专题六带电粒子在电场中运动综合问题的分析
- 格式:doc
- 大小:173.04 KB
- 文档页数:3
高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,半径为a 的内圆A 是电子发射器,其金属圆周表圆各处可沿纸面内的任意方向发射速率为v 的电子;外圆C 为与A 同心的金属网,半径为3a .不考虑静电感应及电子的重力和电子间的相互作用,已知电子质量为m ,电量为e .(1)为使从C 射出的电子速率达到3v ,C 、A 间应加多大的电压U ; (2)C 、A 间不加电压,而加垂直于纸面向里的匀强磁场.①若沿A 径向射出的电子恰好不从C 射出,求该电子第一次回到A 时,在磁场中运动的时间t ;②为使所有电子都不从C 射出,所加磁场磁感应强度B 应多大.【答案】(1)24mv e (2)①439avπ ②(31)B ae ≥-【解析】 【详解】(1)对电子经C 、A 间的电场加速时,由动能定理得()2211322eU m v mv =- 得24mv U e=(2)电子在C 、A 间磁场中运动轨迹与金属网相切.轨迹如图所示.设此轨迹圆的半径为r ,则)2223a rr a -=+又2rT vπ=得tan 3arθ== 故θ=60°所以电子在磁场中运动的时间2-22t T πθπ= 得439at vπ=(3)若沿切线方向射出的电子轨迹恰好与金属网C 相切.则所有电子都不从C 射出,轨迹如图所示:23r a a '=-又2v evB m r ='得3-1B ae =()所以3-1B ae≥()2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x=2ay设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则002tan y x qE x v m v y v v aθ⋅===有H =(3a -x )·tan θ=(32)2a y y -当322a y y -=时,即y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a3.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W4.一带正电小球通过绝缘细线悬挂于场强大小为E 1的水平匀强电场中,静止时细线与竖直方向的夹角θ=45°,如图所示。
高一物理《带电粒子在电场中的运动》知识点总结一、带电粒子在电场中的加速分析带电粒子的加速问题有两种思路:1.利用牛顿第二定律结合匀变速直线运动公式分析.适用于匀强电场.2.利用静电力做功结合动能定理分析.对于匀强电场和非匀强电场都适用,公式有qEd =12m v 2-12m v 02(匀强电场)或qU =12m v 2-12m v 02(任何电场)等. 二、带电粒子在电场中的偏转如图所示,质量为m 、带电荷量为q 的粒子(忽略重力),以初速度v 0平行于两极板进入匀强电场,极板长为l ,极板间距离为d ,极板间电压为U .1.运动性质:(1)沿初速度方向:速度为v 0的匀速直线运动.(2)垂直v 0的方向:初速度为零的匀加速直线运动.2.运动规律:(1)t =l v 0,a =qU md ,偏移距离y =12at 2=qUl 22m v 02d. (2)v y =at =qUl m v 0d ,tan θ=v y v 0=qUl md v 02. 三、带电粒子的分类及受力特点(1)电子、质子、α粒子、离子等粒子,一般都不考虑重力,但不能忽略质量.(2)质量较大的微粒,如带电小球、带电油滴、带电颗粒等,除有说明或有明确的暗示外,处理问题时一般都不能忽略重力.(3)受力分析仍按力学中受力分析的方法分析,切勿漏掉静电力.四、求带电粒子的速度的两种方法(1)从动力学角度出发,用牛顿第二定律和运动学知识求解.(适用于匀强电场)由牛顿第二定律可知,带电粒子运动的加速度的大小a =F m =qE m =qU md.若一个带正电荷的粒子,在静电力作用下由静止开始从正极板向负极板做匀加速直线运动,两极板间的距离为d ,则由v 2-v 02=2ad 可求得带电粒子到达负极板时的速度v =2ad =2qU m.(2)从功能关系角度出发,用动能定理求解.(可以是匀强电场,也可以是非匀强电场)带电粒子在运动过程中,只受静电力作用,静电力做的功W =qU ,根据动能定理,当初速度为零时,W =12m v 2-0,解得v =2qU m ;当初速度不为零时,W =12m v 2-12m v 02,解得v =2qU m +v 02. 五、带电粒子在电场中的偏转的几个常用推论(1)粒子从偏转电场中射出时,其速度方向的反向延长线与初速度方向的延长线交于一点,此点为粒子沿初速度方向位移的中点.(2)位移方向与初速度方向间夹角α的正切值为速度偏转角θ正切值的12,即tan α=12tan θ. (3)不同的带电粒子(电性相同,初速度为零),经过同一电场加速后,又进入同一偏转电场,则它们的运动轨迹必定重合.注意:分析粒子的偏转问题也可以利用动能定理,即qEy =ΔE k ,其中y 为粒子在偏转电场中沿静电力方向的偏移量.。
压轴题05带电粒子在电场中的运动1.本专题是电场的典型题型,包括应用静电力的知识解决实际问题。
高考中既可以在选择题中命题,更会在计算题中命题。
2024年高考对于电场的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:电场力的性质、电场力能性质、带电粒子在电场中的平衡、加速、偏转等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型静电场的性质,电容器的动态分析,电场中的图像问题,带电粒子在电场中的运动问题,力电综合问题等。
考向一:静电场力的性质1.库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.(2)表达式:F=k q1q2r2,式中k=9.0×109N·m2/C2,叫做静电力常量.(3)适用条件:真空中的点电荷.①在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式;②当两个带电体的间距远大于本身的大小时,可以把带电体看成点电荷.(4)库仑力的方向:由相互作用的两个带电体决定,且同种电荷相互排斥,异种电荷相互吸引.(5)应用库仑定律的四条提醒a.在用库仑定律公式进行计算时,无论是正电荷还是负电荷,均代入电量的绝对值计算库仑力的大小.b.两个点电荷间相互作用的库仑力满足牛顿第三定律,大小相等、方向相反.c.库仑力存在极大值,由公式F=k q1q2r2可以看出,在两带电体的间距及电量之和一定的条件下,当q1=q2时,F最大.d.对于两个带电金属球,要考虑金属球表面电荷的重新分布.2.电场强度的三个公式的比较电场强度――――→点电荷电场E =k Q r 2―――→任何电场E =F q ―――→匀强电场E =U d ――→叠加平行四边形定则3.电场强度的计算与叠加在一般情况下可由上述三个公式计算电场强度,但在求解带电圆环、带电平面等一些特殊带电体产生的电场强度时,上述公式无法直接应用。
带电粒子在电场中的运动一、难点突破策略:带电微粒在电场中运动是电场知识和力学知识的结合,分析方法和力学的分析方法是基本相同的:先受力分析,再分析运动过程,选择恰当物理规律解题。
处理问题所需的知识都在电场和力学中学习过了,关键是怎样把学过的知识有机地组织起来,这就需要有较强的分析与综合的能力,为有效突破难点,学习中应重视以下几方面:1.在分析物体受力时,是否考虑重力要依据具体情况而定。
(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或有明确的暗示以外一般都忽略不计。
(2)带电颗粒:如尘埃、液滴、小球等,除有说明或有明确的暗示以外一般都不能忽略。
“带电粒子”一般是指电子、质子及其某些离子或原子核等微观的带电体,它们的质量都很小,例如:电子的质量仅为0.91×10-30千克、质子的质量也只有1.67×10-27千克。
(有些离子和原子核的质量虽比电子、质子的质量大一些,但从“数量级”上来盾,仍然是很小的。
)如果近似地取g=10米/秒2,则电子所受的重力也仅仅是meg=0.91×10-30×10=0.91×10-29(牛)。
但是电子的电量为q=1.60×10-19库(虽然也很小,但相对而言10-19比10-30就大了10-11倍),如果一个电子处于E=1.0×104牛/库的匀强电场中(此电场的场强并不很大),那这个电子所受的电场力F=qE=1.60×10-19×1.0×104=1.6×10-15(牛),看起来虽然也很小,但是比起前面算出的重力就大多了(从“数量级”比较,电场力比重力大了1014倍),由此可知:电子在不很强的匀强电场中,它所受的电场力也远大于它所受的重力——qE>>meg 。
所以在处理微观带电粒子在匀强电场中运动的问题时,一般都可忽略重力的影响。
但是要特别注意:有时研究的问题不是微观带电粒子,而是宏观带电物体,那就不允许忽略重力影响了。
带电粒子在电场中的运动-难点剖析一、处理带电粒子在电场中运动的问题时,对带电粒子的受力分析和运动状态分析是关键带电粒子在电场中的运动问题就是电场中的力学问题,研究方法与力学中相同,只是要注意以下几点:1.带电粒子的受力特点:(1)重力:①有些粒子,如电子、质子、α粒子、正负离子等,除有说明或明确的暗示以外,在电场中运动时均不考虑重力;②宏观带电体,如液滴、小球等除有说明或明确的暗示以外,一般要考虑重力;③未明确说明“带电粒子”的重力是否考虑时,可用两种方法进行判断:一是比较静电力qE 与重力mg ,若qEmg ,则忽略重力,反之要考虑重力;二是题中是否有暗示(如涉及竖直方向)或结合粒子的运动过程、运动性质进行判断.(2)静电力:一切带电粒子在电场中都要受到静电力F=qE ,与粒子的运动状态无关;电场力的大小、方向取决于电场(E 的大小、方向)和电荷的正负,匀强电场中静电力为恒力,非匀强电场中静电力为变力.2.带电粒子的运动过程分析方法:(1)运动性质有:平衡(静止或匀速直线运动)和变速运动(常见的为匀变速),运动轨迹有直线和曲线(偏转).(2)对于平衡问题,结合受力图根据共点力的平衡条件可求解.(3)对于直线运动问题可用匀变速直线运动的运动学公式和牛顿第二定律、动量定理、动量守恒定律求解;对于匀变速曲线运动问题,可考虑将其分解为两个方向的直线运动,对有关量进行分解、合成来求解.无论哪一类运动,都可以从功和能的角度用动能定理或能的转化与守恒定律来求解,其中静电力做功除一般计算功的公式外,还有W=qU 可用,这一公式对匀强和非匀强电场都适用,而且与运动路线无关.二、对粒子的偏移量和偏转角的讨论在图1-8-3中,设带电粒子质量为m ,带电荷量为q ,以速度v 0垂直于电场线射入匀强偏转电场,偏转电压为U 1.若粒子飞出电场时偏角为θ,则tan θ=x y v v ,公式中v y =at=01·v l md qU ,代入得tan θ=201m dv l qU . ①图1-8-31.若不同的带电粒子是从静止经过同一加速电压U 0加速后进入偏转电场的,则由动能定理有qU 0=21mv 02. ②由①②式得:tan θ=dU l U 012 ③ 由③式可知,粒子的偏角与粒子的q 、m 无关,仅决定于加速电场和偏转电场,即不同的带电粒子从静止经过同一电场加速后进入同一偏转电场后,它们在电场中的偏转角度总是相同的.2.粒子从偏转电场中射出时偏距y=21at 2=21m d qU 1(0v l )2,作粒子速度的反向延长线,设交于O 点,O 点与电场边缘的距离为x ,则x=22tan 2012021l mdv l qU m dv l qU y ==θ. ④ 由④式可知,粒子从偏转电场中射出时,就好像是从极板间的2l 处沿直线射出似的. 3.说明:直线加速器、示波器(示波管)、静电分选器等是本单元知识应用的几个重要实例,在处理这些实际问题时,应注意以下几个重要结论:(1)初速为零的不同带电粒子,经过同一加速电场、偏转电场,打在同一屏上时的偏转角、偏转位移相同.(2)初速为零的带电粒子经同一加速电场和偏转电场后,偏转角φ、偏转位移y 与偏转电压U 1成正比,与加速电压U 0成反比,而与带电粒子的电荷量和质量无关.(3)在结论(1)的条件下,不同的带电粒子都像是从2l 处沿末速度方向以直线射出一样,当电性相同时,在光屏上只产生一个亮点,当电性相反时,在光屏上产生两个中心对称的亮点.【例1】 在370JRB22彩色显像管中,电子从阴极至阳极通过22.5 kV 电势差被加速,试求电场力做的功是多少,电子的电势能变化了多少,电子到达阳极时的速度是多大.思路分析:在电视机显像管中,从阴极发出的电子经高压加速,以足够的能量去激发荧光屏上“像素”发光,又经扫描系统使电子束偏转,根据信号要求打到荧光屏上适当位置,就形成了图像.由于电子的电荷量q=-1.6×10-19 C ,质量m=0.91×10-30 kg ,所以W=qU=1.6×10-19×22.5×103 J=3.6×10-15 J .电场力做正功,电势能就一定减少了,那么减少的电势能也为3.6×10-15 J .减少的电势能转化为电子的动能,那么W=21mv 2,所以 v=30151091.0106.322--⨯⨯⨯=m W m/s =8.9×107 m/s. 答案:3.6×10-15 J 3.6×10-15 J 8.9×107 m/s温馨提示:显像管中的加速电场不是匀强电场,但公式W=qU 对一切电场都适用.【例2】如图1-8-4所示,带负电的小球静止在水平放置的平行板电容器两板间,距下板0.8 cm ,两板间的电势差为300 V .如果两板间电势差减小到60 V ,则带电小球运动到极板上需多长时间?图1-8-4思路分析:取带电小球为研究对象,设它带电荷量为q ,则带电小球受重力mg 和电场力qE 的作用.当U 1=300 V 时,小球平衡:mg=qdU 1 ① 当U 2=60 V 时,带电小球向下板做匀加速直线运动:mg-q d U 2=ma ② 又h=21at 2,联立①②③式得:t=gU U h U )(2211-=4.5×10-2 s. 答案:4.5×10-2 s温馨提示:这是一道典型的力学综合题,涉及力的平衡、牛顿第二定律及匀变速运动的规律等知识.带电粒子的加速和偏转问题实质上是一个力学问题,我们要逐步认识这一点.三、处理带电粒子在电场中运动问题的方法及一般思维顺序1.处理方法:带电粒子在电场中的运动问题,其本质是力学知识的应用,关键在于对带电粒子的受力情况进行分析,题目的类型有:电荷的平衡、直线、曲线或往复振动问题,要将力学的研究方法灵活应用到电场中,如整体法、隔离法、正交分解法、图象法、等效法等等,处理力电综合问题解题思路仍然是依据力学中的基本规律:牛顿运动定律、功能关系等.2.处理带电粒子在电场中运动问题的思维顺序(1)弄清研究对象,明确所研究的物理过程;(2)分析物体在所研究过程中的受力情况;(3)分析物体的运动状态;(4)根据物体运动过程所满足的规律列方程求解.【例3】两平行金属板A 、B 水平放置,一个质量为m=5×10-6 kg 的带电微粒,以v 0=2 m/s 的水平速度从两板正中位置射入电场,如图1-8-5所示,A 、B 两板间距离d=4 cm ,板长L=10 cm .图1-8-5(1)当A 、B 间的电压U AB =1 000 V 时,微粒恰好不偏转,沿图中直线射出电场,求该粒子的电荷量和电性.(2)令B 板接地,欲使该微粒射出偏转电场,求A 板所加电势的范围.思路分析:(1)当U AB =1 000 V 时,重力跟电场力相等,微粒才沿初速度v 0方向做匀速直线运动,故q d U AB =mg ,q=ABU m gd =2×10-9 C ;重力方向竖直向下,电场力方向竖直向上,而场强方向竖直向下(U AB >0),所以,微粒带负电.(2)令该微粒从A 板边缘M 点飞出,设此时φA =φ1,因为φB =0,所以U AB =φ1,电场力和重力都沿竖直方向,微粒在水平方向做匀速直线运动,速度v x =v 0;在竖直方向a=md q 1ϕ-g ,侧移y=21d ,所以21d=21at 2.代入a 和t=0v L 得φ1=22220qL mgdL d mv +=2 600 V 当qE <mg 时,带电微粒向下偏转,竖直方向a ′=g-mdq 2ϕ,同理可得φ2=600 V 故欲使微粒射出偏转电场,A 板所加电势的范围为600 V <φA <2 600 V .温馨提示:本题是一综合题,首先让学生明确两极板的电势差大小等于A 板的电势,因为φB =0,由微粒在电场中的偏转位移y ,进而得出φA 的范围.本题虽然没有明确指出微粒的重力是否忽略,但由题意的运动情况,可以推知微粒的重力不能忽略.【例4】在图1-8-6中,一个质量为m 、电荷量为-q 的小物体,可在水平轨道Ox 上运动,O 端有一与轨道垂直的固定墙,轨道处在场强为E 、方向沿Ox 轴正方向的匀强电场中,小物体以初速v 0从x 0点沿Ox 轨道运动,运动中受到大小不变的摩擦力f 的作用,且f <qE ,小物体与墙碰撞时不损失机械能.求它在停止前通过的总路程.图1-8-6思路分析:方法一:应用动能定理.设小物块共走过的路程为s ,由W=ΔE k ,得qEx 0-fs=0-21mv 02, 解得s=fmv qEx 22200+. 方法二:用能量守恒定律解.设小物块共走过路程s ,克服摩擦力做功的值为fs ,这也就是转变为内能的能量.动能与电势能的总和减少了ΔE=qEx 0+21mv 02,内能增加了ΔE ′=fs ,又由ΔE=ΔE ′=qEx 0+21mv 02=fs ,解得s=fmv qEx 22200+. 答案:fmv qEx 22200+ 温馨提示:一道综合题目,往往有不同的解法,但不论应用什么方法解题,关键是把物理过程搞清楚,通过本题可以看出利用动能定理和能量守恒定律解题,往往比较简捷.。
一、带电粒子在电场中的加速
1. 在匀强电场中加速,可用牛顿第二定律求出加速度,结合运动学公式求解.
基本方程:a=Eq
m,E=
U
d,22v-21v=2ax.
2. 在非匀强电场中的加速运动一般受变力作用,可根据电场力对带电粒子所做的功引起带电粒子能量的变化,利用动能定理、功能关系求解.(在匀强电场中加速,也可以利用动能定理、功能关系求解)
基本方程:qU=1
2m22v-
1
2m21v.
二、带电粒子在匀强电场中的偏转问题
1. 运动状态分析:带电粒子以速度v0垂直于电场线方向飞入匀强电场时,受到恒定的、与初速度方向成90°角的电场力作用而做匀变速曲线运动(轨迹为抛物线).
2. 分析处理方法:用类似平抛运动分析方法分解.
沿初速度方向——以速度为v0的匀速直线运动.
沿电场力方向——以初速度为零的匀加速运动.
第 1 页共1 页。
专题六带电粒子在电场中运动综合问题的分析
考纲解读 1.了解示波管的工作原理.2.运用动力学方法分析解决带电粒子在交变电场中的运动.3.会运用功能观点、动力学观点综合分析带电粒子在复合场中的运动.
考点一带电粒子在交变电场中的运动
1.注重全面分析(分析受力特点和运动规律),抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件.
2.分析时从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系.
3.此类题型一般有三种情况:一是粒子做单向直线运动(一般用牛顿运动定律求解),二是粒子做往返运动(一般分段研究),三是粒子做偏转运动(一般根据交变电场的特点分段研究).
例1如图1(a)所示,A、B为两块平行金属板,极板间电压为U AB=1 125 V,板中央有小孔O和O′.现有足够多的电子源源不断地从小孔O由静止进入A、B之间.在B板右侧,平行金属板M、N长L1=4×10-2 m,板间距离d=4×10-3 m,在距离M、N右侧边缘L2=0.1 m处有一荧光屏P,当M、N之间未加电压时电子沿M板的下边沿穿过,打在荧光屏上的O″并发出荧光.现给金属板M、N之间加一个如图(b)所示的变化电压u,在t=0时刻,M板电势低于N板.已知电子质量为m e=9×10-31 kg,电荷量为e=1.6×10-19 C.
(1)每个电子从B板上的小孔O′射出时的速度多大?
(2)打在荧光屏上的电子范围是多少?
(3)打在荧光屏上的电子的最大动能是多少?
突破训练1在金属板A、B间加上如图2乙所示的大小不变、方向周期性变化的交变电压,其周期为T.现有电子以平行于金属板的速度v0从两板中央射入(如图甲所示).已知电子的质量为m,电荷量为e,不计电子的重力,求:
(1)若电子从t=0时刻射入,在半个周期内恰好能从A板的边缘飞出,则电子飞出时速度的大小为多少?
(2)若电子从t=0时刻射入,恰能平行于金属板飞出,则金属板至少为多长?
(3)若电子恰能从两板中央平行于板飞出,电子应从哪一时刻
射入?两板间距至少为多大?
综合运用动力学观点和功能观点解决带电体在电场中的运动
1.动力学观点
动力学观点是指用匀变速运动的公式来解决实际问题,一般有两种情况:
(1)带电粒子初速度方向与电场线共线,则粒子做匀变速直线运动;
(2)带电粒子的初速度方向垂直电场线,则粒子做匀变速曲线运动(类平抛运动).当带电粒子在电场中做匀变速曲线运动
时,一般要采用类平抛运动规律解决问题.
2.功能观点:首先对带电体受力分析,再分析运动形式,然后根据具体情况选用相应公式计算.
(1)若选用动能定理,则要分清有多少个力做功,是恒力做功还是变力做功,同时要明确初、末状态及运动过程中的动
能的增量.
(2)若选用能量守恒定律,则要分清带电体在运动中共有多少种能量参与转化,哪些能量是增加的,哪些能量是减少的.例2如图3所示,A、B为半径R=1 m的四分之一光滑绝缘竖直圆弧轨道,在四分之一圆弧区域内存在着E=1×106 V/m、竖直向上的匀强电场,有一质量m=1 kg、带电量q=+1.4×10-5 C的物体(可视为质点),从A点的正上方距离A点H处由静止开始自由下落(不计空气阻力),BC段为长L=2 m、与物体间动摩擦因数为μ=0.2的粗糙绝缘水平面,CD段为倾角θ=53°且离地面DE高h=0.8 m的斜面.(取g=10 m/s2)
(1)若H=1 m,物体能沿轨道AB到达最低点B,求它到达B点时对轨道的压力大小;
(2)通过你的计算判断:是否存在某一H值,能使物体沿轨道AB经过最低点B后最终停在距离B点0.8 m处;
(3)若高度H满足:0.85 m≤H≤1 m,请通过计算表示出物体从C处射出后打到的范围.(已知sin 53°=0.8,cos 53°=
0.6.不需要计算过程,但要有具体的位置,不讨论物体反弹以后的情况)
突破训练2如图4所示,在竖直平面内,AB为水平放置的绝缘粗糙轨道,CD为竖直放置的足够长绝缘粗糙轨道,AB与CD通过四分之一绝缘光滑圆弧形轨道平滑连接,圆弧的圆心为O,半径R=0.50 m,轨道所在空间存在水平向右的匀强电场,电场强度的大小E=1.0×104N/C,现有质量m=0.20 kg,电荷量q=8.0×10-4C的带电体(可视为质点),从A点由静止开始运动,已知s AB=1.0 m,带电体与轨道AB、CD间的动摩擦因数均为0.5.假定带电体与轨道之间的最大静摩擦力和滑动摩擦力相等.求:(取g=10 m/s2)
(1)带电体运动到圆弧形轨道C点时的速度;
(2)带电体最终停在何处.
►题组1 带电粒子在交变电场中的运动
1.如图1甲所示,两平行金属板竖直放置,左极板接地,中间有小孔,右极板电势随时间变化的规律如图乙所示,电子原
来静止在左极板小孔处,不计电子的重力,下列说法正确的是
A .若t =0时刻释放电子,电子始终向右运动,直到打到右极板上
B .若t =0时刻释放电子,电子可能在两板间振动
C .若t =T /4时刻释放电子,电子可能在两板间振动,也可能打到右极板上
D .若t =3T /8时刻释放电子,电子必然打到左极板上
2.(2011·安徽·20)如图2(a)所示,两平行正对的金属板A 、B 间加有如图(b)所示的交变电压,一重力可忽略不计的带正电粒
子被固定在两板的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上.则t 0可能属于的时间段是 ( )
(a) (b)
图2
A .0<t 0<T 4
B.T 2<t 0<3T 4
C.
3T 4<t 0<T D .T <t 0<9T 8
3.空间某区域内存在着电场,电场线在竖直平面上的分布如图6所示.一个质量为m 、电荷量为q 的带电小球在该电场中运动,小球经过A 点时的速度大小为v 1,方向水平向右;运动至B 点时的速度大小为v 2,运动方向与水平方向之间的夹角为α,A 、B 两点间的高度差为h 、水平距离为s ,则以下判断正确的是
图6
A .A 、
B 两点的电场强度和电势关系为E A <E B 、φA <φB
B .如果v 2>v 1,则电场力一定做正功
C .A 、B 两点间的电势差为m 2q (v 22
-v 21) D .小球从A 点运动到B 点的过程中电场力做的功为12m v 22-12m v 21
-mgh。