息传输的需求越来越大,信息传输在工作、生活中的作用也越来越重要,“社会需求就是科学与技术发展的动力”,现代移动通信在经历了第一代模拟通信系统和第二代数字通信系统(以GSM和窄带CDMA为代表)之后,为适应市场发展的要求,由国际电信联盟(ITU)主导协调,自1996年开始了第三代(3G)宽带数字通信系统的标准化进程。
3G系统采用了无线宽带传输技术、复杂的编译码技术、调制解调技术、快速功率控制技术、多用户检测技术、智能天线技术、蜂窝组网技术等。
2.1 移动通信信道信道是信号的传输介质,可分为有线信道和无线信道两类。
移动通信中的各种新技术,都是针对无线信道的特点,优化解决移动通信中的有效性、可靠性和安全性。
从移动通信信道中的电波传播来看,可分为以下几种形式:(1 )直射波(2 )反射波(3 )绕射波(4 )散射波2.1.2 接收信号的4种效应移动通信信道有3个主要特点:信号传播的开放性,接收点地理环境的复杂性和多样性,以及通信用户的随机移动性。
无线电波有3种主要传播形式:直射、反射、绕射,在它们的共同作用下,接收信号具有4种主要效应:阴影效应、远近效应、多径效应和多普勒效应。
(1)阴影效应(2)远近效应(3)多径效应(4)多普勒效应图2-1 多径效应图2-2 多普勒效应2.1.3 接收信号的3类损耗在移动通信信道的3个主要特点和无线电波传播的3种主要形式的共同作用下,接收信号又具有3类不同层次的损耗:路径传播损耗、大尺度衰落损耗和小尺度衰落损耗。
(1)路径传播损耗(2)大尺度衰落损耗(3)小尺度衰落损耗图2-3 大尺度衰落和小尺度衰落2.1.4 移动通信中的噪声和干扰在移动通信中,严重影响移动通信系统性能的主要噪声和干扰可分为四类:加性白高斯噪声(Additional White Gauss Noise,AWGN)、符号间干扰(Intersymbol Interference,ISI)、多址干扰(Multiple Access Interference,MAI)和相邻小区(扇区)干扰(Adjacent Cell (Sector) Interference,AC(S)I)。
码分多址(CDMA)移动通信由于第三代移动通信的空中接口的标准大多是基于cdma技术的,本文详细的介绍了一下CDMA技术的发展历程,它的主要特点以及当前占主流地位的两种宽带cdma技术的主要异同。
以及WCDMA与第二代技术相比所具有的优点。
一、CDMA技术的发展历程CDMA即码分多址,起源于扩频技术。
由于扩频技术具有抗干扰能力强、保密性能好的特点,80年代就在军事通信领域获得了广泛的应用。
为了提高频率利用率,在扩频的基础上,人们又提出了码分多址的概念,即在同一频带内,利用不同的地址码来区分无线信道。
尽管人们已经看到这种技术的诸多优越性,但实现起来的难度较大。
1990年。
美国的Qualcomm公司在曼哈顿区进行了小型实验,虽然只有三个基站和两个原始的移动台,但已证明许多性能都是成功的,1990年7月将“CDMA数字空中接口标准窝双模式移动台一基站兼容标准”第一草案提交给有关的厂家。
1993年,美国通信工业协会(TIA)正式通过CDMA的空中接口标准--TA IS-95,Qualcomm公司已经设计开发了用于CDMA系统的超大规模集成电路芯片作为系统用户设备和基站的元件,并于1995年生产出CDMA的基础设备和配套设备。
目前,CDMA作为新兴的蜂窝移动通信技术,已被众多的通信设备制造商和移动通信运营商看好。
可提供CDMA设备的厂商已有MOTOROLA LUCENT NORTFIQUALCOMM、三星电子等四十多家。
同时,CDMA也在世界各地加快了商用化的进程。
例如,在香港世界上第一个CDMA商用网已于1995年9月向公众提供服务。
其后,韩国、美国、俄罗斯、巴西等国家也相继开通了CDMA商用网。
在中国也利用800MHZ 频段,组建了 CDMA移动通信网--一中国电信长城网",在北京、广州、上海、西安等地开通。
1998年 3月,中国联通公司的第一个CDMA试验网在天津首次开通,在上海和广州的试验网也正在建设之中。
WCDMA系统扰码规划的研究摘要本文以扰码规划对小区搜索速度,以及同扰码干扰两方面对网络影响分析为基础,提出扰码规划的原则和方法,对相关工作开展具有参考价值。
关键词:WCDMA系统、扰码、网络规划ABSTRACTBased on scrambling code planning on cell search speed, as well as with scrambling code interference two aspects influence on network analysis based on scrambling code planning, puts forward the principles and methods of the related work, has the reference value.KEY WORDS:The WCDMA system, a scrambling code, network planning目录摘要 (2)ABSTRACT (2)1扰码基础知识 (4)1.1扰码的构成 (4)1.2扰码组 (4)2扰码规划和小区搜索 (5)3扰码规划和干扰隔离 (5)4扰码规划的原则和方法 (6)4.1基本原则 (6)4.2扰码组中的扰码最小化 (6)4.3扰码组最小化 (6)4.4其他考虑 (6)5扰码规划案例 (7)参考文献 (9)附:作者简介................................................................................................. 错误!未定义书签。
1 扰码基础知识WCDMA系统中主要涉及两类码字:扰码和信道化码。
信道化码也叫正交可变扩频因子码(OVSF)。
它的作用是实现扩频和区分不同的物理信道。
这和窄带CDMA系统中的Walsh函数的作用是相似的。
常见m序列什么是m序列?m序列(m-sequence)是一种特殊的二进制序列,也被称为最大长度线性反馈移位寄存器(maximum length linear feedback shift register, LFSR)序列。
它具有伪随机性质,广泛应用于通信、密码学、编码等领域。
m序列由一个线性反馈移位寄存器(LFSR)产生,LFSR是一种在数字电路中常见的寄存器,用于生成伪随机序列。
LFSR由一组触发器和逻辑门组成,触发器的输出通过逻辑门反馈到寄存器的输入,形成一个闭环。
m序列的长度为2^m - 1,其中m是LFSR的阶数,也是寄存器中触发器的数量。
m 序列具有良好的统计特性,其周期为2^m - 1,即在一个周期内,m序列的输出不会重复。
m序列的生成原理m序列的生成原理基于LFSR的工作原理。
LFSR由m个触发器组成,每个触发器可以存储一个二进制位。
触发器的输出通过逻辑门反馈到寄存器的输入,形成一个闭环。
LFSR的工作过程如下: 1. 初始化寄存器的状态,即给每个触发器赋初始值。
2. 在每个时钟周期内,寄存器中的位向右移动一位,最右边的位被丢弃,最左边的位由逻辑门计算得出,并存储在寄存器的最右边。
3. 重复第2步,直到寄存器的状态回到初始状态。
m序列的输出是寄存器中的位,通常取最右边的位作为序列的输出。
m序列的性质m序列具有以下性质: 1. 周期性:m序列的周期为2^m - 1,即在一个周期内,m 序列的输出不会重复。
2. 均匀性:m序列的输出0和1的个数相等,且相邻的位之间是独立的。
3. 自相关性:m序列的自相关函数在除了原点外都为0,即m序列与其自身进行位移后,相邻位之间的相关性很低。
4. 互相关性:m序列与另一个m序列进行互相关,结果为0,即不同的m序列之间没有相关性。
这些性质使得m序列在通信、密码学、编码等领域有着广泛的应用。
m序列的应用通信领域在通信领域,m序列被用于信号的调制和解调。
M序列相位编码1. 介绍M序列相位编码是一种数字通信中常用的编码技术,用于将数字信息转换为相位信号。
相位编码是一种调制技术,通过改变信号的相位来携带信息。
M序列是一种特殊的伪随机序列,具有良好的自相关性和互相关性,适用于相位编码。
2. M序列M序列是一种由0和1组成的伪随机序列,具有以下特点: - 长度为2^N-1,其中N为正整数。
- 具有良好的自相关性和互相关性,即与自身的相关性很高,与其他序列的相关性很低。
- 具有良好的周期性,周期为2^N-1。
M序列的生成可以使用反馈移位寄存器实现。
反馈移位寄存器是一种具有反馈的移位寄存器,通过将某些位与反馈位进行异或运算,可以生成伪随机序列。
3. M序列相位编码原理M序列相位编码利用M序列的特性,将数字信息转换为相位信号。
具体原理如下:1. 将要传输的数字信息转换为二进制编码。
2. 选择合适的M序列作为相位编码的基序列。
3. 将二进制编码与基序列进行相乘,得到相位编码信号。
4. M序列相位编码过程M序列相位编码的过程如下: 1. 选择合适的M序列作为基序列。
2. 将要传输的数字信息转换为二进制编码。
3. 将二进制编码与基序列进行逐位相乘,并将结果相加。
4. 将相加的结果映射到合适的相位值上,得到相位编码信号。
5. M序列相位编码应用M序列相位编码在数字通信中有广泛的应用,包括以下方面: - 调制技术:M序列相位编码可以用于调制技术中,将数字信息转换为相位信号,用于传输。
- 数据加密:M序列具有良好的自相关性和互相关性,可用于数据加密和解密。
- 通信系统测试:M序列相位编码可以用于测试通信系统的性能和稳定性。
6. 总结M序列相位编码是一种常用的数字通信编码技术,利用M序列将数字信息转换为相位信号。
M序列具有良好的自相关性和互相关性,适用于相位编码。
M序列相位编码在调制技术、数据加密和通信系统测试等方面有广泛的应用。
ovsf码生成简便算法随着无线通信技术的不断发展,ovsf码作为一种关键技术已经被广泛应用于3G和4G移动通信系统中。
ovsf码生成是ovsf码的一项重要环节,本文将介绍一种简便的ovsf码生成算法,以帮助读者更好地理解和应用ovsf码。
一、ovsf码简介ovsf码(Orthogonal Variable Spreading Factor)是一种用于码分多址(CDMA)系统中的扩频码。
它的主要作用是将用户数据与扩频码进行乘积运算,从而将用户信号分散到整个频带上,以实现多用户之间的隔离和并行传输。
二、ovsf码生成原理ovsf码的生成基于一个称为ovsf码生成多项式的特殊多项式。
该多项式的系数是由ovsf码长度和ovsf码因子决定的。
通过在多项式中选择不同的系数,可以生成不同的ovsf码。
三、传统的ovsf码生成算法传统的ovsf码生成算法通常基于查找表。
该算法需要提前生成一张庞大的ovsf码表,然后根据用户需要从表中查找相应的ovsf码。
这种算法的缺点是计算量大,占用内存大,不适用于资源受限的移动设备。
四、简便的ovsf码生成算法为了解决传统算法所面临的问题,研究人员提出了一种简便的ovsf 码生成算法。
该算法基于ovsf码生成多项式的特殊性质,通过一系列简单的运算即可生成所需的ovsf码。
具体而言,简便的ovsf码生成算法包括以下步骤:1. 初始化:设定ovsf码的长度和ovsf码因子,创建一个长度为ovsf码长度的初始序列。
2. 生成ovsf码:根据ovsf码生成多项式的特殊性质,通过一系列位移和异或运算,逐步更新初始序列,直到生成完整的ovsf码。
这种算法的优点是计算量小,占用内存小,适用于资源受限的移动设备。
同时,该算法还具有较好的扩展性,可以根据需要生成不同长度和因子的ovsf码。
五、ovsf码生成算法的应用ovsf码生成算法在实际应用中有着广泛的应用。
在3G和4G移动通信系统中,ovsf码被用于用户信号的扩频和解扩。
移网基站设备技能竞赛一:判断题(每道1分,共30分)(对的打√,错的打×)1.现阶段要求LTE的RRU使用光模块是1.25G,传输使用光模块是4.9G(F )2.LTE系统业务包括CS域和PS域业务。
( F )3.LBBP/UBBP板应该优先安装在BBU框的3号槽位( T )4.BBU主控面板指示灯中RUN灯0.125s 亮,0.125s 灭表示单板处于故障状态。
( F )5.引入DRX的目的是UE节电。
( T )6.初始随机接入失败后,终端可以提升发射功率,继续发起随机接入过程。
(T )7.S1-U接口上使用GTP-U协议,S1-MME接口上使用S1AP协议。
( T )8.LTE多天线技术包括MIMO、分集技术、以及波束赋形。
( T )9.LTE当中的循环前缀CP的长度有且只有一种。
( F )10.LTE系统定义的最小资源单位是RE。
( T )11.LTE系统常规CP长度时每时隙含6个OFDM符号。
( F )7个12.用户面流量合法监听可以在MME上完成。
( F )SGW13.S1-AP协议使用在S1-MME接口之上。
( T )14.采用小区间干扰抑制技术可提高小区边缘的数据率和系统容量等。
( T )15.功率控制的一个目的是通过动态调整发射功率,维持接收端一定的信噪比,从而保证链路的传输质量。
( T )16.MU-MIMO能够提高单用户的吞吐率,而SU-MIMO能够提高小区平均吞吐率。
( F )17.eNB之间通过X2接口进行通信,可进行小区间优化的无线资源管理。
( T )18.E-UTRA系统达到的峰值速率与UE侧没有关系,只与ENB侧有关系( F )( F )19.S1 接口可以被分成两个参考点。
S1-C用于业务数据流, S1-UP 用于控制平面协议。
20.修改PCI参数,可能引起短暂的小区退服。
( T )21.目前LTE所有类型的UE都支持64QAM。
( F )22.LTE小区的系统带宽会在物理层广播信道(PBCH)中广播。
M序列产生及其特性仿真实验报告一、三种扩频码序列简介1.1 m序列它是由多级移位寄存器或其他延迟元件通过线性反馈产生的最长的码序列。
m序列的特性1、最长周期序列:N=2n-12、功率平衡性:‘1’的个数比‘0’的个数多13、‘0’、‘1’随机分布:近似高斯噪声4、相移不变性:任意循环移位仍是m序列,仅初相不同5、离散自相关函数:‘0’->+1,‘1’->-11.2 Gold序列Gold序列是两个等长m序列模二加的复合序列两个m序列应是“优选对”特点:1、包括两个优选对m序列,一个Gold序列族中共有2n+1个Gold序列2、Gold序列族中任一个序列的自相关旁瓣及任意两个序列的互相关峰值均不超过两个m序列优选对的互相关峰值1.3OVSF序列又叫正交可变扩频因子,系统根据扩频因子的大小给用户分配资源,数值越大,提供的带宽越小,是一个实现码分多址(CDMA)信号传输的代码,它由Walsh函数生成,OVSF码互相关为零,相互完全正交。
OVSF序列的特点1、序列之间完全正交2、极适合用于同步码分多址系统3、序列长度可变,不影响正交性,是可变速率码分系统的首选多址扩频码4、自相关性很差,需与伪随机扰码组合使用二、三种扩频码序列产生仿真一、M序列的产生代码:X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(0101), Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0U(i)=-1;elseU(i)=Y4;endendM=U%绘图i1=ik=1:1:i1;plot(k,U,k,U,'rx')xlabel('k')ylabel('M序列')title('移位寄存器产生的M序列')用阶梯图产生表示:X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(0101),Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0U(i)=-1;elseU(i)=Y4;endendM=U%绘图stairs(M);二、GOLD序列的产生:M序列A的生成:X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(1010), Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0A(i)=0;elseA(i)=Y4;endendM=A%绘图i1=ik=1:1:i1;plot(k,A,k,A,'rx')xlabel('k')ylabel('M序列')title('移位寄存器产生的M序列')M序列B的生成:X1=0;X2=1;X3=0;X4=1; %移位寄存器输入Xi初T态(0101), Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0B(i)=0;elseB(i)=Y4;endendN=B%绘图i1=ik=1:1:i1;plot(k,B,k,B,'rx')xlabel('k')ylabel('M序列')title('移位寄存器产生的M序列') 生成gold序列:c=xor(A,B);stairs(c);三、OVSF序列的产生:%Function [OVSF_Codes]=OVSF_Generator(Spread_Fator,Code_Number)%Code_Number=-1 表示生成所有扩频因子=Spread_Factor的ovsf码Code_Number=-1;Spread_Fator=8;OVSF_Codes=1;if Spread_Fator==1return;endfor i=1:1:log2(Spread_Fator)Temp=OVSF_Codes;for j=1:1:size(OVSF_Codes,1)if j==1OVSF_Codes=[Temp(j,:),Temp(j,:) Temp(j,:),(-1)*Temp(j,:)];elseOVSF_Codes=[OVSF_Codes Temp(j,:),Temp(j,:) Temp(j,:),(-1)*Temp(j,:)];endendend%if Code_Number>-1% OVSF_Codes=OVSF_Codes((Code_Number+1),:);%endfigure(3)[b4,t4]=stairs([1:length(OVSF_Codes)],OVSF_Codes); plot(b4,t4);axis([0 130 -1.1 1.1]);title('OVSF序列')三、三种扩频码序列特性仿真(一)M序列自相关函数X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(0101), Yi为移位寄存器各级输出m=2^8-1; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0U(i)=-1;elseU(i)=Y4;y = xcorr(U);stairs(y);end互相关函数:输入两个m序列clcclear allclose allm1 = [0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1] m2 = [1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1]y = xcorr(m1,m2,'unbiased');stairs(y)(二)Gold码的自相关函数x2=[(2*c)-1];%将运行结果Gold序列c从单极性序列变为双极性序列y1=xcorr(x2,'unbiased');%求自相关性stairs(y1);gridxlabel('t')ylabel('相关性')title('移位寄存器产生的Gold序列的相关性')互相关性gold序列和m序列的互相关性y1=xcorr(c,m1,'unbiased'); stairs(y1);(三)ovsf码的互相关和自相关a=[1 -1 1 1 -1 1 -1 -1];b=[1 -1 -1 1 1 -1 -1 1];P=length(a);%求序列a的自相关函数Ra(1)=sum(a.*a);for k=1:P-1Ra(k+1)=sum(a.*circshift(a,[0,k])); end%求序列b的自相关函数Rb(1)=sum(b.*b);for k=1:P-1Rb(k+1)=sum(b.*circshift(b,[0,k])); end%求序列a和b的互相关函数Rab(1)=sum(a.*b);for k=1:P-1Rab(k+1)=sum(a.*circshift(b,[0,k])); endx=[0:P-1];figure(9)subplot(3,1,1);stem(x,Rab);ylabel('a和b的互相关函数');axis([0 P-1 -10 12]);grid;xlabel('偏移量');subplot(3,1,2);stem(x,Ra);ylabel('a自相关函数');xlabel('偏移量');%axis([0 P-1 -5 30]);subplot(3,1,3);stem(x,Rb);%plot(x,Rb)xlabel('偏移量');ylabel('b的自相关函数');四、总结一、M序列自相关函数近似于冲激函数的形状,不同序列间的互相关特性一致性不好。