中考数学压轴题解题思路与应试技巧
- 格式:doc
- 大小:284.00 KB
- 文档页数:6
中考数学压轴题的常见类型与解题思路中考数学压轴题通常是对学生多个知识点综合考察的题目,要求考生综合运用所学的数学知识进行解答。
下面是一些常见类型的中考数学压轴题及其解题思路。
1. 几何题几何题是中考数学中常见的题型之一。
几何题涉及图形的性质、计算图形的面积、周长和体积等等。
解决几何题的关键是要熟悉几何的基本定理和公式,并通过观察图形性质找到解题思路。
2. 基础运算题基础运算题是中考数学中的重点内容,包括四则运算、分数运算、百分数运算等等。
解决基础运算题的关键是熟练掌握运算规则和方法,有条理地进行计算。
3. 等式方程题等式方程题是中考数学中常见的题型之一。
解决等式方程题的关键是要根据题目给出的条件建立方程,然后通过运用方程的性质解题。
在解题过程中,要注意合理运用方程的基本性质和解方程的方法。
4. 函数题函数题是中考数学中的重要内容,要求考生熟练掌握函数的定义、性质和运算。
解决函数题的关键是要根据给定的函数关系或函数图像进行分析,确定函数的性质,并运用函数的定义和性质解答问题。
5. 统计与概率题统计与概率题是中考数学中常见的题型之一。
解决统计与概率题的关键是要对给定的数据进行统计分析,找到规律,并运用统计学和概率学的知识解答问题。
6. 证明题证明题是中考数学中的重点内容,要求考生运用数学的推理和证明方法,通过有条理的推理过程证明结论。
解决证明题的关键是要理解证明的目标和要求,清晰地表述证明过程,运用合适的证明方法解答问题。
解决中考数学压轴题的关键是要熟练掌握数学的基本知识和运算方法,同时要灵活运用数学知识,善于找到解题的思路和方法。
在解题过程中,要注重思维的逻辑性和严密性,慎重选择解题思路,合理运用数学知识解答问题。
通过对各个题型的系统练习和深入理解,可以提高解题能力,应对中考数学压轴题。
中考数学压轴题的常见类型与解题思路中考数学压轴题是中考数学试卷中的难点题目,通常是在考察学生对数学知识的深层理解和运用能力。
在中考数学压轴题中,常见的类型包括填空题、选择题、解答题等,涉及的知识点也广泛,如代数、几何、概率统计等。
下面将分别介绍中考数学压轴题的常见类型与解题思路。
一、填空题中考数学压轴题中的填空题往往考察学生对知识点的深层理解和运用能力。
填空题通常涉及代数、几何、概率统计等多个知识点,要求学生根据题目所给信息进行逻辑推理和计算,最终得出正确答案。
解题思路:1.审题:仔细阅读题目,明确要求填入的数据或公式,搞清题意。
2.列出已知条件:把题目中所给的信息一一列出,明确已知条件。
3.推理和计算:根据已知条件进行推理和计算,利用相关的数学公式或方法解题。
4.结果验证:算出结果后,需对答案进行验证,确保填入的数值或公式正确无误。
二、选择题中考数学压轴题中的选择题通常考察学生对知识点的掌握程度和运用能力。
选择题类型多样,既有单项选择题,也有不定项选择题,要求学生在有限的时间内作出正确选择。
解题思路:1.通读选项:先通读全部选项,了解每个选项的意思和含义。
2.分析题目:根据题目的要求,分析所给信息并确定相关知识点。
3.排除干扰:排除明显错误或无关的选项,缩小答案范围。
4.明确答案:通过对选项的排除及相关知识点的应用,确定最终答案。
三、解答题解题思路:1.理清思路:首先要理清解题思路,明确题目要求和解题方法。
2.列出所需步骤:根据题目要求,列出解题所需的步骤和计算方法。
3.细致计算:根据题目所给信息,进行细致计算和逻辑推理,得出正确答案。
4.解题亮点:在解答过程中,可适当突出解题亮点,以突显解题思路和方法。
总结而言,中考数学压轴题的常见类型包括填空题、选择题和解答题。
在解题过程中,学生需要通过仔细审题、列出已知条件、推理和计算、结果验证等步骤来解决填空题;而在选择题中,要通过通读选项、分析题目、排除干扰、明确答案等步骤来进行解答,而解答题则需要通过理清思路、列出所需步骤、细致计算、解题亮点等步骤来解决问题。
初中数学中考压轴题的解题策略与技巧作为初中数学考试中的重要组成部分,中考压轴题往往是最能考察学生数学知识和解题能力的部分。
因此,成功解答中考压轴题对于学生提高数学成绩和进入理想高中是至关重要的。
在本文中,我们将探讨一些成功解答中考压轴题的策略和技巧,旨在帮助学生在考试中取得更好的成绩。
一、学会分析题目初中数学中考中的压轴题难度都非常高,要求学生具有较高的数学思维能力。
因此,我们在解题前一定要认真地分析题目,了解题目中所涉及到的概念和知识点,找到题目的核心思想和解题方法。
特别是对于一些较长的综合题目,我们要有耐心地认真读题,分析题意和条件,寻找相应的数学模型,方能写出正确的答案。
二、注重练习练习是提高数学成绩最有效的方法之一,也是解决压轴题的关键。
通过练习,不仅可以加深对数学知识的理解,还可以提高解题速度和技巧。
因此,我们要多做一些难度适当的练习题,积累经验,并不断总结经验和教训。
三、基本功要扎实初中数学中考压轴题要求学生很好地掌握基本知识和基本技能,在数学基础上形成解题思路。
基础技能的训练需要掌握好基本的数学计算技能,例如,四则运算、分数运算、代数式、函数图像的作图等。
只有把基础掌握好了,才能够在复杂的数学问题中融会贯通,快速出答案。
四、善用信息在解决压轴题的时候,我们需要尽可能多地获取相关的信息,利用题目中提供的信息,把问题变得更加容易。
有时,问题难在信息获取上,信息获取不到无从下手,这时我们要利用数学知识和解题技巧,搜索可用信息。
另外,通过画图、列式等方式,也可以更加清晰的得到信息,方便下一步的解答。
五、多思维初中数学往往考查学生的思维能力,例如想象能力、空间思维能力、逻辑思维和推理能力。
因此,为了成功解决中考压轴题,我们需要加强自己的思维能力,开放思维,勇于挑战难题。
在平时练习中,要多进行思维训练,像解谜游戏一样,考虑能否从多个不同的角度解决问题。
六、千万不可翘掉基础知识在应对中考压轴题的时候,我们不能忘记基础知识,不要因为太过执着于高级知识而忽略了基础知识的重要性。
中考数学压轴题的常见类型与解题思路
中考数学压轴题是考试中最难的题型,涉及的内容相对较为复杂,解题思路也较为繁琐。
以下是一些中考数学压轴题的常见类型和解题思路。
常见类型一:应用题
应用题是中考数学压轴题中最常见的类型之一。
这类题目通常涉及实际问题,需要运用数学知识进行分析和计算。
解题思路:
1. 仔细阅读题目,理解问题的背景和要求。
2. 分析问题,确定解题的核心思路和步骤。
3. 运用所学的数学知识和技巧,进行计算和推理。
4. 对结果进行合理性检验,确保解答的准确性和完整性。
解题思路:
1. 仔细观察图形,寻找图形的性质和特点。
2. 运用几何性质和定理,进行推理和证明。
3. 利用几何性质,绘制等边、等腰和直角三角形等特殊图形进行推理和计算。
4. 运用实际问题,将几何题转化为代数问题,从而更好地解决问题。
总结:
中考数学压轴题的常见类型包括应用题、几何题、代数题和概率题等。
解题时需要仔细阅读题目、分析问题、运用所学的数学知识和技巧进行计算和推理,并对结果进行合理性检验。
通过充分的准备和练习,掌握解题的方法和技巧,就能够更好地应对中考数学压轴题。
初中数学压轴题解题思路初中数学压轴题,概括而言,是中考数学试卷中难度最高、热度最高的一道题目。
解题思路、解题技巧、解题方法无疑是备考中考数学不可或缺的环节。
本篇文档,将为初中数学压轴题的解题思路提供一些指导和建议。
一、理清题意初中数学压轴题往往设计复杂,需要我们像抽丝剥茧一样,去理清其内在的逻辑关系。
在开始解题前,我们需要先仔细阅读题目,弄清楚数据的含义、问题要求等一系列问题。
理清题意有助于确定解题方向和思路,避免在接下来的解题过程中陷入死胡同。
二、划重点在理清题意之后,我们需要进行取舍和划分。
初中数学压轴题往往有多个要点和问题,但并不是所有问题都同等重要。
在解题过程中,重点和难点要抓住,适当舍弃次要的问题。
此时可以标记式子、关键词等内容,以帮助全盘把握。
三、找到解题方案如果我们在理清题意和划重点后可以在短时间内找到解题方案,那么问题解决基本上就已经成功了一半。
解题方案可能是套用公式、构造等等。
我们需要按照解题方案就行思考,避免胡乱猜测,导致解题方向偏离。
四、重点问题攻略初中数学压轴题通常包含多项求解,其中一些问题需要特别注意。
1.多步骤的分析过程:解题过程中可能需要采取多步骤的分析,需要仔细考虑每一步之间的关系和逻辑。
2.特殊运算符:特别需要注意特殊运算符的特殊意义和用法,避免在运算中出现差错。
3.模型构建:初中数学压轴题中模型构建往往有一定的难度,对于这类题目,我们需要首先解构模型,清晰模型的逻辑关系,然后再对模型进行构造。
总之,初中数学压轴题不管题目的难度如何,只要我们理清思路、找到解题方案、慢慢攻略,并且平时多研究一些题目的解法,就一定会获得不错的成果。
这让我们更能够在中考数学考试中一展自己的才华。
新形势下研析中考数学压轴题的解题思路数学压轴题是中考数学考试中较为关键的题型,通常题目比较难、复杂,要求学生在有限的时间内运用所学知识进行解题。
针对新形势下中考数学压轴题的解题思路,可以从以下几个方面进行分析研究。
1. 注意题目的信息和要求:考生首先要对题目进行仔细阅读,理解题目的信息和要求。
可以标注、圈出关键信息,明确题目要求。
2. 确定解题思路:对于复杂的压轴题,需要考生明确解题的思路和方法。
可以根据题目信息,判断是需要运用哪个知识点和方法进行解题。
可以通过列方程、绘图、借助辅助线等方式,确定解题思路。
3. 分析题目并抓住关键点:在解题过程中,考生应当对题目进行分析,并抓住关键点。
可以通过画出图形、列出等式等方式,将题目的条件和要求转化为数学表达式。
4. 刻意练习提高解题速度:中考数学压轴题的时间要求较为紧张,要求考生能够迅速、准确地解题。
考生可以通过刻意练习来提高解题速度。
可以选择一些经典的压轴题进行反复练习,熟悉各种解题方法和技巧,提高解题能力。
5. 多思考多探究多尝试:在解题过程中,考生应当多思考、多探究、多尝试。
可以尝试不同的方法和角度来解题,培养灵活的思维方式。
可以通过多看别人的解题思路和方法,扩展自己的解题思路。
6. 引导学生形成数学思维:对于新形势下的中考数学压轴题,考生还需要形成一种较强的数学思维。
数学思维是解决问题的关键,它包括抽象思维、逻辑思维、归纳思维等。
可以通过数学拓展训练、数学思维培养等方式,引导学生形成扎实的数学思维。
针对新形势下的中考数学压轴题,考生应当注重对题目的仔细分析,确定解题思路。
在解题过程中,要注意抓住关键点,多尝试多探究,形成良好的数学思维。
通过刻意练习提高解题速度和准确性,提高解题能力。
中考数学压轴题攻略
一、中考数学压轴题命题规律
1. 知识分布:数形结合思想、分类讨论思想、函数与方程思想、应用题。
2. 题型:几何压轴题、代数压轴题、几何代数综合压轴题。
3. 解题方法:构造法、分类讨论法、反证法、图解法。
二、中考数学压轴题难度的原因
1. 题目的设计包含了多个知识点,要求学生具有发散思维和综合能力。
2. 题目的解题方法多样,要求学生有深入的思考和研究。
3. 题目信息量大,需要学生有筛选和整理信息的能力。
4. 题目设计有陷阱,要求学生细心审题,避免失误。
三、中考数学压轴题解题策略
1. 认真审题,理解题意,确定解题思路。
2. 挖掘已知条件,找出关键信息和隐藏信息。
3. 运用所学知识,将问题分解为若干个较小的部分,逐一解决。
4. 综合各部分的结果,得出答案。
四、中考数学压轴题训练方法
1. 多做真题,熟悉题型和解题方法。
2. 注重基础知识的掌握,不要忽视课本上的例题和练习题。
3. 培养自己的思维能力和解决问题的能力。
4. 学会总结和归纳,找出自己的薄弱环节,针对性地加强训练。
5. 在考试中保持冷静,不要因为遇到难题而影响心态。
五、中考数学压轴题注意事项
1. 注意时间分配,不要在难题上花费太多时间。
2. 注意解题步骤的清晰和完整,不要跳步或省略步骤。
3. 注意答案的准确性和规范性,不要犯低级错误。
4. 注意心态的调整,不要因为遇到难题而产生负面情绪。
初三数学压轴题在数学学习中占据着非常重要的地位,下面我将为您提供一些解题方法和技巧,以帮助您更好地解决这些难题。
1. 熟悉基本概念和公式:在解题之前,首先要熟练掌握相关的基本概念和公式。
这包括对代数、几何、三角函数等基本概念的深入理解,以及掌握各种常用的数学公式。
2. 仔细审题:审题是解题的关键步骤。
在审题时,需要明确问题的要求和条件,并尝试从问题入手,找出解题的突破口。
同时,要注意题目中的隐含条件,这些条件往往会成为解题的关键。
3. 善于运用转化思想:转化思想是数学解题中非常重要的思想。
通过转化,可以将复杂的问题转化为简单的问题,将未知的问题转化为已知的问题。
因此,在解题时,要善于运用转化思想,寻找问题的突破口。
4. 学会归纳和总结:归纳和总结是解题的重要环节。
在解题过程中,需要不断总结归纳题目中的信息和条件,找出规律和解题方法。
同时,在解题后要及时总结和反思,加深对题目的理解和掌握。
5. 实践练习:要想真正掌握压轴题的解题方法,必须通过大量的实践练习。
只有通过不断地练习,才能逐渐掌握各种解题技巧和方法,提高解题能力。
在练习时,可以采用模拟试题、历年考题等素材进行练习。
总之,初三数学压轴题的解题方法需要不断地积累和实践。
只有在熟练掌握基本概念和公式的基础上,通过仔细审题、转化思想、归纳总结和实践练习等步骤,才能逐步提高解题能力,攻克压轴题的难关。
初三数学压轴题解题技巧和方法
1. 压轴题解题技巧
认真审题,弄清题意。
压轴题通常会给出含多个未知数的一元二次方程或
二元一次方程组,并伴随一些其他条件或限制。
首先,要明确题目要求解什么,以及给出的条件和限制是什么。
尝试化简方程或方程组。
如果方程或方程组较为复杂,尝试将其化简,以
便更容易找到解题思路。
寻找等量关系。
压轴题中通常会有一些等量关系,如面积、体积、角度等。
找到这些等量关系,可以帮助我们找到解题的突破口。
尝试使用代数方法。
对于一些压轴题,代数方法可能比较适用。
例如,通
过对方程进行变形、替换或解方程等,可以找到未知数的值。
画图分析。
对于一些几何压轴题,可以通过画图来帮助分析。
在画图的过
程中,可以更好地理解题目的条件和要求,从而找到解题思路。
2. 压轴题方法总结
代数法:通过对方程进行变形、替换或解方程等,找到未知数的值。
几何法:通过画图来帮助分析,更好地理解题目的条件和要求,从而找到
解题思路。
等量关系法:通过寻找等量关系,如面积、体积、角度等,找到解题的突
破口。
化简法:将复杂的方程或方程组化简,以便更容易找到解题思路。
中考数学压轴题题型解题思路技巧中考数学压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性。
其中,函数型综合题和几何型综合题是常见的题型。
对于函数型综合题,首先需要求出函数的解析式,然后根据图形的研究求出点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,而求点的坐标则可运用几何法或代数法。
对于几何型综合题,先给定几何图形,根据已知条件进行计算。
然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
关键是列出包含自变量和因变量之间的等量关系,变形写成y=f(x)的形式。
寻找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置和根据解析式求解。
解中考压轴题的思路是,以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法,如运用函数与方程思想、分类讨论的思想和转化的数学思想。
在解中考压轴题时,需要注意分离为相对独立而又单一的知识或方法组块去思考和探究。
此外,要运用数学思想方法,对问题的条件或结论的多变性进行考察和探究,由已知向未知、由复杂向简单的转换。
这样才能更好地解决中考数学压轴题。
首先,我们需要全面了解自己的数学研究状况,以便在考试时准确定位重点,避免因为芝麻大题而失去西瓜。
因此,我们应该在心中为压轴题或难点设置时间限制,如果超过设定的时间限制,必须停下来,认真检查前面的题目,尽可能保证选择和填空题的正确性,同时检查前面的解答题。
二是要注意自己的心态,保持冷静。
在考试中,我们往往会因为一道题目而失去整个试卷的信心。
因此,我们应该学会控制自己的情绪,保持冷静和清醒的头脑,避免因为一道题目而影响整个考试的表现。
中考数学压轴题解题思路与应试技巧压轴题解题思路与应试技巧数学压轴题常分为两类:函数型压轴题和几何型压轴题.1.函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质.初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线.求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法).此类题基本在第最后两题中出现,基本设置2~3小问来呈现.2.几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等.求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式.一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求.找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法.求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解.而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值.几何型综合题基本是做为压轴题出现,一般设置3小问.解中考数学压轴题秘诀:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高.具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活.解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略.现介绍几种常用的解题策略,供初三同学参考:1.以坐标系为桥梁,运用数形结合思想:纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答.2.以直线或抛物线知识为载体,运用函数与方程思想:直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形.因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想.例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得.3.利用条件或结论的多变性,运用分类讨论的思想:分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点.4.综合多个知识点,运用等价转换思想:任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用.中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面.因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略.5.分问得分:中考压轴题一般在大题下都有两至三个小问,难易程度是第(1)小问较易,第(2)小问中等,第(3)小问偏难,在解答时要把第(1)小题问的分数一定拿到,第(2)小问的分数要力争拿到,第(3)小问的分数要争取得到,这样就大大提高了获得中考数学高分的可能性.6.分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分.因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏.数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型.综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现.压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质.下面结合实例谈谈解题方法:1.利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题【例1】在△ABC中,∠B=60°,BA=24cm,BC=16cm.(1)求△ABC的面积;(2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动.如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ 的面积是△ABC 的面积的一半?(3)在第(2)问题前提下,P,Q 两点之间的距离是多少?点评:此题关键是明确点P 、Q 在△ABC 边上的位置,有三种情况.①当0﹤t ≦6时,P 、Q 分别在AB 、BC 边上;②当6﹤t ≦8时,P 、Q 分别在AB 延长线上和BC 边上;③当t >8时, P 、Q 分别在AB 、BC 边上延长线上.然后分别用第一步的方法列方程求解.【例2】已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A →B → C →E 运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y.(1)写出y 与x 的关系式;(2)求当y =13时,x 的值等于多少? 点评:这个问题的关键是明确点P 在四边形ABCD 边上的位置,根据题意点P 的位置分三种情况:分别在AB 上、BC 边上、EC 边上.2.利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程.【例3】如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?【参考答案】(1)①∵1t =秒,∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点,∴5BD =厘米.又∵8PC BC BP BC =-=,厘米,∴835PC =-=厘米,∴PC BD =.又∵AB AC =,∴B C ∠=∠,∴BPD CQP △≌△.②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒,∴515443Q CQ v t===厘米/秒. (2)设经过x 秒后点P 与点Q 第一次相遇,由题意, 得1532104x x =+⨯,解得803x =秒. ∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇. 第一是以静化动,把问的某某秒后的那个时间想想成一个点,然后再去解,第二是对称性,如果是二次函数的题,一定要注意对称性.第三是关系法:你可以就按照图来,就算是图画的在不对,只要你把该要的条件列成一些关系,列出一些方程来.中等的动点题也就没问题了.但是在难一点的动点题就要你的能力了,比如让你找等腰三角形的题,最好带着圆规,这样的题你要从三个顶点考虑,每一条边都要想好,然后再求出来看看在不在某个范围内.练一练1.对称翻折平移旋转【练一练1】如图12,把抛物线2y x =-(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .(1)分别写出抛物线1l 与2l 的解析式;(2)设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线1l 上是否存在点M ,使得ABM AOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2.动态:动点、动线【练一练2】如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、x 2是方程x 2-2x -8=0的两个根.(1)求这条抛物线的解析式;(2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标;(3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.3.比例比值取值范围【练一练3】图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4).(1)求出图象与x 轴的交点A,B 的坐标;(2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.4.探究型【练一练4】如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标;(2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说 明理由.5.最值类【练一练5】如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C为菱形?若存在,请求出此时点P 的坐标;若不存在请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.。