太阳能光伏系统的详细介绍及分类
- 格式:pdf
- 大小:102.43 KB
- 文档页数:2
太阳能光伏系统组成太阳能光伏系统是一种以太阳能光伏电池为核心组件的能源转换系统。
充分利用太阳能资源,将太阳辐射能转换为电能,实现可再生能源的利用。
太阳能光伏系统主要由太阳能光伏电池组件、支架系统、逆变器、电池储能装置以及配电系统等组成。
1. 太阳能光伏电池组件太阳能光伏电池是太阳能光伏系统的核心部件,负责将太阳能辐射能转化为直流电能。
太阳能光伏电池一般由多个光伏电池片组成,光伏电池片利用光生电效应将太阳光转换为电能。
常见的光伏电池技术有单晶硅、多晶硅和薄膜太阳能电池等。
2. 支架系统支架系统是用于安装太阳能光伏电池组件的支架结构,可以将光伏电池组件固定在地面或屋顶等合适的位置。
支架系统需要具备抗风、抗震、防腐等特性,以确保太阳能光伏系统在各种环境条件下的稳定运行。
3. 逆变器逆变器是太阳能光伏系统中的重要组成部分,主要功能是将直流电能转换为交流电能。
太阳能光伏电池产生的电能为直流电,而家庭和工业用电通常是交流电。
逆变器不仅可以实现电能转换,还能够对电能进行调节和控制,确保太阳能光伏系统的稳定输出。
4. 电池储能装置电池储能装置是太阳能光伏系统的重要配件之一,用于储存光伏电池产生的电能。
通过储能装置,太阳能光伏系统可以在夜间或天气不好时继续供电。
目前常用的电池储能装置有铅酸电池、锂离子电池等,其容量和类型需根据实际需求进行选择。
5. 配电系统配电系统是太阳能光伏系统的配套设施,用于将发电产生的电能输送到需要使用的地方。
配电系统包括电缆、接线盒、断路器等组件,确保电能在不同设备之间的流通畅通,并提供过载保护等功能。
太阳能光伏系统的组成部分相互配合,共同完成电能的转化和输送。
其工作原理是,太阳能光伏电池组件吸收太阳光辐射,产生电能,并通过支架系统固定在合适的位置。
光伏电池组件的直流电能经过逆变器转换为交流电能,再通过电池储能装置进行储存,最后通过配电系统输送到需要使用的地方。
这样,人们就可以利用太阳能光伏系统提供的电能,实现对可再生能源的有效利用。
太阳能光伏发电系统的定义光伏系统定义:光伏系统是利用太阳电池组件和其他辅助设备将太阳能转换成电能的系统。
太阳能光伏系统的分类与介绍一般我们将光伏系统分为独立系统、并网系统和混合系统。
如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。
还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能供电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。
下面就每种系统的工作原理和特点进行说明。
1.小型太阳能供电系统(Small DC)该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。
其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。
如在我国西部地区就大面积推广使用了这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。
2.简单直流系统(Simple DC)该系统的特点是系统中的负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载供电,省去了能量在蓄电池中的储存和释放过程,以及控制器中的能量损失,提高了能量利用效率。
其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施中。
下图显示的就是一个简单直流的PV水泵系统。
这种系统在发展中国家的无纯净自来水供饮的地区得到了广泛的应用,产生了良好的社会效益。
3. 大型太阳能供电系统(Large DC)与上述两种光伏系统相比,这种光伏系统仍然是适用于直流电源系统,但是这种太阳能光伏系统通常负载功率较大,为了保证可以可靠地给负载提供稳定的电力供应,其相应的系统规模也较大,需要配备较大的光伏组件阵列以及较大的蓄电池组,其常见的应用形式有通信、遥测、监测设备电源,农村的集中供电,航标灯塔、路灯等。
简述太阳能光伏系统的组成,并对各部件的作用和原理等进行说明。
1. 引言1.1 概述太阳能光伏系统是一种利用太阳能转化为电能的技术系统。
它由不同的部件组成,包括太阳能电池板、逆变器和放大器等。
这些部件各自扮演着不同的角色,共同完成将太阳能转化为可用电能的过程。
1.2 文章结构本文将对太阳能光伏系统的组成进行简要介绍,并详细说明每个部件的作用和原理。
首先,将讨论太阳能光伏系统所包含的三个主要部件:太阳能电池板、逆变器和放大器。
然后,将分别阐述每个部件的作用和原理。
1.3 目标本文旨在帮助读者了解太阳能光伏系统的基本组成以及每个部件的作用和原理。
通过对该技术系统的深入理解,读者可以更好地认识到太阳能光伏领域中不同部件之间相互关联的重要性,并根据需要选择合适的组件搭建自己的太阳能光伏系统。
同时,也有助于加深对可再生能源利用以及环境保护的认识。
2. 太阳能光伏系统的组成太阳能光伏系统是由多个关键部件组成的,每个部件都具有特定的功能和作用。
下面将逐一介绍这些部件。
2.1 太阳能电池板(光伏电池)太阳能电池板是太阳能光伏系统中最核心的部件之一。
它使用光伏效应将太阳辐射转换为直流电能。
当太阳辐射照射到电池板上时,通过半导体材料内PN结构的作用,光子激发了材料内的自由载流子,从而产生电流。
这个过程称为光伏效应。
2.2 逆变器(Inverter)逆变器是太阳能光伏系统中另一个重要的部件。
它负责将直流电转换为交流电,以便供给家庭或工业设备使用。
在太阳能光伏系统中,太阳能电池板产生的是直流电。
然而,我们通常使用的大多数家用设备和工业设备需要交流电才能正常工作。
因此,逆变器发挥着非常关键的作用。
逆变器通过使用先进的电子元件和控制技术来实现直流到交流的转换。
它接收来自太阳能电池板的直流电,并使用内部电路将其转换为符合需要的交流电。
此外,逆变器还可以调节输出电压和频率,以满足不同设备的要求。
2.3 放大器(Amplifier)放大器是太阳能光伏系统中用于增强信号强度和稳定输出的部件。
太阳能光伏系统的分类
在实际运用中,光伏发电系统因应用对象的不同而不同。
从结构上,太阳能系统可以分为三个基本类型:独立型、并网型和混合型。
1.独立型光伏发电系统
在独立型系统中,蓄电池作为储能单元是不可缺少的。
因为独立型并不与电网连接,它在白天通过逆变器把能量储存到蓄电池中,然后晚上再逆变出来以供使用。
为了延长蓄电池的寿命,直流控制中应具有一个调节和保护环节来控制蓄电池的充放电过程的速率和深
度。
2.并网型光伏发电系统
在有公共电网的地区,光伏发电系统可以和电网相连接,但是这时你使用的逆变器不在是离网逆变器,而是并网逆变器。
并网发电系统的优点是系统可以省去蓄电池而将电网作为储能单元。
当日照很强时,系统将所发的电回馈给电网,而当需要用电的时候在利用电网中的电力。
该系统可以省去蓄电池的成本。
3.混合型光伏发电系统
混合型发电系统是在系统中增加一台备用发电机组,当光伏发电不足或者是蓄电池储存的能量不足时,就启用发电机。
它既可以直接给交流负载供电,又可以经整流后给蓄电池补充能量。
在混合系统中还可以由
两种可再生能源发电技术构成混合系统,最常见的风光互补系统。
太阳能光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。
这种技术的关键元件是太阳能电池。
太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。
太阳能光伏发电的优点是较少受地域限制,因为阳光普照大地;光伏系统还具有安全可靠、无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设周期短的优点。
一、太阳能光伏发电系统的分类太阳能光伏系统分为离网光伏发电系统、并网光伏发电系统和分布式光伏发电系统:1、离网光伏发电系统。
主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。
2、并网光伏发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电这后直接接入公共电网。
并网发电系统有集中式大型并网电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。
但这种电站投资大、建设周期长、占地面积大,还没有太大发展。
而分散式小型并网发电系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网发电的主流。
3、分布式光伏发电系统,又称分散式发电或分布式供能,是指在用户现场或靠近用电现场配置较小的光伏发电供电系统,以满足特定用户的需求,支持现存配电网的经济运行,或者同时满足这两个方面的要求。
二、太阳能光伏系统的组成1、太阳能板:太阳能电池板是太阳能光伏系统中的核心部分,太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。
太阳能电池板是太阳能光伏系统中最重要的部件之一,其转换率和使用寿命是决定太阳电池是否具有使用价值的重要因素。
2、控制器:太阳能控制器是由专用处理器CPU、电子元器件、显示器、开关功率管等组成。
3、蓄电池:蓄电池的作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。
4、逆变器:太阳能的直接输出一般都是12VDC、24VDC、48VDC。
太阳能光伏电源系统的原理及组成太阳能光伏电源系统是一种利用太阳能转化为电能的系统。
它基于光电效应原理,利用光伏发电技术将太阳能转化为直流电能,再通过逆变器将直流电转换为交流电,供应给家庭、工业和商业等领域使用。
该系统由太阳能光伏电池板、充电控制器、电池组、逆变器和配电系统等组成。
太阳能光伏电池板是太阳能光伏电源系统的核心部件,它由光伏电池组成。
光伏电池是一种将太阳能转化为直流电能的半导体材料,常见的有单晶硅、多晶硅、铁硅等材料。
当阳光照射到光伏电池上时,光子的能量会激发电池中的电子,形成电场。
经过电池两端的导线,可以得到一定的直流电能。
充电控制器是太阳能光伏电源系统的重要组成部分,它主要起到控制电池充电和放电的作用。
充电控制器具有过充保护、放电保护、短路保护和过载保护等功能,可以确保电池的正常工作状态。
同时,充电控制器还可以对太阳能光伏电池板进行最大功率点追踪,以提高系统的电能转化效率。
电池组是太阳能光伏电源系统的储能装置。
在白天,当太阳能光伏电池板发电量超过负载需求时,多余的电能会被储存在电池组中。
在夜晚或阴天,当太阳能光伏电池板的发电量不足以满足负载需求时,电池组会释放储存的电能,供应给负载使用。
目前常用的电池组有铅酸蓄电池、锂离子电池等。
逆变器是太阳能光伏电源系统的关键设备,它主要负责将直流电转换为交流电。
逆变器具有稳压、稳频、峰值电压调整等功能,可以将直流电能转换为满足负载需求的交流电能。
逆变器的输出功率一般要与负载需求匹配,以确保系统的正常运行。
配电系统是太阳能光伏电源系统的最后一部分,它负责将逆变器输出的交流电能分配给各个负载。
配电系统包括配电箱、电线和开关等设备,可以将电能送达到各个用电设备,满足用户的电能需求。
总的来说,太阳能光伏电源系统的原理是利用光电效应将太阳能转化为电能,并通过充电控制器、电池组、逆变器和配电系统等设备实现电能的储存和供应。
该系统的组成部分都起到重要的作用,确保太阳能光伏电源系统的高效、稳定和可靠运行。
光伏的定义及分类
(原创版)
目录
一、光伏设备的定义
二、光伏设备的分类
1.硅棒/硅锭制造设备
2.硅片/晶圆制造设备
3.电池片制造设备
4.晶体硅电池组件制造设备
5.薄膜组件制造设备
三、光伏发电系统的分类
1.独立光伏发电系统
2.并网光伏发电系统
3.分布式光伏发电系统
四、光伏电站的分类
1.小型电站
2.大型电站
正文
光伏设备是指光伏制造型企业用于生产原料、电池组件、零部件等产品中使用的,并在反复使用中基本保持原有实物形态和功能的机器设备。
光伏设备主要包括硅棒/硅锭制造设备、硅片/晶圆制造设备、电池片制造设备、晶体硅电池组件制造设备、薄膜组件制造设备等 5 大类。
硅棒/硅锭制造设备主要包括完整生产线、硅棒硅锭生长设备、检验/
测试设备、切割/研磨设备等。
硅片/晶圆制造设备则包括完整生产线、切割设备、清洗设备等。
电池片制造设备主要负责将硅片/晶圆加工成电池片。
晶体硅电池组件制造设备和薄膜组件制造设备则分别负责将电池片组装成晶体硅电池组件和薄膜电池组件。
光伏发电系统根据运行方式可分为独立光伏发电系统、并网光伏发电系统和分布式光伏发电系统。
独立光伏发电系统,也称离网光伏发电,主要由太阳能电池板、蓄电池、控制器和负载等组成。
并网光伏发电系统则是将光伏发电产生的电能直接接入公共电网,与传统发电方式共同为电力系统供电。
分布式光伏发电系统则主要应用于用户侧,通过光伏发电为附近负载提供电力。
根据电压等级,光伏电站可分为小型电站和大型电站。
光伏系统介绍
光伏系统是一种利用太阳能光辐射产生电能的系统。
它通过光伏发电技术将太阳光转化为电能,为可再生能源领域做出了重要贡献。
以下是光伏系统的基本介绍:
1. 光伏组件:光伏系统的核心部件是光伏组件,也称为太阳能电池板。
光伏组件由多个光伏电池单元组成,这些单元能够将光能直接转化为电能。
2. 光伏阵列:多个光伏组件通过串联或并联连接形成光伏阵列。
光伏阵列的功率输出取决于组件数量和光照强度。
3. 逆变器:光伏阵列产生的直流(DC)电能需要经过逆变器转换为交流(AC)电能,以供应给家庭、工业或商业用电系统使用。
4. 支架和安装系统:光伏组件通常需要安装在支架上,以便正确地朝向太阳并最大程度地接收光照。
支架系统还需要考虑结构稳定性和安全性。
5. 电网连接:光伏系统可以与电网进行连接,通过电网进行电力交换。
在白天,光伏系统可以向电网输送多余的电能;在夜晚或光照不足时,可以从电网获取电能。
6. 储能系统:有些光伏系统配备储能系统,如电池组,用于存储白天产生的多余电能,以便在夜晚或云雨天使用。
7. 监控与控制系统:为了监测和管理光伏系统的性能,通常配备监控与控制系统。
该系统可以实时监测发电量、电压、温度等参数,并通过数据分析和故障检测提供性能优化和故障排除。
光伏系统是一种清洁、可再生的能源解决方案,具有环保、可持续和经济性等优点。
它被广泛应用于居民住宅、商业建筑和大型发电站等领域,为可持续能源发展做出了重要贡献。
太阳能光伏系统的分类详细介绍
一般我们将光伏系统分为独立系统、并网系统和混合系统。
如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。
还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能发电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。
下面就每种系统的工作原理和特点进行说明。
1.小型太阳能供电系统(Small DC)
该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。
其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。
如在我国西部地区就大面积推广使用了这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。
2.简单直流系统(Simple DC)
该系统的特点是系统中的负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载供电,
省去了能量在蓄电池中的储存和释放过程,以及控制器中的能量损失,提高了能量利用效率。
其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施中。
下图显示的就是一个简单直流的PV水泵系统。
这种系统在发展中国家的无纯净自来水供饮的地区得到了广泛的应用,产生了良好的社会效益。
3 大型太阳能供电系统(Large DC)
与上述两种光伏系统相比,这种光伏系统仍然是适用于直流电源系统,但是这种太阳能光伏系统通常负载功率较大,为了保证可以可靠地给负载提供稳定的电力供应,其相应的系统规模也较大,需要配备较大的光伏组件阵列以及较大的太阳能蓄电池组,其常见的应用形式有通信、遥测、监测设备电源,农村的集中供电,航标灯塔、路灯等。
我国在西部一些无电地区建设的部分乡村光伏电站就是采用的这种形式,中国移动公司和中国联通公司在偏僻无电网地区建设的通讯基站也有采用这种光伏系统供电的。
如山西万家寨的通讯基站工程。
4 交流、直流供电系统(AC/DC)
与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载的需求。
通常这种系统的负载耗电量也比较大,从而系统的规模也较大。
在一些同时具有交流和直流负载的通讯基站和其它一些含有交、直流负载的光伏电站中得到应用。
5并网系统(Utility Grid Connect)
种太阳能光伏系统最大的特点就是光伏阵列产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入市电网络,并网系统中PV方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。
在阴雨天或夜晚,光伏阵列没有产生电能或者产生的电能不能满足负载需求时就由电网供电。
因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用PV方阵所发的电力从而减小了能量的损耗,并降低了系统的成本。
但是系统中需要专用的并网逆变器,以保证输出的电力满足电网电力对电压,频率等指标的要求。
因为逆变器效率的问题,还是会有部分的能量损失。
这种系统通常能够并行使用市电和太阳能光伏组件阵列作为本地交流负载的电源。
降低了整个系统的负载缺电率。
而且并网 PV系统可以对公用电网起到调峰作用。
但是,并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。
6 混合供电系统(Hybrid)
这种太阳能光伏系统中除了使用太阳能光伏组件阵列之外,还使用了油机作为备用电源。
使用混合供电系统的目的就是为了综合利用各种发电技术的优点,避免各自的缺点。
比方说,上述的几种独立光伏系统的优点是维护少,缺点是能量的输出依赖于天气,不稳定。
综合使用柴油发电机和光伏阵列的混合供电系统和单一能源的独立系统相比就可以提供不依赖于天气的能源,它的优点是:
1. 使用混合供电系统的还可以达到可再生能源的更好的利用。
因为使用可再生能源的独立系统通常是按照最坏的情况进行设计,因为可再生能源是变化的,不稳定的,所以系统必须按照能量产生最少的时期进行设计。
由于系统是按照最差的情况进行设计,所以在其他的时间,系统的容量是过大的。
在太阳辐照最高峰时期产生的多余的能量没法使用而浪费了。
整个独立系统的性能就因此而降低。
如果最差月份的情况和其他月份差别很大,有可能导致浪费的能量等于甚至超过设计负载的需求。
2. 具有较高的系统实用性。
在独立系统中因为可再生能源的变化和不稳定会导致系统出现供电不能满足负载需求的情况,也就是
存在负载缺电情况,使用混合系统则会大大的降低负载缺电率。
3. 和单用柴油发电机的系统相比,具有较少的维护和使用较少的燃料。
4. 较高的燃油效率。
在低负荷的情况下,柴油机的燃油利用率很低,会造成燃油的浪费。
在混合系统中可以进行综合控制使得柴油机在额定功率附近工作,从而提高燃油效率。
5. 负载匹配更佳的灵活性。
使用混合系统之后,因为柴油发电机可以即时提供较大的功率,
所以混合系统可以适用于范围更加广泛的负载系统,例如可以使用较大的交流负载,冲击载荷等。
还可以更好的匹配负载和系统的发电。
只要在负载的高峰时期打开备用能源即可简单的办到。
有时候,负载的大小决定了需要使用混合系统,大的负载需要很大的电流和很高的电压。
如果只是使用太阳能成本就会很高。
混合系统还有其自身的缺点:
1. 控制比较复杂。
因为使用了多种能源,所以系统需要监控每种能源的工作情况,处 理各个子能源系统之间的相互影响、协调整个系统的运作,这样就导致其控制系统比独立系统复杂,现在多使用微处理芯片进行系统管理。
2. 初期工程较大。
混合系统的设计,安装,施工工 程都比独立工程要大。
3. 比独立系统需要更多的维护。
油机的使用需要很多的维护工作,比如更换机油滤清器,燃油滤清器,火花塞等,还需要给燃油箱添加燃油等。
4. 污染和噪音。
光伏系统是无噪音,无排放的洁净能源利用,但是因为混合系统中使用了柴油机,这样就不可避免的产生噪音和污染。
很多在偏远无电地区的通信电源和民航导航设备电源,因为对电源的要求很高,都是采用的混合系统供电,以求达到最好的性价比。
我国新疆、云南建设的很多乡村光伏电站就是采用光/柴混合系统。
7 并网混合供电系统(Hybrid)
随着太阳能光电子产业的发展,出现了可以综合利用太阳能光伏组件阵列,市电和备用油机的并网混合供电系统。
这种系统通常是控制器和逆变器集成一体化,使用电脑芯片全面控制整个系统的运行,综合利用各种能源达到最佳的工作状态,并还可以使用蓄电池进一步提高系统的负载供电保障率,例如AES的SMD逆变器系统。
该系统可以为本地负载提供合格的电源,并可以作为一个在线的UPS(不间断电源)工作。
还可以向电网供电或者从电网获得电力。
系统的工作方式通常的是将市电和太阳能电源并行工作,对于本地负载而言,如果光伏组件产生的电能足够负载使用,它将直接使用光伏组件产生的电能供给负载的需求。
如果光伏组件产生的电能超过即时负载的需求还能将多余的电能返回到电网;如果光伏组件产生的电能不够用,则将自动启用市电,使用市电供给本地负载的需求,而且,当本地负载的功率消耗小于SMD逆变器的额定市电容量的60%时,市电就会自动给蓄电池充电,保证蓄电池长期处于浮充状态;如果市电产生故障,即市电停电或者是市电的品质不合格,系统就会自动的断开市电,转成独立工作模式,由蓄电池和逆变器提供负载所需的交流电能。
一旦市电恢复正常,即电压和频率都恢复到上述的正常状态以内,系统就会断开蓄电池,改为并网模式工作,由市电供电。
有的并网混合供电系统中还可以将系统监控、控制和数据采集功能集成在控制芯片中。
这种系统的核心器件是控制器和逆变器。
(太阳能人才太阳能招聘人才招聘太阳能商情网)。