第17章 教师用书 勾股定理
- 格式:doc
- 大小:91.50 KB
- 文档页数:2
目录
第十七章勾股定理
17.1勾股定理/2
第1课时勾股定理/3
第2课时勾股定理的应用(1)/5
第3课时勾股定理的应用(2)/7 17.2勾股定理的逆定理/8
第1课时勾股定理的逆定理(1)/8
第2课时勾股定理的逆定理(2)/10
第十七章勾股定理
已知:在Rt△ABC a,b,c分别为∠求证:a2+b2=c2.
续表
做八个全等的直角三角形和分别以
提问:①这两个图形分别是什么图形
②这两个图形的面积相等吗
③如何利用这两个图形证明
板书设计
勾股定理
一个门框的尺寸如图所示
(1)若有一块长
(2)若有一块长
(3)若有一块长
续表
板书设计
勾股定理的应用(1)一、导入
小结:通过添加辅助线
【例2】已知:
小结:当两个直角三角形有公共边时法称为双勾股.
(A)4 (B)8 (C)16
3.已知矩形ABCD
DE的长.
板书设计
勾股定理的应用(2)
在数轴上画出表示错误!未找到引用源。
利用辅助线构造直角三角形
探究:在如图中,△ABC的三边长
直角边是a,b的直角三角形全等
C'=90°,A'C'=b,B'C'=a.把画好的△
手操作,教师巡视指导)
续表
如图,在我国沿海有一艘不明国籍的轮船进入我国海域
距13海里的A,B
航行120海里,乙巡逻艇每小时航行
一根12米的电线杆
B,C两点之间距离是
3.
如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜以便计算一下产量
B=90°.你能够计算这块地的面积吗。
《勾股定理》教学设计拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了。
原来,他发现了地砖上的三个正方形存在某种数学关系。
教学过程流程教学活动教师与学生行为教学效果预估与对策设计意`图(二)自主探索,合作交流探究活动1:问题1:你能发现下图中三个正方形面积之间有怎样的关系?问题2:下图中的各组图形面积之间都有上述的结果吗?对于问题(2)、(3)教师给学生足够的思考时间,然后让学生交流合作,得出结论。
问题(3)可让学生在自己准备好的小方格上画出,并计算A、B、C三个正方形的面积,用字母表示三个正方形面积之间的数对等腰直角三角形三边性质的探索,学生们探究欲望会很强烈,小组交流想法也会达成共识,对于验证三个正方形面积之间的关系,在方法上会各通过设计问题串,让探索过程由浅入深,循序渐进。
经历观察、猜想、归纳这一数学学习过程,符合学生认知规律。
探索面积证法的多问题3:你能用等腰直角三角形的边长表示正方形的面积吗?由此猜想等腰直角三角形三边有怎样的关系?量关系,进而发现了等腰直角三角形三边的特殊关系。
并在小组内交流,教师适当引导,深入学生当中,倾听他们的想法。
有千秋。
教师同时辅之多媒体的动态演示,使教学效果更直观,利于学生接受,顺利突破难点。
样性,体现数学解决问题的灵活性,发展学生的合情推理能力。
教学过程流程教学活动教师与学生行为教学效果预估与对策设计意图(二)自主探索,合作交流探究活动2(课本P23):做一做:问题1:请分别计算出图中正方形A、B、C的面积,看看能得出什么结论?问题2:如果用a,b,c分别表示三个正方形的边长,三者之间的面积关系如何表示?由三个正方形所搭成的直角三角形三边存在怎样的关系?教师观察学生活动,指导与合作,让学生充分发表自己的见解,暴露他们的思维过程。
计算正方形C的面积不易求根据探索等腰直角三角形三边关系过程,学生在对探讨一般直角三角形三边性质有了一定基础。
计算正方形C的面积利用分割法和把它看做边长是整数的大正方形面积的一半很容易想到,但拼凑法会有一定困此环节设计让学生动手画一画,算一算,充分利用计算面积的不同方法,进一步体会数形结合思想,让学生经历从特殊到一般的过程,体会事物由特殊到一般的出,教师及时点拨,同时借助多媒体动态演示。
第十七章 勾股定理17.1 勾股定理1、勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222a b c += 勾股定理的证明:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ ∴222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证17.2 勾股定理的逆定理2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=,那么这个三角形是直角三角形.3、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.4、勾股数:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数常见的勾股数有:3、4、5;6、8、10;5、12、13;7、24、25等 例、在Rt △ABC 中,a=3,b=4,求c .错解由勾股定理,得bacbac cabcab cbaHG F EDCBAa bccbaE D CBA诊断这里默认了∠C为直角.其实,题目中没有明确哪个角为直角,当b>a时,∠B可以为直角,故本题解答遗漏了这一种情况.当∠B为直角时,例、已知Rt△ABC中,∠B=RT∠,,c= b.错解由勾股定理,得诊断这里错在盲目地套用勾股定理“a2+b2=c2”.殊不知,只有当∠C=Rt∠时,a2+b2=c2才能成立,而当∠B=Rt∠时,则勾股定理的表达式应为a2+c2=b2.正确解答∵∠B=Rt∠,由勾股定理知a2+c2=b2.∴例、若直角三角形的两条边长为6cm、8cm,则第三边长为________.错解设第三边长为xcm.由勾股定理,得x2=62+82.=10即第三边长为10cm.诊断这里在利用勾股定理计算时,误认为第三边为斜边,其实题设中并没有说明已知的两边为直角边,∴第三边可能是斜边,也可能是直角边.正确解法设第三边长为xcm.若第三边长为斜边,由勾股定理,得=10(cm)若第三边长为直角边,则8cm长的边必为斜边,由勾股定理,得=(cm)因此,第三边的长度是10cm或者例、如图,已知Rt △ABC 中,∠BAC=90°,AD 是高,AM 是中线,且AM=12BC=233AD.又RT △ABC的周长是(6+23)cm.求AD .错解 ∵△ABC 是直角三角形, ∴AC:AB:BC=3:4:5 ∴AC ∶AB ∶BC=3∶4∶5.∴AC=312(6+23)=332+,AB=412(6+23)=6233+,BC=512(6+23)=15536+又∵12AC AB •=12BC AD • ∴AD=AC AB BC •=336232315536++⨯+ =(33)2(33)5(33)+•++=25(3+3)(cm) 诊断 我们知道,“勾三股四弦五”是直角三角形中三边关系的一种特殊情形,并不能代表一般的直角三角形的三边关系.上述解法犯了以特殊代替一般的错误.正确解法∵AM=233AD ∴MD=222(3)3AD AD -=33AD 又∵MC=MA ,∴CD=MD . ∵点C 与点M 关于AD 成轴对称. ∴AC=AM ,∴∠AMD=60°=∠C .∴∠B=30°,AC=12BC ,AB=32BC∴AC+AB+BC=12BC+32BC+BC=6+23.∴BC=4.∵12BC=233AD,∴AD=12233BC=3(cm)例、在△ABC中,a∶b∶c=9∶15∶12,试判定△ABC是不是直角三角形.错解依题意,设a=9k,b=15k,c=12k(k>0).∵a2+b2=(9k)2+(15k)2=306k2,c2=(12k)2=144k2,∴a2+b2≠c2.∴△ABC不是直角三角形.诊断我们知道“如果一个三角形最长边的平方等于另外两边的平方和,那么这个三角形是直角三角形”.而上面解答错在没有分辨清楚最长边的情况下,就盲目套用勾股定理的逆定理.正确解法由题意知b是最长边.设a=9k,b=15k,c=12k(k>0).∵a2+c2=(9k)2+(12k)2=81k2+144k2=225k2.b2=(15k)2=225k2,∴a2+c2=b2.∴△ABC是直角三角形.例、已知在△ABC中,AB>AC,AD是中线,AE是高.求证:AB2-AC2=2BC·DE错证如图.∵AE⊥BC于E,∴AB2=BE2+AE2,AC2=EC2+AE2.∴AB2-AC2=BE2-EC2=(BE+EC)·(BE-EC)=BC·(BE-EC).∵BD=DC,∴BE=BC-EC=2DC-EC.∴AB2-AC2=BC·(2DC-EC-EC)=2BC·DE.诊断题设中既没明确指出△ABC的形状,又没给出图形,因此,这个三角形有可能是锐角三角形,也可能是直角三角形或钝角三角形.∴高AE既可以在形内,也可以与一边重合,还可以在形外,这三种情况都符合题意.而这里仅只证明了其中的一种情况,这就犯了以偏概全的错误.剩下的两种情况如图所示.正确证明由读者自己完成.例、已知在△ABC中,三条边长分别为a,b,c,a=n,b=24n-1,c=244n+(n是大于2的偶数).求证:△ABC是直角三角形.错证1∵n是大于2的偶数,∴取n=4,这时a=4,b=3,c=5.∵a2+b2=42+32=25=52=c2,∴△ABC是直角三角形(勾股定理的逆定理).由勾股定理知△ABC是直角三角形.正解∵a2+b2=n2+(24n-1)2=n2+416n-22n+1=416n+22n+1c2=(244n+)2=(214n+)2=416n+22n+1由勾股定理的逆定理知,△ABC是直角三角形. 诊断证明1错在以特殊取代一般.。
第17章勾股定理评价建议与测试题一.选择题(共4小题)
A. 2
B.
1
2
+ C. 1 D.
1
2
+
6.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,
2
7.命题“在同一个三角形中,等边对等角”的逆命题是
,是(填“真命题”或“假命题”)
8.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.9.三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三边是.10.如图,一根长18cm的牙刷置于底面直径为5cm.高为12cm圆柱形水杯中,牙刷露在水杯外面的长度hcm,则h的取值范围是.
第1页(共2页)
三.解答题(共5小题)
11.在Rt△ABC中,∠C=90°.
(1)已知c=25,b=15,求a;
(2)已知a=,∠A=60°,求b、c.
12.如图,在4×3正方形网格中,每个小正方形的边长都是1
(1)分别求出线段AB、CD的长度;
(2)在图中画线段EF、使得EF 的长为,以AB、CD、EF三条线段能否构成直角三角形,并说明理由.
13.如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图(2)是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形。
(1)画出拼成的这个图形的示意图
(2)用这个图形证明勾股定理;
14.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.
(1)如图(1),如果点B′和顶点A重合,求CE的长;
(2)如图(2),如果点B′和落在AC的中点上,求CE的长.
第2页(共2页)。