苯加氢制环己烷工艺报告结果(word 文档)
- 格式:doc
- 大小:278.00 KB
- 文档页数:7
(大作业)苯加氢制环己烷工艺过程模拟
苯加氢制环己烷工艺过程模拟
环己烷采用苯加氢合成,反应方程式为:C6H6 + 3H2→ C6H12。
苯和氢气进料流股与循环的氢气与环己烷组合构成进入固定床反应器的进料流股,假设苯的转化率为99.8%。
反应器出料流股冷却,气相轻组分作为循环氢返回反应器。
液相产品进入精馏塔进一步去除溶解的气相轻组分,可以稳定最终的产品,其余部分循环到反应器有利于反应温度控制。
需要解决的问题:
1、采用Microsoft Visio软件将工艺流程图画出来,设备图符不一定和题目一致。
2、采用Aspen Plus模拟软件将上述过程模拟出来。
模拟时,苯进料量数值为“班级+学号”,氢气进料量为苯进料量的3.3倍。
如5班01号的苯进料量为501 kmol/h,氢气进料量为3×501=1503 kmol/h。
其他条件与模拟流程图相同。
3、并采用敏感性分析,LFLOW的循环分流比在0.1~0.4范围变化,画出REACT 热负荷的随之变化的影响规律图。
并用Origin软件将分析结果画出来。
作业要求:
1、提交Visio流程图、Aspen Plus模拟和Origin作图的源文件。
(VSD、BKP和OPJ格式)
2、所有结果整理成WORD文档,打印纸质版,同时提交WORD 源文档。
3、所有电子文档以压缩文件提交,格式:学号+姓名.RAR。
苯加氢制环己烷工艺流程
《苯加氢制环己烷工艺流程》
苯加氢制环己烷是一种重要的工业化学反应,其工艺流程经过多年的实践和改进已经被广泛应用。
苯加氢制环己烷的工艺流程主要包括苯的氢化反应、分离和净化过程。
首先,苯加氢的反应过程需在合适的催化剂作用下进行。
常用的催化剂包括氧化铜、氧化铝和铬氧化物等。
在高温高压的条件下,苯与氢气发生氢化反应,生成环己烷。
此过程需控制反应温度和压力,以提高反应的选择性和产率。
其次,反应产物需要进行分离和净化。
由于苯加氢过程中会生成多种副产物,如环己酮、甲苯和乙酮等,因此需要通过分馏、萃取和结晶等方法对产物进行分离和净化,以获得高纯度的环己烷。
在工艺流程中,还需要考虑催化剂的再生和废物处理等环境问题。
催化剂的再生是通过热法或化学洗涤等方式来回收和重复利用催化剂,以降低成本和减少环境污染。
废物处理则需要对反应废水和废气进行处理,符合环保的要求。
总的来说,苯加氢制环己烷的工艺流程经过多年的研发和实践,已经相对成熟并得到广泛应用。
随着技术的不断进步和环保要求的提高,未来还会有更多的改进和创新,使这一工艺流程更加高效和环保。
苯加氢制环己烷范文一、反应机理1.氢气在催化剂的作用下发生活化,生成活性氢原子;2.活性氢原子进入苯分子的π电子云中,与苯分子发生加成反应,生成环己烷分子。
二、反应条件1.反应温度:反应温度是影响反应速率的重要因素。
一般来说,反应温度越高,反应速率越快,但同时也伴随着产物的选择性下降。
在苯加氢制环己烷反应中,一般选择适中的反应温度,常见范围为150-300℃。
2. 反应压力:反应压力是控制反应平衡的重要条件。
一般来说,反应压力越高,反应平衡向产物的转化率越高,但同时也会伴随着催化剂的选择性下降。
一般苯加氢制环己烷反应的反应压力为10-50 atm。
3.反应时间:反应时间是指反应体系经过一定时间后达到平衡状态的时间。
一般来说,反应时间较长,可以使反应达到更高的转化率和选择性。
在工业生产过程中,一般选择反应时间为几小时至几十小时。
三、催化剂的选择催化剂是苯加氢制环己烷反应中的关键因素,它能够提高反应速率和选择性。
常见的催化剂有金属催化剂和非金属催化剂两类。
1.金属催化剂:常见的金属催化剂有镍、铂、铑、钯等。
金属催化剂的选择应考虑其活性、稳定性和成本等因素。
其中,铂催化剂具有较高的活性和稳定性,广泛应用于苯加氢制环己烷反应中。
2.非金属催化剂:常见的非金属催化剂有硅胶、氧化锌、活性炭等。
非金属催化剂的选择应考虑其吸附能力、分散性和再生性等因素。
其中,硅胶催化剂具有较高的吸附能力和选择性,被广泛应用于苯加氢制环己烷反应中。
四、工业应用1.环己烷制备:苯加氢制环己烷是制备环己烷的主要方法之一、环己烷是一种重要的溶剂,广泛应用于合成橡胶、石油、塑料等行业。
2.环己烯制备:环己烷可以通过去氢反应制备环己烯。
环己烯是一种重要的有机合成中间体,可用于制备药物、农药、染料和橡胶等化学品。
3.环己醇制备:环己烷可以通过氧化反应制备环己醇。
环己醇是一种重要的有机溶剂和中间体,广泛用于制备染料、塑料和橡胶等产品。
综上所述,苯加氢制环己烷是一种重要的化学反应,其反应机理、反应条件、催化剂的选择以及工业应用都具有重要意义。
四、苯加氢制环己烷环己烷主要占总产量90%以上用来生产环己醇、环己酮及己二酸,后三者是制造尼龙-6和尼龙-66的重要原料;环己烷还用作树脂、油脂、橡胶和增塑剂等的溶剂;用作尼龙原料的高纯度的环己烷主要由苯加氢制得;工业上苯加氢生产环己烷有气相法和液相法两种;虽然美国杜邦公司早已开发成功气相加氢工艺,但大多数工厂仍采用液相加氢工艺,例如美国的Uop公司,法国石油研究所IFP等;气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,投资费用比液相法高;1.反应原理1化学反应在反应条件下,苯与氢可能发生下面各种反应:+nH2→C+CH44反应1若为气相法固定床,用还原Ni作催化剂,反应温度为65~250℃,压力0.5~3.5MPa;若为液相加氢,采用骨架镍或还原Ni为催化剂,反应温度为160~220℃,压力2.7MPa左右,环己烷收率在99%以上;反应2和4在250℃左右的低温下不显着,它们可能是由第Ⅷ族金属催化的氢解型机理引起的,也可能是由双功能催化剂的加氢裂解型机理引起的;双功能催化剂为具有加氢催化活性的某些金属如Pt,Pd或Ni负载在酸性载体SiO2或SiO2/Al2O3上构成,在载体上往往存在强酸中心,它对反应2和4有明显促进作用;因此,选择非酸性载体可以避免这种加氢裂解作用;反应3是环己烷的异构化,它往往被酸催化,在200℃下,异构化反应达到平衡时环己烷生成甲基环戊烷的转化率为68%,将温度升高到300℃时其转化率达83%,因此也必须选择不会引起这种异构化反应的催化剂;在镍催化剂上,250℃时才开始产生甲基环戊烷;2热力学平衡由反应1可知,苯加氢生成环己烷的反应是一个放热的体积摩尔数缩小的可逆反应;在127℃时的平衡常数为7×107,在227℃时为1.86×102;氢压和温度对环己烷中苯的平衡浓度的影响示于图3-2-18;由图3-2-18可见,低温和高压对反应是有利的;相反,反应2和4则受到抑制;环己烷异构化反应是一个等摩尔反应,压力对反应影响不大;温度对反应3平衡的影响示于图3-2-19;由图3-2-19可知,甲基环己烷的平衡浓度随温度的提高而上升;为抑制这一副反应,也要求催化剂在较低温度下就有高的苯加氢活性,而且在催化剂上不存在酸性中心;3催化剂和催化机理对苯加氢有催化活性的金属有:Rh,Ru,Pt,W,Ni,Fe,Pd和Co等;常用金属按活性排列为:Pt>Ni>Pd加氢活性的比例为:K Pt:K ni:K Pd=18:7:1这表明铂的活性比镍高2.6倍;但铂的价格为镍的几百倍,因此选择镍作为催化剂活性组分更经济;如前所述,苯加氢有气相和液相两种方法,对液相加氢而言,要求催化剂是细微颗粒粉末,粒度为20~100μm,能悬浮在反应液中进行液-固相加氢反应;考虑到反应要求低温高活性,而且苯环加氢比烯,炔加氢困难,工业上都选用骨架镍催化剂;用这种催化剂在3.5MPa的压力和不产生副反应的温度200℃下,反应速率很容易达到每克镍每分钟转化0.15mol苯的水平;骨架镍催化剂的制备过程为:先由镍和铝重量比为1在1500~1600℃下制成镍铝合金,然后研磨至粒度为0.04~0.25mm,再用氢氧化钠浸出铝,最后经洗涤和干燥得到高活性,多孔和高强度的骨架催化剂;由于活性高,在空气中极易自燃,故一般将它浸在乙醇中出售或经表面钝化处理变成不自燃的干燥粉末后出售;成品为黑色粉末,镍含量为65%,松密度为2.4g/cm3;苯的气相加氢催化剂为负载型Ni催化剂,要求载体有足够的强度承受工业条件下的机械应力,有足够的比表面积和适宜的孔径分布,能负载足够数量的镍盐氧化镍;此外,还要求载体对副反应没有催化活性;符合上述条件,工业上应用的载体有高纯度氧化铝球Φ2~4mm,SiO2和硅藻土等,比表面积210m2/g,松密度0.91g/cm3,孔隙度0.4cm3/g;现在,工业上应用较多的液相催化剂牌号为法国的NiPS2,气相催化剂牌号为法国的LD143催化剂,它们都是由法国石油研究所IFP开发成功;除上述镍催化剂外,也有采用Ni-Pd催化剂,硫化镍和硫化钯催化剂;硫化物催化剂虽然不怕原料苯中硫化物的毒害,但要求高温450℃和高压31.0MPa;关于催化加氢反应机理,即使像乙烯加氢这样一个简单的反应,认识也不一致;分岐主要集中在①氢是否也发生化学吸附;②作用物在催化剂表面是发生单位独位吸附还是多位吸附;③氢与吸附在催化剂表面的作用物分子是怎样反应的;以苯加氢生成环己烷为例,就提出了两种不同的机理,一种认为苯分子在催化剂表面发生多位吸附,形成,然后发生加氢反应,生成环己烷;近年来又提出了另一种观点,认为苯分子只与催化剂表面一个活性中心发生化学吸附即独位吸附,形成π-键合吸附物,然后吸附的氢原子逐步加到吸附的苯分子上,即上述二种反应机理,还留待进一步实验验证;4反应动力学Louvain的动力学学派专门研究过在镍催化剂上苯加氢的反应动力学;研究表明,在骨架镍催化剂催化下,苯在高压、液相、温度低于200℃下加氢,苯转化率从低升至90%以上,反应对苯为零级,当转化率在95%以上时,对苯的反应级数变得接近于1;对氢而言,在所研究的压力范围内对氢为零级反应;实验结果示于图3-2-20;这一实验结果可用苯和氢之间的非竞争吸附来解积,并可用下列速率方程式表示:图3-2-20液相苯加氢反应动力学级数的实验测定式中:b B—苯的吸附系数;b c—环己烷的吸附系数C B—苯的浓度;Cc—环己烷的浓度;PH2—氢分压.直到转化率为90%都观察到对苯为零级反应这一现象说明苯在催化剂上强烈吸附,在0~90%这一范围内r等于k,活化能接近54.36kJ/mol;对芳烃在高转化率下的反应级数还没有确切的解释;有可能是因为,在苯浓度很低时,b B C B项与1+bcCc相比变得可以忽略不计,也有可能是因为扩散阻力造成的;对气相催化加氢,经实验测定,有如下动力学方程:r=kp0.5H2反应温度<100℃r=kp0.5苯p3H2反应温度>200℃上列第二式表明,当反应温度大于200℃,氢压的变化对反应速度十分敏感;2.工艺条件的选择1原料的精制原料氢气可来源于合成气,石脑油催化重整气,石油烃蒸气热裂解气以及甲苯烷基化装置来气体,其中的氢含量可在57%~96%之间波动;原料氢气中水和CO会使催化剂中毒,可通过甲烷化让CO转变为对催化剂无毒害的甲烷;接着进行干燥以除去由甲烷化产生的水分;要求水分不得超过反应温度下水在环己烷中的溶解度,若超过,产生的游离水会导致催化剂聚结和失活;氢气中的硫主要是H2S太高,如超过5ul·l-1,则也要用碱液吸收精制方可投入装置使用;苯中的硫化物含量要严格控制,在反应条件下,硫化物会与催化剂反应,生成镍的硫化物和硫醇盐,例如,就噻吩而言,有下面的反应:镍的硫醇盐和镍的硫化物都没有活性;当镍吸附其重量的0.5%~2%的硫时,就会完全失活;为保护催化剂的活性,延长催化剂的使用寿命要求原料苯中硫含量小于5ul·l-1;2反应温度液相加氢反应温度控制在180~200℃,气相加氢反应温度稍高,采用贵金属催化剂和列管式反应器时为220~370℃,采用绝热式反应器和镍催化剂时为200~350℃;在上述温度范围内,催化剂已具有足够快的反应速度,而副反应则不十分明显;3操作压力液相法一般维持在2.0~3.0MPa,以保证主反应器中液相的稳定;在此压力下,由液相蒸发带走的反应热约占总反应热的20%,其余80%由器外换热器移走;气相法操作压力为3.0~3.5Mpa;4空速IFP的NiPS2骨架镍催化剂性能优良,在硫含量为1ppm时,1kg镍可以加氢10t苯,在重量空速WHSV为5的条件下操作,不添加新鲜催化剂的周期寿命可长达2000h;苯的转化率在反应开始时可达99.99%,周期末降至95%;3.CST反应器在苯加氢工艺中的应用气相法有列管式和绝热式两种;液相法,例如IFP法苯加氢工艺采用二个化学反应器;主反应器选用连续搅拌槽式CST反应器;为使催化剂很好的悬浮在反应液中,并使反应热用器外换热器及时移走,除采用氢气鼓泡外,反应液还用泵在换热器和反应器之间作强制循环,以保持固-液-气三相的良好接触;采用CST反应器的优点是可以利用自体致冷作用排除反应热,反应温度也容易控制,不足之处是它属全返混流反应器,转化率不可能很高;由前述反应原理可知,当转化率在95%以下时,反应对苯为零级,此时反应速度很快,对CST反应器,转化率达到95%以上并非难事,再加上它有上述优点,因此选用它作为液相加氢反应器是合适的;工业级环己烷要求苯含量小于1000ug·g-1,即环己烷纯度在99.9%以上;因此,除CST图3-2-21IFP苯加氢工艺的方块图图3-2-22海德拉法流程图图3-2-23IFP法苯加氢生产环己烷工艺流程图反应器外,还需增设一台反应器对反应液作进一步加氢处理;此时若再增设一台CST反应器显然不合适,所需设备多,反应时间长而且转化率达到99.9%以上仍有一定难度;比较合适的是增设一台称之为精制反应器的气相加氢反应器,它属活塞流反应器,转化率可以很高,由于加氢负荷小只有5%的苯,使用催化剂量少,设备也可做得较小;此外,从观察小反应器中温度的变化还可发现主反应器催化剂活性是否正常,若催化剂失活严重,精制反应器因加氢负荷明显增高,温度会迅速上升;图3-2-21示出了IFP法工艺的方块图;由图3-2-21可知,氢气中的CO经甲烷化反应,脱除率可达97%以上CO残留量为300ul·l-1;环己烷经精制反应器后,其中的苯约为20ug·g-1;ul·l-14.工艺流程1气相法工艺流程气相法有贝克森法、HA-84法、海德拉法、霍德赖法等,其中海德拉法是现有的苯加氢方法中第一个工业化的方法;图3-2-22为海德拉法流程简图;采用三个绝热反应器;反应热通过在反应器间设置的冷却器消除图中末画出,原先采用铂催化剂,以锂盐为助催化剂,后来自行研制出镍催化剂;铂催化剂抗硫性能好,允许苯中硫化物的硫含量达300ul·l-1,但价格昂贵;反应温度200~350℃,为保证苯的高转化率,最后一台反应器出口温度应保持在275℃以下;n氢/n苯通过循环保持在2∶1时,反应器的压力保持在3.0MPa左右,气体每间隔一段时间须放空,务必使系统中气体的氢含量始终保持在30%以上;2液相法工艺流程图3-2-23示出了IFP 法苯加氢生产环己烷工艺流程;进料中氢与苯的克分子比为3.5∶1或更大,以环己烷计的收率在99%以上;。
3苯加氢制环己烷环己烷是一种重要的有机化工原料,主要用于生产环己醇、环己酮、聚己内酰胺和聚己二酰己二胺等产品,是纤维素醚、树脂、蜡、沥青和橡胶的优良溶剂。
环己烷可以从环烷基原油所得的汽油馏分中提取,但产量有限,纯度不高,要值得99.9%以上的环己烷相当困难。
3.1工艺现状工业生产中,环己烷的生产方法分为苯加氢法和石油烃馏分的分馏精制法。
苯加氢法是环己烷的主要生产方法,可分为液相法和气相法。
常用的催化剂有Pt、Pd和Ni等。
3.1.1气相法苯加氢制备环己烷氢气和苯混合后送入热交换器加热蒸发呈气相,氢气和苯的物质的量比为3.5~8。
混合气体在200~250℃下通入装有具有高温特性催化剂的第一段多管反应器,再在160℃左右通入装有低温特性催化剂的第二段多管反应器,反应热用管外冷却剂吸收除去。
反应产物经冷凝后,经分离器除去未反应氢气即得产品环己烷。
气相苯加氢工艺特点是,气相苯加氢工艺混合均匀,转化率和收率均很高,但反应激烈,易出现“飞温”现象,操作上不易控制。
气相加氢采用固定床,工艺相对简单,投资相对较小,适合于小规模环己烷生产企业采用,应用厂家较多;对氢气纯度要求较低,随着国产催化剂的进步,副产蒸汽压力已经有较大提高,产品质量有明显提高。
气相苯加氢法典型工艺有:贝克森法(Bexane)、美国阿科(ARCO)、UOP、霍德赖法(Houdry)和海德拉法(Hytoray)法等。
3.1.2液相法苯加氢制备环己烷氢气经甲烷化和干燥之后与苯分别进入装有镍催化剂的主反应塔中,借助于泵的循环作用,使固体催化剂保持悬浮状态,并用换热器除去反应热,同时生成低压蒸汽,苯几乎可完全加氢。
从主反应塔出来的反应产物再通入装有镍催化剂的固定床补充反应塔,补充反应塔流出物经冷凝后在高压分离塔进行闪蒸,闪蒸气体可循环回主反应塔,闪蒸液送稳定塔,从稳定塔塔顶除去氢气和其他的溶解气体,塔底产物即为产品环己烷。
液相苯加氢工艺特点是,液相苯加氢工艺相比气相而言,反应稳定、缓和,转化率和收率也很高,副产蒸汽压力相对较高,但液相反应必须有后反应,能耗也较高,液相反应的氢气利用率仅为85%。
苯加氢工艺流程 doc
苯加氢是石油化工中的一种重要生产工艺,可以将苯转化为环己烷、甲基环己烷等烷
基化产品。
本文将介绍苯加氢的工艺流程及反应条件。
一、原料准备
苯加氢的原料是苯和氢气,一般苯的纯度要求在99%以上,氢气的纯度在99.9%以上。
二、反应器
苯加氢反应器通常采用固定床反应器,反应器内填充着催化剂。
催化剂有铂、钯、
镍等金属催化剂,也有贵金属在碱性氧化物的载体上制备而得的贵金属催化剂。
三、反应条件
1、温度
苯加氢反应的最适反应温度为200-250℃,苯加氢反应的化学反应速度与温度有关。
随着反应温度的提高,反应速率也会逐渐增加,但是过高的反应温度会导致副反应的增加,催化剂的活性也因此降低。
2、压力
苯加氢反应的最适反应压力在5-15Mpa,随着反应压力的提高,反应速率也会逐渐增加。
压力过高会导致催化剂粒子的虚化和堵塞,同时也会导致造成能源的浪费和催化剂的
损耗。
3、催化剂
四、反应流程
苯经加热至热力学平衡前,可加入适量的溶剂,然后通入氢气并升温至反应温度,开
始反应。
开始反应后,维持反应温度和反应压力不变,继续通入氢气,同时置换掉反应器
中的离子水和产物,收集产气、产液。
当反应达到平衡时,收集稳态的产物。
反应结束后,催化剂还需要进行再生。
五、总结
苯加氢反应是一种重要的化学工艺,科学的反应流程和反应条件对于产物的选择性和
收率都有很大的影响。
在实际应用中,我们需要根据生产需求和催化剂的特性,选择适合
的反应流程和反应条件,使得生产过程更加稳定和高效。
四、苯加氢制环己烷环己烷主要(占总产量90%以上)用来生产环己醇、环己酮及己二酸,后三者是制造尼龙-6和尼龙-66的重要原料。
环己烷还用作树脂、油脂、橡胶和增塑剂等的溶剂。
用作尼龙原料的高纯度的环己烷主要由苯加氢制得。
工业上苯加氢生产环己烷有气相法和液相法两种。
虽然美国杜邦公司早已开发成功气相加氢工艺,但大多数工厂仍采用液相加氢工艺,例如美国的Uop公司,法国石油研究所(IFP)等。
气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,投资费用比液相法高。
1.反应原理(1)化学反应在反应条件下,苯与氢可能发生下面各种反应:+nH2→C+CH4(4)反应(1)若为气相法固定床,用还原Ni 作催化剂,反应温度为65~250℃,压力0.5~3.5MPa;若为液相加氢,采用骨架镍或还原Ni为催化剂,反应温度为160~220℃,压力2.7MPa左右,环己烷收率在99%以上。
反应(2)和(4)在250℃左右的低温下不显著,它们可能是由第Ⅷ族金属催化的氢解型机理引起的,也可能是由双功能催化剂的加氢裂解型机理引起的。
双功能催化剂为具有加氢催化活性的某些金属(如Pt,Pd或Ni)负载在酸性载体(SiO2或SiO2/Al2O3)上构成,在载体上往往存在强酸中心,它对反应(2)和(4)有明显促进作用。
因此,选择非酸性载体可以避免这种加氢裂解作用。
反应(3)是环己烷的异构化,它往往被酸催化,在200℃下,异构化反应达到平衡时环己烷生成甲基环戊烷的转化率为68%,将温度升高到300℃时其转化率达83%,因此也必须选择不会引起这种异构化反应的催化剂。
在镍催化剂上,250℃时才开始产生甲基环戊烷。
(2)热力学平衡由反应(1)可知,苯加氢生成环己烷的反应是一个放热的体积(摩尔数)缩小的可逆反应。
在127℃时的平衡常数为7×107,在227℃时为1.86×102。
氢压和温度对环己烷中苯的平衡浓度的影响示于图3-2-18。
苯加氢制环己烷范文反应机理如下:首先,苯分子与氢气在催化剂的存在下进行反应。
常用的催化剂有铂、铑、钯等贵金属催化剂。
这些催化剂能够在适当的温度和压力条件下有效地催化苯的加氢反应。
其次,苯分子中的π电子与氢气中的氢原子发生反应,形成苯并对氢加成的中间体。
在反应过程中,π电子中的一个电子与氢原子形成共价键,另一个π电子不参与反应。
最后,中间体失去另一个π电子,形成环状结构的六元环化合物环己烷。
在这一步骤中,中间体中的π电子与催化剂的钯原子发生反应,生成钯环己烷中间体。
然后,钯环己烷与氢气发生反应,失去π电子后生成环己烷。
总结起来,苯加氢制环己烷的反应过程可以分为两步:加氢反应和环合反应。
加氢反应由催化剂催化,形成苯并对氢加成的中间体。
环合反应利用中间体失去π电子,形成环己烷的六元环结构。
例如,环己烷可用作溶剂,在化学合成、涂料、橡胶和塑料工业中起重要作用。
此外,环己烷也是一种重要的石油组分,在石油加工过程中有重要的用途。
在实际的生产过程中,苯加氢制环己烷通常需要一定的温度和压力条件。
较低温度和较高压力有利于提高反应速率和产率。
此外,催化剂的选择和使用也对反应的效率和产率有很大的影响。
在实验室中,常常使用自制或商业化的催化剂进行苯加氢制环己烷的反应。
实验条件可以根据具体的需要进行调整,以提高反应的效率和产率。
总之,苯加氢制环己烷是有机化学中的一种重要反应,经典的反应机理是苯与氢气发生加氢反应,生成环己烷。
这个反应具有重要的应用价值,在化学合成和药物研发中起着重要作用。
通过调整反应条件和催化剂的选择,可以有效提高反应的效率和产率。
苯加氢制环己烷工艺流程苯加氢制环己烷是一种常用的工业化合物制备方法,它能够将苯转化为环己烷。
以下是苯加氢制环己烷的工艺流程。
首先,苯加氢制环己烷的反应需要使用催化剂。
常用的催化剂是钼、钨或铂等金属催化剂。
催化剂可以提高反应速率和选择性,促进苯的加氢反应。
工艺流程的第一步是给催化剂进行预处理。
将催化剂与还原剂一起加入反应器中,通入氢气,以去除催化剂上的氧化物,并使其活性恢复到最佳状态。
预处理通常在高温和高压条件下进行。
第二步是将预处理后的催化剂与苯加入反应器。
工艺中最常用的反应器是固定床反应器,由多个催化剂床层组成。
苯和氢气在反应器中流动,与催化剂接触反应。
第三步是给反应器中通入氢气。
氢气是加氢反应的必需品,它促进了苯与催化剂的接触,提高了反应速度。
通入的氢气压力取决于反应条件和催化剂的要求。
一般来说,较高的氢气压力有助于提高反应速率。
第四步是控制反应条件。
反应温度通常在200到250摄氏度之间,这是苯加氢反应的最佳温度范围。
反应压力通常在2到10兆帕之间。
此外,还可以添加少量的溶剂,以改变反应速率和选择性。
第五步是对反应产物进行分离和纯化。
在加氢反应中,除了环己烷,还会产生少量的甲苯等副产物。
通过分离和纯化过程,可以从反应产物中获取纯度较高的环己烷。
最后一步是对副产物的处理。
由于加氢反应常常产生一些有害或不必要的副产物,需要进行适当的处理。
这可以通过蒸馏、气相吸附或其他方法来处理。
总的来说,苯加氢制环己烷是一种较常用的化学工艺方法。
通过催化剂的作用,在适当的反应条件下,能够高效地将苯转化为环己烷。
这个工艺流程在化工工业中得到了广泛的应用,为环己烷的生产提供了可靠的技术支持。
四、苯加氢制环己烷环己烷主要(占总产量90%以上)用来生产环己醇、环己酮及己二酸,后三者是制造尼龙-6和尼龙-66的重要原料。
环己烷还用作树脂、油脂、橡胶和增塑剂等的溶剂。
用作尼龙原料的高纯度的环己烷主要由苯加氢制得。
工业上苯加氢生产环己烷有气相法和液相法两种。
虽然美国杜邦公司早已开发成功气相加氢工艺,但大多数工厂仍采用液相加氢工艺,例如美国的Uop公司,法国石油研究所(IFP)等。
气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,投资费用比液相法高。
1.反应原理(1)化学反应在反应条件下,苯与氢可能发生下面各种反应:+nH2→C+CH4(4)反应(1)若为气相法固定床,用还原Ni 作催化剂,反应温度为65~250℃,压力0.5~3.5MPa;若为液相加氢,采用骨架镍或还原Ni为催化剂,反应温度为160~220℃,压力2.7MPa左右,环己烷收率在99%以上。
反应(2)和(4)在250℃左右的低温下不显著,它们可能是由第Ⅷ族金属催化的氢解型机理引起的,也可能是由双功能催化剂的加氢裂解型机理引起的。
双功能催化剂为具有加氢催化活性的某些金属(如Pt,Pd或Ni)负载在酸性载体(SiO2或SiO2/Al2O3)上构成,在载体上往往存在强酸中心,它对反应(2)和(4)有明显促进作用。
因此,选择非酸性载体可以避免这种加氢裂解作用。
反应(3)是环己烷的异构化,它往往被酸催化,在200℃下,异构化反应达到平衡时环己烷生成甲基环戊烷的转化率为68%,将温度升高到300℃时其转化率达83%,因此也必须选择不会引起这种异构化反应的催化剂。
在镍催化剂上,250℃时才开始产生甲基环戊烷。
(2)热力学平衡由反应(1)可知,苯加氢生成环己烷的反应是一个放热的体积(摩尔数)缩小的可逆反应。
在127℃时的平衡常数为7×107,在227℃时为1.86×102。
氢压和温度对环己烷中苯的平衡浓度的影响示于图3-2-18。
苯加氢制环己烷工艺及改进分析作者:郑粉粉赵璞来源:《华夏地理中文版》2015年第07期摘要:苯加氢制备环己烷是一种生产环己烷的方法,根据制备反应条件的不同,具体可以分为气相法和液相法两种制备方法。
文章详细介绍了利用苯加氢工艺来制备环己烷的生产方法,探讨了苯加氢制备环己烷的不同催化剂,苯加氢催化剂主要可分为镍系催化剂、钌系催化剂和铂系催化剂等,其催化剂的活性组分各不相同。
关键词:苯加氢;环己烷;催化剂;制备工艺环己烷是一种应用广泛的化工原料,可以用于生产环己酮、环己醇、己二酸、己内酰胺、己二酰、己二胺等,它主要在原油中含有。
环己烷对沥青、树脂以及纤维素醚等很多有机物都能够有效溶解,而且其中含有的有毒性物质比苯要低。
进行工业化生产环己烷,主要有两种方法,即苯催化加氢法与石油馏分分离法。
采用苯加氢制备环己烷的方法应用比较普遍,这种方法主要是用催化剂进行苯加氢反应来生产环己烷,这种方法的优点是能够生产出纯度较高的环己烷。
一、采用苯加氢制备环己烷的生产工艺用苯加氢制备环己烷主要有两种方法,这是根据反应条件的不同来区分的,其中一种方法是气相法,而另一种方法是液相法。
采用气相法生产环己烷时,由于气体的混合非常均匀而且比较容易,所以反应的转化率是非常高的,但是这种方法也有一定的缺点,就是在这个过程中反应非常激烈,所以控制起来存在一定的困难,这就很容易造成飞温现象。
采用气相法生产环己烷时,主要是将苯与特定的氢气进行充分混合,再通过加热使其蒸发,从而变成气态形式,另外也可以先加热苯,使其蒸发后与氢气混合,再通入两个阶段的反应器中进行催化反应,通过管外冷却剂把反应产生的热量去除,整个反应过程结束后,再将产物进行冷凝处理,之后经过分离器把剩余的氢气分离出去就可以得到环己烷了。
用气相法制备环己烷有一定的难度,其生产条件相对比较苛刻,能源消耗比较高而且不容易控制。
采用液相法制备环己烷时,分别将液苯与氢气送入装有反应塔中进行催化反应,然后将流出来的产物再一次通入补充反应塔中进行催化反应,之后再经过冷凝处理和闪蒸工艺处理,再把闪蒸液送到稳定塔,最后经过稳定塔后,塔底的产物就是我们要得到的环己烷了。
苯液相加氢制环己烷60分钟标题:苯液相加氢制环己烷引言:苯是一种常见的有机化合物,广泛应用于化学工业生产和实验室研究中。
环己烷是一种重要的溶剂和原料,广泛应用于医药、化妆品、橡胶和塑料等领域。
本文将详细介绍苯液相加氢制环己烷的过程、反应机制以及工业应用。
第一部分:苯液相加氢的条件和反应原理(500字)1.1反应条件1.2反应原理第二部分:苯液相加氢的反应机制(700字)2.1反应初期在反应初期,苯分子被吸附到催化剂的表面上,形成一个活性吸附态。
随着氢气分子的吸附,催化剂表面上形成氢化物吸附态。
2.2芳香环的破坏在芳香环的破坏过程中,一个氢原子与催化剂表面上的氢化物形成化学键,另一个氢被取代。
这样,芳香环的碳-carbon键被破坏,形成环己烷分子。
2.3环己烷生成破坏芳香环后,催化剂表面上的氢化物逐渐被取代,生成环己烷分子。
环己烷分子脱离反应物界面,充分溶解在苯液中。
第三部分:工业应用(500字)3.1溶剂环己烷是一种非极性溶剂,可溶于许多有机及无机化合物。
在化学工业中,环己烷常用作清洗剂、涂料溶剂、粘合剂及润滑剂等。
3.2化学反应原料环己烷作为重要的化学原料,广泛应用于医药、染料、农药等领域。
通过环己烷可以合成大量有机化合物,如肥皂、香精、染料等。
3.3燃料添加剂环己烷作为一种高效的汽油燃料添加剂,可以提高燃料的抗爆性能、焰前期延长和发动机的燃烧效率。
因此,在汽车工业中广泛应用于高级汽油中。
结论:本文详细介绍了苯液相加氢制环己烷的过程、反应机制以及工业应用,并阐述了该反应对苯的芳香环的破坏、环己烷的形成过程。
环己烷作为一种重要的溶剂和原料,在生活和工业中有着广泛的应用前景。
该文档为读者提供了对苯液相加氢制环己烷反应的全面理解,并强调了该反应在化学工业中的重要性和应用价值。
苯加氢液相制环己烷液相苯加氢制环己烷是一种常用的工业生产方法。
苯加氢能够通过催化剂的存在,在适当的温度和压力下实现。
下面将详细介绍液相苯加氢制环己烷的工艺流程及其反应机理。
液相苯加氢制环己烷一般采用铭洛威系数法,根据不同温度下的苯和氢分子在液相中的溶解度,确定适当的温度和压力。
一般来说,反应温度在180~220°C,压力在1~5MPa之间。
苯与氢气按照2:1的摩尔比加入反应器中。
苯加氢的催化剂主要采用铂系列催化剂,如铂-铝催化剂或铂-活性炭催化剂,其中铂-活性炭催化剂具有较高的活性和选择性。
催化剂的选择对反应的效果有着很大的影响。
此外,还需要添加适量的溶剂,如环己烷或甲苯,以提高反应的速率和产率。
液相苯加氢制环己烷的反应机理如下:1.至高温高压条件下,苯和氢气进入反应器中。
苯分子先吸附在催化剂表面。
2.吸附的苯分子经过加氢反应,产生环己烷的中间体环己基苯。
3.中间体环己基苯与另一个吸附在催化剂表面的氢气分子发生加氢反应,生成环己烷和水。
此步骤也称为脱吸附反应。
4.反应生成的环己烷在溶剂的作用下迅速分离出来,形成液相环己烷。
整个反应过程可以看作是一个连续的吸附-加氢-脱吸附的循环,以实现苯加氢制环己烷。
该反应是一个放热反应,生成热由反应器控制系统进行冷却。
同时,需要从反应器中定期排除生成的水,以保持反应的正常进行。
液相苯加氢制环己烷工艺的优点是操作简单,适合大规模工业生产。
然而,由于液相反应的均相性强,产物的纯度相对较低,需要进行后续的精馏和纯化处理。
总结起来,液相苯加氢制环己烷是一种重要的工业生产方法。
通过适当的温度和压力,以及催化剂的存在,可以实现苯加氢生成环己烷的反应。
该反应的工艺流程较简单,并具有较高的产率。
但液相反应的纯度相对较低,需要进行后续的纯化处理。
苯加氢制备环己烷工艺进展苯加氢的反应方程式为:C6H6+3H2→C6H12过去,苯加氢制备环己烷主要采用镍等金属催化剂,但这种催化剂在反应中易被中毒,导致催化剂的活性下降,影响反应的转化率和选择性。
为了解决这个问题,研究人员开始关注使用非金属催化剂。
近年来,钯催化剂在苯加氢制备环己烷反应中得到了广泛的应用。
钯催化剂具有良好的催化活性和选择性,在反应过程中具有较高的稳定性和抗毒性。
研究人员已经通过改变催化剂的活性位点和催化剂结构,优化了苯加氢反应的催化性能。
此外,研究人员还利用金属-非金属界面效应来改善催化剂的活性和选择性。
金属-非金属界面的结构可以提高催化剂的电子传输性能,增强反应物与催化剂之间的相互作用,从而提高反应转化率和选择性。
例如,将钯和其他金属(如镍、铂、银)形成复合催化剂,可以显著提高苯加氢反应的催化效果。
此外,研究人员还关注催化剂的活性位点结构和反应条件对苯加氢反应的影响。
一些研究表明,通过调节反应温度、压力和反应物的摩尔比等反应条件,可以调控反应转化率和产物选择性。
同时,催化剂活性位点的调节也可以影响反应的选择性。
因此,寻找合适的催化剂活性位点结构和优化反应条件是提高苯加氢制备环己烷工艺的关键。
综上所述,苯加氢制备环己烷的工艺已经取得了显著的进展。
通过采用钯催化剂、金属-非金属界面效应和调节催化剂活性位点结构和反应条件等手段,可以提高反应的转化率和产物选择性,进一步优化苯加氢制备环己烷的工艺。
然而,目前的研究仍面临一些挑战,如提高催化剂的稳定性和抗毒性,降低反应条件和催化剂制备工艺的成本等。
因此,在未来的研究中,需要进一步深入研究苯加氢制备环己烷的反应机理和催化剂设计原则,以提高工艺的性能并降低成本,实现更高效可控的环境友好型环己烷生产工艺。
一、环己烷的工艺介绍:工业生产中,环己烷的生产方法分为苯加氢法和石油烃馏分的分馏精制法。
苯加氢法是环己烷的主要生产方法,可分为液相法和气相法。
液相苯加氢的工艺特点是反应稳定、平和,转化率和收率也很高;但必须要有后反应,,能耗也较高,氢气的利用率仅为85% ;典型工艺有IFP 法、BP 法和Arosat法。
气相苯加氢的工艺特点是工艺气体混合均匀,转化率和收率均很高,但反应激烈,易出现飞温现象;典型工艺有Brxane,ARCO,UOP,Houdry,Hy-toray法。
二、反应物与产物的介绍:1.氢气分子式:H2沸点:-252.77℃(20.38K)熔点:-259.2℃密度:0.09kg/m3相对分子质量:2.016方法:电解、裂解、煤制气等三相点:-254.4℃液体密度(平衡状态,-252.8℃):169kg/m3气体密度(101.325kPa,0℃):0.0899kg/m3比容(101.325kPa,21.2℃):5.987m3/kg气液容积比(15℃,100kPa):974L/L临界温度:-234.8℃临界压力:1664.8kPa临界密度:66.8kg/m3熔化热(-254.5℃)(平衡态):48.84kJ/kg气化热△Hv(-249.5℃):305kJ/kg热值:1.4108 J/kg规格:含有少量的甲烷2%左右。
2苯名称:中文名称:安息油,净苯,动力苯,纯苯,溶液苯,困净苯,困净苯别名:Benzol,Phenyl hydride,Phenyl hydride ,Cyclohexatriene ,Coal naphtha ,Phene化学式:C6H6相对分子质量:78.11性状:无色透明液体。
有芳香气味。
具强折光性。
易挥发。
能与乙醇、乙醚、丙酮、四氯化碳、二硫化碳、冰乙酸和油类任意混溶,微溶于水。
燃烧时的火焰光亮而带黑烟。
相对密度(d154)0.8787。
熔点5.5℃。
沸点80.1℃。
折光率(n20D)1.50108。
实验五苯液相加氢制环己烷一、实验目的1.了解苯加氢的实验原理和方法。
2.了解液相加氢设备的使用方法和结构。
3.掌握加压的操作方法。
4.通过实验进一步考察压力、温度对苯加氢整套反应的影响。
二.、实验原理环己烷是生产聚酰胺类纤维的主要中间体之一,高纯度的环己烷由苯加氢制得,环己烷也是性能良好的溶剂。
随着人类环保意识和健康意识的增强,人们越来越认识到除去苯的重要性。
苯加氢是典型的有机催化反应,无论在理论研究还是在工业生产上,都具有十分重要的意义。
工业上常采用的苯加氢生产环己烷的方法主要有气相法和液相法两种。
气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,费用比液相大。
液相法的优点是反应温度易于控制,不足之处是所需压力比较高,转化率较低。
反应主要方程式如下:苯加氢制环己烷的反应是一个放热的、体积减小的可逆反应,因此,低温和高压对该反应是有利的。
所以,苯加氢制环己烷的反应温度不宜过高,当然也不能太低,否则反应分子不能很好地活化,进而导致反应速率比较慢。
整个反应用高压釜式反应器中进行。
原料:苯,氢气,氮气,环己烷三、实验装置与流程1.实验装置:实验装置如图1所示;2、实验流程:实验对象是由进料泵、压力釜、氮气钢瓶、氢气钢瓶等组成。
实验中,苯由进料泵加入到放置了催化剂的加压釜中,然后通氮气置换釜内的空气4次,再通氢气置换釜内的氮气4次,加压后反应一定时间,放出釜内压力,取出反应产品。
图1 釜式加压流程示意图3、装置参数及试剂:装置参数如表1所示表1主要试剂如表2所示表2四、实验步骤:1、将20-30g催化剂置于干燥的高压釜反应器内,接好各个接口,然后试压,通入氮气进行(压力要达到测试要求4mPa),冲入氮气后,记下压力表读数,待30分钟后看是否压力下降,如不变化试压结束,如有变化用肥皂水找到漏点。
2、,泵入原料苯(分析纯)200ml,通入氮气(纯度≥99.99%)压力达到1MPa后放空4次以除去釜内的空气;3、通入氢气压力达到1MPa后放空4次以除去釜内氮气。
苯液相加氢制环己烷60分钟
无病句,符合文章逻辑
一、实验目的
本实验目的是利用苯液向环己烷中加入氢,在规定的时间内,实现环
己烷的催化氢化反应,以此获得润滑油类产品。
二、实验原理
在液相条件下,烯烃先与过氧化氢、水和金属氢化物(如钯或铂)形
成反应物,再与氢气反应,产生润滑油类产品。
此反应称为液相加氢反应。
三、实验原料
本实验使用的原料包括苯液、氢气、干燥剂、环己烷和催化剂(如钯
或铂)等。
四、实验步骤
(一)将苯液(2L)、环己烷(1L)以及催化剂(如钯或铂)(20g)加入到反应釜中,加热至60℃,搅拌混合。
(二)在60℃条件下,将氢气(2 L/h)通入2小时,手动控制压力,保持在3 kg/cm2,搅拌混合。
(三)将反应物从反应釜中抽出,加入干燥剂,经过一定的时间,脱水,搅拌至均匀。
(四)将脱水后的反应物置于真空蒸发室,或烘箱中,进行高真空蒸发,蒸发至反应物浓缩,反应成功完成。
五、实验结果。
应用化工技术专业《苯加氢生产环己烷实训项目》《苯加氢生产环己烷实训项目》是应用化工技术专业的一项实践性课程,旨在培养学生的实际操作能力和解决工艺问题的能力。
下面是一份关于该实训项目的报告,共计1200字。
一、实验目的通过该实训项目,学生将会学习和掌握苯加氢制备环己烷的工艺流程和操作技能,了解并分析其中的反应原理和反应机理,并通过实际操作,熟悉实验室设备的使用和操作流程,培养实验室安全意识和团队合作能力。
二、实验原理苯加氢制备环己烷是一种常用的工业生产方法,通过氢气的加氢反应将苯转化为环己烷。
反应式如下:C6H6+3H2→C6H12三、实验步骤1.实验准备:检查实验室设备和试剂的完好性,熟悉操作手册和安全操作规程。
2.反应装置的搭建:将加氢反应釜与加热装置连接起来,并连接氢气泵和冷却装置。
3.填充催化剂:将催化剂填充至反应釜中,催化剂的种类和使用量根据实验要求确定。
4.开始反应:将苯逐渐加入反应釜中,并通过氢气泵将适量的氢气通入反应釜中。
5.反应控制:通过控制加热温度和氢气流量,控制反应过程的时间和转化率。
6.反应结束:反应时间达到要求后,停止加氢,冷却反应釜。
7.产物分离:将反应釜中的产物转移到分离装置中,通过蒸馏等分离方法进行产物纯化。
8.产物收集:收集纯化后的环己烷,并对产物进行质量分析和测定。
四、实验结果与分析通过上述实验步骤,我们成功地制备了环己烷,并对其产物进行了质量分析。
结果显示,我们得到了符合要求的环己烷产物,转化率达到了实验要求。
这说明我们在实验过程中掌握了正确的操作方法,并且实验装置和催化剂的选择也是合适的。
五、存在的问题与改进方案在实验过程中,我们遇到了一些问题。
首先,反应温度的控制需要更加精确,以保证反应的高效性和产物的纯度。
其次,催化剂的装填量和选择也需要进一步研究,以提高反应的转化率和产物的收率。
最后,实验操作中的安全问题需要更加重视,加强实验室安全教育和培训,提高学生的安全意识。
苯加氢制环己烷工艺报告结果1.利用visio所画的工艺流程图
2.Aspen plus 模拟
(1)流程模拟
Aspen plus 的流程图如下
模拟运行后,查看运行结果的可行性
上图表明模拟结果可行,查看流股的结果如下图
(2)灵敏度分析:当LFLOW的循环比在0.1到0.4范围变化时,REACT的热负荷随之变化,模拟的结果为:
将其模拟结果制图,结果如下:
3.利用origin作图并分析结果
从aspen作图中可以看出,所要分析的数据关系为线性关系,且线性为抛物线,所以在origin中将数据进行线性模拟中的多项式模拟。
从二项式模拟开始直至得到满意的结果(可以通过参考其回归得到的残差图)。
进行上述的模拟后,我认为5项式模拟的结果较令人满意。
(1)利用工具栏绘制的点线图如下:
(2)进行5项式模拟后得到的图形如下:
模拟后多项式的系数结果如下:
回归后的残差图如下:
从残差图上可看图,aspen模拟产生的数据与origin模拟值之间的误差在(-75,100)之间,表明进行的模拟是可靠的。