重庆山地都市区1985_2010年土地利用变化地形特征分异研究_陈丹
- 格式:pdf
- 大小:968.73 KB
- 文档页数:7
重庆市主城区土地利用动态变化时空特征分析
鲁春阳;田永中;杨庆媛;文枫;胡渝春;万平
【期刊名称】《西南师范大学学报(自然科学版)》
【年(卷),期】2006(031)005
【摘要】基于重庆市主城区1996-2004年的土地利用变更调查数据,分析其土地利用动态变化的时空特征.认为:数量上,园地、林地、建设用地面积增加,其它地类减少,尤其是耕地大量减少,各地类变化的单一动态度差异明显,且各区土地利用变化的差异较大.程度上,8年来主城区的土地利用程度逐步提高.空间上,主城区建设用地的重心在向北部移动.并提出区域土地可持续利用的建议.
【总页数】4页(P186-189)
【作者】鲁春阳;田永中;杨庆媛;文枫;胡渝春;万平
【作者单位】西南大学,地理科学学院,重庆,400715;西南大学,地理科学学院,重庆,400715;西南大学,地理科学学院,重庆,400715;平顶山人才交流中心,河南,平顶山,467001;重庆市土地房屋勘测规划院,重庆,400012;重庆市土地房屋勘测规划院,重庆,400012
【正文语种】中文
【中图分类】F301.24
【相关文献】
1.重庆市主城区土地利用时空变化的图谱分析 [J], 李宇;杨华
2.重庆市主城区居住用地时空演变特征分析 [J], 赵义;杨庆媛;龙拥军;鲁春阳;洪辉;
陈琳琳
3.1990年~2015年南宁土地利用动态变化时空特征分析 [J], 李彩霞;邓帆;龚杰;闫妍
4.2003~2018年昆明市呈贡区土地利用动态变化时空特征分析 [J], 王译著; 黄亮
5.基于“源”“汇”理念的土地利用动态变化分析——以重庆市主城区为例 [J], 刘明皓;王耀兴
因版权原因,仅展示原文概要,查看原文内容请购买。
重庆山地植被在园林环境中的配置模式初探——以重庆龙头寺公园为例蒲晓芬【摘要】在各类建筑设计中,植物的绿化设计也是一个重要方面.绿化不仅是增加城市含氧量的有效方式,其在设计方面与建筑物的协调统一也是提高城市美观性与宜居性的一个重要手段.文章以具体的工程实例对景观设计进行探究,以有效提升园林绿化设计与城市景观的合理配置.【期刊名称】《居业》【年(卷),期】2016(000)005【总页数】2页(P35-36)【关键词】山地植被;龙头寺公园;植物配置;园路水体【作者】蒲晓芬【作者单位】西南大学园艺园林学院,重庆400715【正文语种】中文本文以重庆龙头寺公园植被分析为例,通过对龙头寺公园园林植物景观与具体园林环境进行归类整理,具体包括园路与植物景观、水体与植物景观、建筑与植物景观、地形与植物景观等几个方面,探究其规则与景观设计手法,进而提炼出科学性和艺术性兼备的植物配置模式。
山地植被景观是重庆山地公园的重要组成部分,同时也构成了重庆独特的自然风景资源。
多变的地形不仅为植物的选种提供了范围,同时独特的山地景观也为植物的搭配种植形式有所要求。
好的山地植被景观不仅要满足日常游览观赏的需要,同时也要满足其与公园其他景观的统一协调性设计以及生态功能。
重庆山地景观由于所处地理位置、地质性质及植被的特殊性,其植物配置方式需要更为全面和深入的思考。
2.1 龙头寺公园植被概况龙头寺公园位于重庆渝北区龙塔街道,占地43.33 hm2。
公园四周高,中间低,属谷地公园。
龙头寺公园,设七大功能区即入口景观展示区、科普园林景观区、幽谷湿地景观区、田园花海景观区、儿童游乐区、山林生态游憩区、服务管理区。
龙头寺公园内不仅植物种类非常丰富,而且植物配置多样,绿化率高达90%以上,可以称作是一个天然生态的植物园。
2.2 园路与山地植被景观(1)主路与山地植被景观园林道路是公园绿地的骨架,具有组织游览路线、连接不同景观区等重要功能。
经分析,由于龙头寺公园属谷地公园,地形变化大,所以在较多主路两旁有地形变化很大的坡地。
近30年来典型山地城市建设用地蔓延的时空特征分析
吕志强;代富强;周启刚;陈红顺
【期刊名称】《水土保持研究》
【年(卷),期】2014(21)1
【摘要】作为典型的山地城市,重庆市自改革开放的近30a内,区域建设用地的数量发生了很大变化,因此对其建设用地蔓延情况进行详细的了解十分必要。
通过构建拓扑关系指数区分建设用地蔓延类型,分析了1978—2007年不同研究时段、不同区域的建设用地在平面和立面的蔓延特征。
结果表明,研究区建设用地从5 885.69hm2增加到29347.47hm2;跳跃型发展是建设用地主要的蔓延类型;建设用地的蔓延使得区域建设用地的重心在竖向方向上由1978年的250.40m升高到2007年的284.61m。
近30a来重庆城区的建设用地增长迅速,建设用地的重心不断抬升,可能会影响到区域的生态安全,因此需从规划的角度对城市扩展进行科学合理的指导。
【总页数】5页(P193-197)
【关键词】山地城市;建设用地蔓延;时空特征;空间拓扑;重庆主城区
【作者】吕志强;代富强;周启刚;陈红顺
【作者单位】重庆工商大学;北京师范大学珠海分校
【正文语种】中文
【中图分类】F301.24
【相关文献】
1.沧州南部典型区近30年来气温演变特征分析 [J], 哈建强
2.近30年来广州市城市扩张的时空变化遥感监测与分析 [J], 余琪;钱乐祥;
3.近30年来云南省不同等级降水时空变化特征分析 [J], 杨丹丽;王杰;曹言
4.近30年来南京市不透水面时空演变特征分析 [J], 康翔;潘剑君
5.近30年来西安市城市用地扩展时空变化研究 [J], 封建民;赵敏宁;李晓华
因版权原因,仅展示原文概要,查看原文内容请购买。
重庆区县域山地城乡空间资源调查实践探索摘要:本文结合重庆近年来的实践经验,以山地城乡空间资源的类型、内容和分析路线为主要切入点,系统分析和归纳了影响山地城乡空间布局的主要空间资源的基本类型,提出了对这些空间资源进行调查和分析的技术路线和编制要求。
关键词:区县域山地城乡规划空间资源引言:2010年1月,重庆市开始施行的《重庆市城乡规划条例》提出了具有地方特色的“城乡总体规划”的规划类型。
这一类型与传统城市总体规划的区别是,其规划范围从城乡统筹的要求进行考虑,以区县行政辖区为总体规划的规划范围,统筹考虑城乡空间资源的分布。
2011年,随着新一轮区县城乡总体规划的编制,重庆市组织开展了全市31个远郊区县(2012年行政区划调整为29个)的城乡空间资源的调查和分析工作实践探索,主要目的是要全面、客观、准确的反映区县城乡空间资源的现状情况、制约要素、发展潜力,明确城乡规划建设控制区域,引导区县城乡规划科学制定和有序实施,为科学合理规划和控制城乡各类空间布局提供地方实践参考。
1.山地城乡空间资源的基本类型和主要内容重庆城乡空间资源调查围绕基本概况、资源能源、人口及城镇化、经济社会与产业发展、土地资源开发利用、城镇发展的现状及态势、用地适宜性评价、区域性基础设施、环境保护与防灾等九个方面的空间资源展开。
具体内容详见下表:类别主要内容基本概况历史沿革、行政区划、自然地理资源能源【水资源】:区县域内江、河的境内长度、出入境流量;湖泊、水库的面积、库容和水位标高;湿地的面积和特点;【能源】:域内各类能源的使用情况、消耗量等各类总量和人均指标;【旅游资源】:旅游景区、景点的范围图以及名称、类型、面积、图片等;旅游服务设施的分布图以及名称、等级、建设年代等;年旅游人数、旅游业收入、从业人员等统计数据;【矿产资源】:人口和城镇化【人口现状】: 人口结构分析以全域为单位进行分析,按照年龄、性别、产业人口分布、人口空间分布等四类进行分析。
基于“三生”空间的重庆市土地利用演变与城镇化关系研究师飞云;周宝同【期刊名称】《水土保持通报》【年(卷),期】2024(44)1【摘要】[目的]分析重庆市土地利用时空演变规律,探究土地利用转型及景观格局响应的演变特征与城镇化的关系,为重庆市“三生”土地规划与城镇化可持续发展提供数据支持。
[方法]基于“三生空间”功能分类的视角构建用地分类标准,利用2000,2010,2020年土地遥感影像和夜间灯光数据,采用转移矩阵、相关性分析及回归分析法进行分析。
[结果]①2000—2020年重庆市生产、生态空间总体减少,生活空间持续扩张。
2000—2010年,生产、生态空间减少191.87,252.95km^(2),生活空间增大446.03km^(2);2010—2020年,生产空间面积减少13.76km^(2),生态空间减少324.05km^(2),生活空间增大314.87km^(2)。
②重庆市生产功能向生活功能转化较为明显。
随着城镇化加强,生态空间转向生产空间显著,功能转变明显聚集于重庆市中心区域。
③重庆市空间景观破碎度减小,景观复杂度逐渐提高,林草水生态空间占据主导优势。
④2000—2010,2010—2020年土地利用面积变化对夜间灯光值的影响存在差异;2000年,城镇生活空间、农村生活空间变化对夜间灯光变化影响起主导作用,而2020年工业生产空间、城镇生活空间变化对夜间灯光变化影响较强。
[结论]重庆市各类空间发生相互转换,利用不同“三生”空间类型变化和城镇化的关系,推动土地规划与城镇化协调发展。
【总页数】11页(P227-237)【作者】师飞云;周宝同【作者单位】西南大学地理科学学院【正文语种】中文【中图分类】F301.2【相关文献】1.基于"三生空间"的村镇土地利用适宜性评价研究——以重庆市永川区为例2.基于"三生空间"的土地利用功能演变及生态环境响应——以桂西资源富集区为例3.基于“三生”空间的土地利用冲突时空演变特征研究——以厦门、漳州和泉州城市群为例4.基于“三生空间”的川西北高原土地利用格局与多功能时空演变5.基于“三生空间”的土地利用转型时空演变及其碳排放效应研究——以福建省为例因版权原因,仅展示原文概要,查看原文内容请购买。
第46卷 第2期2024年3月物探化探计算技术C O M P U T I N G T E C H N I Q U E S F O R G E O P H Y S I C A L A ND GE O C H E M I C A L E X P L O R A T I O NV o l .46 N o .2M a r .2024文章编号:1001-1749(2024)02-0224-11中国西南山地城市生态环境质量长时序变化及其评价以重庆市为例苟晓娟,刘 瑞,李谷琳(成都理工大学地球物理学院,成都 610059)摘 要:为研究中国西南地区山地城市的生态环境质量,选择以重庆市为例,利用遥感技术和G o o g l e E a r t h E n g i n e (G E E )平台,构建遥感生态指数(R S E I ,r e m o t e s e n s i n g e c o l o gi c a l i n d e x ),评价重庆市2000年~2021年的生态环境质量及其长时序变化㊂为探讨山地城市生态环境质量的主要影响因素,选取海拔㊁坡度㊁气温和降水四个影响因子,得到R S E I 的海拔依赖性与坡度依赖性以及R S E I 与气候因子的响应关系㊂结果表明:①遥感生态指数R S E I 总体呈上升趋势,生态质量为 优 的面积增加了130.27%,生态质量为 差 的面积减少了65.68%,生态环境有明显的改善;②从R S E I 随海拔㊁坡度变化曲线可以看出,0m ~1800m 范围内R S E I 缓慢增加,1800m~2800m 范围内开始减小,R S E I 随坡度增加而增长,坡度>40ʎ之后R S E I 趋于平稳;③从R S E I 与气候因子的响应曲线可以看出,温度和R S E I 呈负相关,温度越高,R S E I 越低;随着降水的增加,R S E I 指数逐渐上升㊂研究表明,使用G E E 平台可以对多云雾㊁植被覆盖度高的西南山地城市的生态环境质量进行长时序的监测和评价㊂研究结果可为中国西南地区山地城市的生态环境保护提供精细化管理,从而根据区域特色进行环境治理,实现生态环境与经济的协调发展㊂关键词:G o o g l e E a r t h E n gi n e ;R S E I ;西南山地城市;重庆;海拔;气候;生态保护中图分类号:X 821 文献标志码:A D O I :10.3969/j.i s s n .1001-1749.2024.02.12收稿日期:2022-11-15基金项目:地质灾害防治与地质环境保护国家重点实验室项目(S K L G P 2022K 026);福建省空间信息感知与智能处理重点实验室项目(F K L S I P I P 1002)第一作者:苟晓娟(1995 ),女,硕士,主要从事遥感与生态环境评估方面的研究,E -m a i l :1814869426@q q .c o m ㊂通信作者:刘瑞(1979 ),男,博士,副教授,主要从事地球探测与信息技术方面的研究,E -m a i l :l r @c d u t .e d u .c n㊂0 引言一个城市的生态环境是与人类生存和发展息息相关的气候资源㊁海洋资源㊁矿产资源㊁土地资源㊁生物资源㊁以及水资源的总称,是影响人类社会和经济可持续发展的综合生态系统,是人类生存和发展的主要物质来源[1]㊂生态环境质量的优劣不仅关系到人们的日常住行,更关系到人们的身心健康㊂随着我国经济社会的飞速发展,城市的工业化㊁城镇化水平不断提高,沥青㊁水泥等组成的不透水表面取代了部分土壤㊁湿地㊁水面以及植被等土地覆被类型,这个过程导致地表水分蒸腾减少㊁径流加速等一系列如城市热岛等的生态环境效应[2]㊂党的十八大以来,国家强调走集约㊁智能㊁绿色㊁低碳的新型城镇化道路㊂随着新时代中国经济和城镇化开始由高速增长转向高质量发展,国家日益重视生态环境评估与保护[3]㊂2006年,中华人民共和国生态环境部颁发了‘生态环境状况评价技术规范“[4],根据生物丰度指数,植被覆盖指数,水网密度指数,土地退化指数和环境质量指数构建的生态指数(E c o l o gi c a l I n d e x ,E I ),旨在对我国县级以上生态环境提供一种年度综合评价标准,在区域生态环境质量(E c o l o g i c a l E n v i r o n m e n t a l Q u a l i t y,E E Q)评估方面得到了广泛应用[5],王瑶等[6]以T M㊁S P O T4及Q u i c k B i r d遥感影像为数据源,运用生态环境状况评价技术评价北京市生态环境质量变化情况,发现降水量的减少㊁城市化扩张以及人为因素是影响生态环境质量变化的主要原因㊂随着人们对生态环境问题相关研究的重视,有关生态环境质量动态监测和评价的方法越来越多[7],随着美国L a n d-s a t卫星和法国S P O T卫星的发展,3S技术以快速㊁实时及范围广等监测特点在对生态环境的研究中成为了中坚力量,国内外学者通过遥感影像获取陆地表面的信息,并结合数学方法对生态环境进行了定量研究[8-12]㊂徐涵秋[13]在生态指数E I的基础上提出的遥感生态指数(r e m o t e s e n s i n g e c o l o g i c a l i n-d e x,R S E I),能够客观㊁快速监测和评价生态环境质量变化,与过去较为单一的量化生态状况的遥感指数如归一化植被指数(N D V I)㊁增强植被指数(E V I)㊁永久植被分数(P V F)和干旱条件指数(S D-C I)等不同,遥感生态指数结合了绿度㊁湿度㊁干度㊁热度,全面地评估了区域的综合生态状况㊂遥感生态指数所需要的四个指标获取简便且通俗易懂,并且权重不需要人为设定,是一种客观㊁便捷㊁高效的遥感生态环境质量监测和评价的技术手段[13-14]㊂笔者以重庆市为例,基于遥感技术研究中国西南地区山地城市的生态环境质量㊂重庆地处中国西南,滋养于长江与嘉陵江交汇处,四面群山环绕,是中国西南地区的经济中心和金融中心城市之一,是一座举世闻名的山城㊂三峡水库重庆段的生态环境历年来也受到学者们的关注[15]㊂我国西南地区地形复杂,以盆地㊁丘陵地形为主,北有黄土高原,南有云贵高原,西有青藏高原,东有巫山㊁大巴山,四周均是高山峻岭,重庆市作为西南山地城市的代表,其生态环境质量在2000年以来,随着城市化的发展和生态环境的有效治理,生态环境有了明显好转㊂研究重庆市的生态环境变化及其影响因素,可为学者研究西南地区的其他城市的生态提供参考㊂笔者基于遥感影像数据处理技术和G o o g l e E a r t h E n g i n e (G E E)平台,分析2000年~2021年重庆市的生态环境时空变化,并研究了海拔㊁坡度㊁气候因子对生态环境质量的作用,以期为重庆市的生态环境治理提供科学依据,为西南地区的生态环境保护提供因地制宜的措施㊂1研究区概况重庆市位于四川省西南部,拥有部分喀斯特地貌,是中国西南地区典型的山地城市,经纬度范围分别为东经105ʎ11'~110ʎ11'㊁北纬28ʎ10'~32ʎ13'㊂重庆作为中国西南地区的直辖市,经济发达,航运和商贸畅通,是西部大开发㊁ 一带一路 和长江经济带的重要战略支点㊂重庆市境内北有大巴山,南有大娄山㊁东有巫山,东南有武陵山,河流有长江㊁嘉陵江等,长江干流自西向东865k m流程,形成了著名的长江三峡㊂重庆气候属亚热带季风性湿润气候,年平均降水量较丰富,大部分地区在1000m m~ 1350m m,年平均气温16ħ~18ħ㊂重庆市最高海拔2796.8m,最低海拔73.1m,海拔高差达2723.7m,以山地为主,面积占76%,丘陵占22%㊂其中,海拔500m以下的面积占幅员面积38.61%;海拔500m~800m占幅员面积的25.41%;海拔800m~1200m占幅员面积的20.42%;海拔1200m以上占幅员面积的15.56%㊂重庆地势特点为:东南部㊁东北部高,中部和西部低,海拔由南北向长江河谷逐渐放缓[16-17]㊂图1研究区地理位置示意图F i g.1 A m a p s h o w i n g t h e g e o g r a p h i c a lp o s i t i o n o f t h e s t u d y a r e a2研究方法与预处理由于重庆市地处西南地区,遥感影像质量受云㊁雨遮盖影响较大,无云影像多集中于秋㊁冬季节,其他时期影像云量覆盖率高,同时考虑到夏季植被覆盖率较高,可用每一年的夏季影像进行生态环境的评价,因此在G E E平台上选择每年7月~9月的影像,并且筛选云量,对所选图像进行均值提取,消除5222期苟晓娟,等:中国西南山地城市生态环境质量长时序变化及其评价 以重庆市为例去云图像之间的色差等问题,以保证遥感影像数据来源的可靠性㊂构建遥感生态指数(R e m o t e S e n s i n g E c o l o g i c a l I n d e x,R S E I),需要4个指标,即绿度㊁湿度㊁热度㊁干度,笔者基于这四个指标选取M O D I S产品库中相应的标准产品作为数据源㊂影像数据来源于美国地质调查局(U S G S)(U S G S,h t t p s://e a r t h e x p l o r-e r.u s g s.g o v)M O D I S系列数据㊂数据来源具体见表1㊂1)M O D I S系列数据㊂G o o g l e e a r t h e n g i n e平台提供的M O D13A1V6产品空间分辨率为500m,时间分辨率16d,满足研究区对数据的需求㊂M O-D I S系列数据中的植被层即归一化植被指数(N o r-m a l i z e d D i f f e r e n c e V e g e t a t i o n I n d e x,N D V I),由国家海洋和大气管理局高级甚高分辨率辐射计(N O-A A-A V H R R)导出,M O D I S N D V I产品是由大气校正的双向地表反射率计算而来的,这些反射率被水㊁云㊁重气溶胶和云影掩盖㊂为构建R S E I,笔者选取M O D13A1V6产品N D V I波段㊂同时选取M O D11A2提供地表温度(L a n d S u r f a c e T e m p e r a-t u r e,L S T),求取R S E I的 热度 成分㊂M O D09A1V6卫星影像数据提供了T e r r a M O D I S波段1~7的表面光谱反射率,并进行了大气校正㊂对于每个像素,在高观测覆盖㊁低视角㊁无云或云影㊁气溶胶负荷的基础上,从8天复合材料内的所有采集中选择一个值㊂笔者使用M O D09A1计算湿度(W E T)以及干度(N o r m a l i z e d D i f f e r e n c e B u i l d-u p a n d S o i l I n d e x,N D B S I)㊂表1数据来源T a b.1T h e d a t a s o u r c e数据来源空间/时间分辨率用途时间跨度M O D13A1V6500m/16d提供N D V I2000~2021 M O D11A2V61k m/8d提供L S T2000~2021 M O D09A1500m/8d计算W E T和N D B S I2000~2021 2)气象数据㊂因气象站点数据在时间序列上缺失比较严重,难以满足长时间序列的研究,笔者选取来自高分辨率山地环境制图计划(F i n e R e s o l u t i o n M a p p i n g o f M o u n t a i n e n v i r o n m e n t,F R MM)再分析数据,‘中国30米分辨率气温数据集“㊁‘中国30米分辨率年降水量数据集“,为1991年~2020年30年气候年平均值,近似地代替2000年~2021年的平均值㊂该气象数据为本文的研究提供了很大的帮助㊂3)行政区矢量边界㊂研究区的行政边界数据下载于全国基础地理数据库(h t t p://w w w.w e b m a p.c n/)提供的2020年中国1ʒ400万省级行政区界线㊂2.2研究方法2.2.1 R S E I分量指标计算遥感生态指数的四个分量指标如公式所示: 1)绿度指标(N D V I):归一化植被指数N D V I 是应用最广泛的估算植被覆盖度的指数[18-21]㊂多种卫星遥感数据反演植被指数N D V I产品为研究生态环境提供了方便,因此笔者选用N D V I来代表绿度指标,如公式1所示:N D V I=(ρn i r-ρr e d)(ρn i r-ρr e d)(1)其中,式中ρn i r㊁ρr e d分别表示遥感影像所对应的红波段和近红外波段的反射率㊂2)热度指标(L S T):热度表示地球表面温度,太阳的热能被辐射到达地面后,一部分被反射,一部分被地面吸收,使地面增热,学者们基于卫星的热红外传感器观测到的地表热辐射进行地表温度的反演,本文使用M O D11A2V6中提供的L S T数据㊂3)干度指标(N D B S I):衡量一个地区因建筑用地㊁裸地造成的地表干度,城市地表干燥会对生活条件和生物丰富度产生巨大影响,成为衡量生态环境水平的重要指标[22]㊂为了量化一个地区的干度成分,笔者基于裸土指数(B I)[23]和基于建筑指数(I B I)构建了归一化差值累积和土壤指数(N D B-S I)[11]㊂如公式(2)~公式(4)所示:N D B S I=(B I+I B I)/2(2) I B I=2ρs w i r1ρs w i r1+ρn i r1-ρn i r1ρn i r1+ρr e d+ρg r e e n/ρg r e e n+ρs w i r12ρs w i r1ρs w i r1+ρn i r1+ρn i r1ρn i r1+ρr e d+ρg r e e n/ρg r e e n+ρs w i r1(3)B I=ρs w i r1+ρr e d-ρn i r1+ρb l u eρs w i r1+ρr e d+ρn i r1+ρb l u e(4)其中ρr e d㊁ρb l u e㊁ρg r e e n㊁ρn i r1和ρs w i r1分别为M O D09A1V6图像中对应波段的地表反射率㊂4)湿度指标(W E T):湿度指标反映了地球表面的水体和土壤㊁植被和绿地的湿润程度,与生态环境质量密切相关,已有研究证实K a u t h-T h o m a s(K-T)变换是一种有效的数据压缩和去冗余技术,其亮度㊁绿度和湿分量与表面物理参数直接相关[24-25],被广泛用于生态环境评价中的湿度监测[26]㊂笔者采用k-t变换后的多光谱影像的第三分量来表征622物探化探计算技术46卷R S E I的湿度指标㊂公式定义为公式5:W e t=c1ρr e d+c2ρn i r1+c3ρb l u e+c4ρg r e e n+c5ρn i r2 +c6ρs w i r1+c7ρs w i r2(5)其中ρr e d㊁ρn i r1㊁ρb l u e㊁ρg r e e n㊁ρn i r2㊁ρs w i r1和ρs w i r2分别代表M O D09A1图像的7个波段的反射率㊂对于M O D I S多波段图像,各波段系数为c1= 0.1147,c2=0.2489,c3=0.2408,c4= 0.3132,c5=-0.3122,c6=-0.6416,c7= -0.5087㊂2.2.2遥感生态指数模型构建R S E I是近几年提出的一种综合生态指数,专门利用遥感技术评估生态状况㊂遥感生态指数R S E I 的构建需要整合绿度(N D V I)㊁湿度(W E T)㊁热度(L S T)和干度(N D B S I)四个分量,再将四个单一分量进行叠加后,进行主成分分析(P r i n c i p a l C o m p o-n e n t A n a l y s i s,P C A),并将第一主成分作为R S E I 的值㊂利用主成分分析法可以根据每个指标对生态环境质量的贡献度来客观确定其权重,比以往的单一指标㊁人工确定权重的方法更为科学,不但能够同时整合绿度㊁湿度㊁热度㊁干度4个指标的信息,而且还能够以单一指标的形式代表地区的生态环境质量㊂因此,R S E I可以表示为:R S E I=f(N D V I,W E T,L S T,N D B S I)由于各指标的单位和数据范围不同,在进行主成分分析之前,需要将四个指标的值归一化在[0,1]范围内,R S E I值越大且靠近1,表示生态环境质量越好, R S E I值越小且靠近0,表示生态环境质量越差㊂2.2.3海拔梯度和坡度的影响重庆特殊的地形地貌,造成特殊的生态环境㊂海拔高度和坡度对地表热度㊁湿度㊁干度㊁绿度均有影响㊂海拔是影响植被类型及分布的重要因素,海拔升高不仅影响着地表水热状况,同时还会在一定程度上影响人类活动类型和范围,进而直接或间接影响遥感生态指数R S E I的空间分布特征㊂把海拔按梯度分为9个等级,分别为0m~ 300m,300m~600m,600m~900m,900m~ 1200m,1200m~1500m,1500m~1800m, 1800m~2100m,2100m~2400m,2400m~ 2800m㊂分析2000年~2021年遥感生态指数R S E I在每个梯度的变化㊂同理,将坡度分为7个等级,0ʎ~35ʎ范围以10ʎ为间隔划分,35ʎ~45ʎ以5ʎ为间隔划分,该划分方式更适合坡度相差较大的山地地区,分别为0ʎ~5ʎ,5ʎ~15ʎ,15ʎ~25ʎ,25ʎ~35ʎ, 35ʎ~40ʎ,40ʎ~45ʎ,>45ʎ,以期发现海拔与坡度对重庆市生态和环境质量的影响规律㊂3结果分析3.1生态环境质量评价通过对遥感生态指数模型的构建,在G o o g l e e a r t h e n g i n e平台中计算得到重庆市R S E I㊂为了更好地揭示过去22年重庆市生态环境的变化,参考徐涵秋[14]提供的生态分类方法,把重庆市R S E I值分为5个等级,以0.2为间隔,划分5个不同生态环境质量等级,即 优 ㊁ 良 ㊁ 一般 ㊁ 较差 ㊁ 差 ,R S E I在0~0.2范围内生态环境质量为 差 等级,在0.2~ 0.4范围内为 较差 等级,在0.4~0.6范围内为 一般 等级,在0.6~0.8范围内为 良 等级,R S E I在0.8~1范围内为 优 等级,得到图2重庆市生态环境质量等级及其空间分布特征,图2(a)~图2(f)分别为2000年㊁2005年㊁2010年㊁2015年㊁2018年㊁2021年的重庆市生态环境质量等级及其空间分布特征图㊂通过观察图2可以发现,重庆市的生态环境质量在这20多年里有大幅度提升,但仍具有空间上的差异,生态质量等级为 良 和 优 的地区大多为远离主城区的山地地区如渝东北和渝南,生态质量 差 和 较差 的地区集中在经济发达的主城区㊂2000年(图2(a))生态环境质量为 差 的区域在渝中区㊁江北区㊁沙坪坝区㊁九龙坡区和南岸区5区的交界地,处于重庆市经济中心,城市化水平高度发达,生态环境质量为 优 主要分布在城口县和巫溪县,该地区平均海拔在1000m,植被茂盛,生态环境较少受到人为的破坏㊂2005年(图2(b))可以看出,重庆市生态环境质量相比2000年(图2(a))大幅下降,渝西大部分(潼南区㊁合川区㊁铜梁区等)地区以及重庆北部延伸至东部(长寿区㊁涪陵区㊁万州区等区)生态环境质量等级均为 较差 ,这与2000年~2005年以来我国经济社会发展取得巨大成就有关,重庆市在1997年成为直辖市,开始大力发展经济,城市的发展离不开占用绿地,这也对生态环境造成了一定程度的破坏㊂图2可以看出2010年~2021年生态环境质量为 较差 的区域明显减少,合川区㊁武隆区㊁丰都县㊁南川区石柱土家族自治县等四个地区的生态环境质量有了大幅度提升㊂近20多年来重庆地区R S E I的变化特征如下:①R S E I值总体呈上升趋势,尤其是重庆市东北部和南部地区,说明重庆在2000年~2005年以来生态质量整体有好转,东北㊁东南方向好转趋势明显;7222期苟晓娟,等:中国西南山地城市生态环境质量长时序变化及其评价 以重庆市为例②低值R S E I 像元主要分布在主城区,且在城市群地区呈现扩大趋势,这种变化特征与我国近年来在高速城镇化的发展下不断推进的西南城市地区尤其是成渝地区生态文明建设和绿色发展道路有着密切的关系㊂图2 重庆市生态环境质量等级及其空间分布特征F i g .2 E c o l o g i c a l q u a l i t y g r a d e a n d i t s s p a t i a l d i s t r i b u t i o n i n C h o n g q i n g为了定量的分析R S E I 的变化特征,计算2021年~2000年5个等级的变化面积及比例,得到表2重庆市生态环境质量等级与面积统计㊂由表1可知,从2000年~2021年以来,遥感生态质量为 差 的区域生态质量面积下降了66%,较差 和 一般 的区域生态质量面积分别下降了54%和53%,生态质量为 优 ㊁ 良 的区域面积均有增长,特别是 优 的面积涨幅很大,增长了130%㊂在过去的22年,差 和 较差 的面积减少已达到2683k m 2㊂生态质量 一般 的面积减少1.35万k m 2,较2000年减少50%以上㊂20多年来,R S E I 均值主要集中在生态质量等级为良的822 物探化探计算技术46卷等级,从R S E I 均值可以看出,2000年~2021年生态环境质量先下降后上升,整体呈生态环境质量向好的趋势㊂为看出每种生态环境质量等级在不同年份之间的转移情况得到图3:2000年~2021年重庆生态环境质量等级转移矩阵桑基图,2000年~2005年,生态环境质量 一般 转为 较差 的面积最多,2005年~2010年较差 一部分转移为 一般 一部分转移为 良 ㊂2018年~2019年, 一般 部分向 良 转化, 良 在稳定的基础上部分向 优 转化㊂表2 重庆市生态环境质量等级与面积统计T a b .2 S t a t i s t i c s o f e c o l o g i c a l q u a l i t y g r a d e a n d a r e a o f C h o n g qi n R S E I 等级差/k m2较差/k m 2一般/k m 2良/k m 2优/k m2R S E I 均值2000454.86(0.55%)4420.90(5.35%)25285.80(30.63%)46726.30(56.59%)5677.18(6.88%)0.632005370.03(0.45%)26992.00(32.69%)45297.60(54.86%)9675.25(11.72%)230.14(0.28%)0.462010490.73(0.59%)7463.90(9.04%)35327.90(42.79%)35475.70(42.97%)3806.75(4.61%)0.59201579.19(0.10%)2872.43(3.48%)17291.00(20.94%)56041.00(67.87%)6281.40(7.61%)0.652018288.80(0.35%)5706.28(6.91%)33387.30(40.44%)40728.90(49.33%)2453.67(2.97%)0.602021156.13(0.19%)2036.04(2.47%)11821.60(14.32%)55478.30(67.19%)13072.90(15.83%)0.69C h a n g e -298.73(65.68%)-2384.86(53.95%)-13464.2(53.25%)8752(18.73%)7395.72(130.27%)0.06图3 2000年~2021年重庆生态环境质量等级转移矩阵桑基图F i g .3 S a n k e y d i a g r a m o f e c o l o g i c a l e n v i r o n m e n t q u a l i t y g r a d e t r a n s f e r m a t r i x o f C h o n g qi n f r o m 2000t o 20213.2 生态环境质量变化规律为研究重庆市生态环境质量随时间变化的规律,将不同年份生态环境质量随时间的变化分为5个等级,即 极显著退化 ㊁ 显著退化 ㊁ 基本稳定 ㊁ 显著改善 ㊁ 极显著改善 ,得到如图4重庆市R S E I 随时间变化规律㊂图4中图4(a )~图4(f)表示重庆市各个时间段生态环境质量的变化㊂图4(a )为2000年~2005年间生态环境质量的变化,大多数地区的生态环境都在显著退化和极显著退化,图4(b )为2005年~2010年间生态环境质量的变化,生态环境有了显著改善,重庆东部和南部地区有极显著改善,图4(c )可以看出2010年~2015年间生态环境质量大部分地区处于基本稳定和显著改善的状态,生态环境质量向好㊂图4(d)可以看出2015年~2018年间重庆西部地区生态环境质量存在极显著退化和显著退化,中部和东部地区生态环境基本稳定,南部地区有显著改善和极显著改善㊂图4(e )可以看出2018年~2021年间生态环境质量有好转,重庆北部和东部地区生态环境质量有了显著改善,中部和南部的部分地区存在显著退化㊂图4(f )可以看出2000年~2021年重庆市主城区的生态环境质量在极显著退化,南部和西南部地区在显著退化,北部和东部地区基本稳定,因此在治理生态环境的时候应加大对主城区的管理力度,防止生态环境质量进一步退化㊂3.3 R S E I 的海拔依赖性与坡度依赖性3.3.1 R S E I 的海拔依赖性为了进一步研究海拔和坡度对重庆市生态环境的影响规律,使用分区统计,将海拔和坡度分成不同的梯度与R S E I 进行对比,得到图5:2000年~2021年R S E I 指数随海拔㊁坡度变化曲线及频率分布情况,图5左可知,2000年及2021年不同等级的R S E I 随海拔梯度的变化规律㊂不同年份R S E I 随海拔上升呈现相似的变化趋势,同一年份间R S E I 随海拔梯度变化具有不同的变化趋势㊂2000年R S E I 随海拔梯度升高的变化范围为0.55~0.70,呈现先快速增加后缓慢增加,R S E I 最大值在海拔2100m~2400m 范围内㊂2005年R S E I 的变化范围为0.37~0.70,R S E I 整体呈增长趋势,在2400m ~2800m 有所下降,最大值在2100m~2400m ,曲线大部分在其他年份的下面,与其他年份相比R S E I 明显偏小,这与表1中2005年R S E I 年均值最小符合㊂2010年R S E I 的变化范围为0.46~0.75,0m~2100m R S E I 增长,2100m~2800mR S E I 减小,最大值在1800m~2100m ㊂2015年㊁2018年R S E I 均在0m ~2400m 持续增长,R S E I 在9222期苟晓娟,等:中国西南山地城市生态环境质量长时序变化及其评价以重庆市为例海拔2100m ~2400m 达到最大值后有所降低,2015年R S E I 的变化范围为0.57~0.82,2018年R S E I 的变化范围为0.46~0.77㊂2021年R S E I 的变化范围为0.56~0.76,曲线大部分在其他年份的上面,这与表1中2021年R S E I 年均值最大符合,在海拔0m ~2100m 逐渐增长,最大值在1800m~2100m ,2100m~2800m 快速降低㊂2000年~2021年R S E I 指数随海拔变化曲线规律如下:①海拔多集中在0m ~1500m 之间,300m ~600m 是重庆市海拔分布最多的范围,这与重庆市多山地有关;②2010年~2021年R S E I 均呈现随海拔增长而增加的趋势,整体上,0m~1800m 范围内R S E I 缓慢增加,1800m ~2800m 范围内开始减小,这可能是受人类活动的影响,海拔越低的区域人类活动越频繁,对生态环境会造成一定程度的破坏,随着海拔的升高,人类活动减少,生态环境质量逐渐好转,但是海拔升高到一定范围,由于气候因子如气温㊁降水等的影响占主要作用,生态质量有所下降;③整体上R S E I 指数2021>2015>2018>2010>2000>2005,2005年R S E I 随海拔变化最大,从0.367增长到0.702,增长了91.28%,2000年R S E I 随海拔变化最小,增长了29.50%,增长相比其他年份最不明显㊂图4 重庆市R S E I 随时间变化特征规律F i g .4 T e m p o r a l v a r i a t i o n o f R S E I i n C h o n g q i n g32 物探化探计算技术46卷图52000年~2021年R S E I指数随海拔㊁坡度变化曲线及频率分布情况F i g.5 V a r i a t i o n c u r v e a n d f r e q u e n c y d i s t r i b u t i o n o f R S E I i n d e x w i t h a l t i t u d e a n d s l o p e f r o m2000t o20213.3.2 R S E I的坡度依赖性图5右可知,2000年R S E I随坡度的梯度升高的变化范围为0.56~0.70,2005年R S E I的变化范围为0.39~0.56,2010年R S E I的变化范围为0.49~0.70,2015年R S E I的变化范围为0.59~ 0.73,2018年R S E I的变化范围为0.48~0.70, 2021年R S E I的变化范围为0.59~0.80㊂2000~ 021年R S E I指数随坡度变化曲线规律如下: 1)不同年份R S E I随坡度上升呈现相似的变化趋势㊂整体上看,随着坡度的增加,R S E I也在增加, 25ʎ~35ʎ范围R S E I有短暂下降,后继续增长,呈现先增加后下降再缓慢增加的规律,大于40ʎ之后R S E I趋于平稳,R S E I最大值在坡度40ʎ~45ʎ㊂2)0ʎ~25ʎ范围内R S E I受坡度的影响较大,并且坡度越陡的地方生态环境质量越好,25ʎ~ 35ʎ范围R S E I有很明显的下降趋势,这和重庆市起伏的地形有关,大于40ʎ之后坡度对R S E I的影响较小㊂3)整体上R S E I指数随坡度的梯度变化,2021> 2015>2018>2010>2000>2005,2018年R S E I随海拔变化最大,增长了45.83%,2015年R S E I随海拔变化最小,增长了23.73%㊂3.4 R S E I与气候因子的响应为探究2000年~2021年重庆市R S E I与温度因子的响应关系,笔者使用年均气温㊁降水数据,得到图6重庆市海拔㊁R S E I与气候相关图㊂如图6 (左)所示,气温随着海拔的升高呈下降趋势,这与海拔对气温的影响规律一致,降水随着海拔的升高呈先升高后下降的趋势,0m~1500m降水先显著上升后缓慢上升,1200m~1500m范围达到降水的最大值,1500m~2400m降水开始下降,2400m~ 2800m降水随海拔上升有上升趋势,其气温和降水的变化趋势具有明显的山地气候特征,重庆建于川东平行岭谷,海拔的改变对重庆的气候产生较大的影响,一定程度上对局部环境㊁土壤含水量等指标产生影响,从而影响到植被的生长,植被指数N D V I 在计算遥感生态指数R S E I中起主导作用,因此会影响到R S E I指数㊂为了分析气候因子(年平均气温㊁年平均降水)对R S E I的作用机制,将2000年~2021年的R S E I 指数的平均值,自然间断法分成8类,与近30年的年均气温和降水作比较,可以看出温度和R S E I呈负相关,温度越高,R S E I越低,这是因为地表温度L S T对生态环境有副作用,地表温度越高,生态环境越差,随着降水的增加,R S E I指数逐渐上升,当年平均降水达到最大值时R S E I在0.66~0.73范围内,并没有达到R S E I的最大值,说明R S E I不仅仅受到气候一种因子的影响,地形地貌㊁坡度坡向㊁人口㊁土地利用类型㊁城镇建设㊁保护政策㊁产业结构等方面都在制约生态环境㊂4结论笔者基于遥感数据处理技术和G o o g l e E a r t h E n g i n e(G E E),以重庆市2000年~2021年的生态环境质量为切入口,探讨了我国西南山地城市生态环境质量及其影响因素,利用R S E I遥感生态环境指数,评价重庆市20多年生态环境质量的变化,以及R S E I的海拔依赖性和坡度依赖性,探究R S E I与气候因子的响应关系㊂主要结论如下:1322期苟晓娟,等:中国西南山地城市生态环境质量长时序变化及其评价 以重庆市为例图6重庆市海拔㊁R S E I与气候相关图F i g.6C o r r e l a t i o n m a p o f e l e v a t i o n,R S E I a n d c l i m a t e i n C h o n g q i n g1)遥感生态指数R S E I总体呈上升趋势,生态质量为 差 的面积减少了65.68%,生态质量为 优 的面积增加了130.27%,生态环境有明显的好转,但仍存在区域差异,低值R S E I像元主要分布在主城区,且在城市群地区呈现扩大趋势,表明虽然生态环境质量整体好转,但主城区的生态环境保护仍然需要加强㊂2)从R S E I随海拔变化曲线可以看出,2010年~ 2021年R S E I均呈现随海拔增长而增加的趋势,整体上,0m~1800m范围内R S E I缓慢增加,1800m~ 2800m范围内开始减小,相似的,R S E I随坡度增加而增长,坡度>40ʎ之后R S E I趋于平稳㊂3)从R S E I与气候因子的响应曲线可以看出,温度和R S E I呈负相关,温度越高,R S E I越低,随着降水的增加,R S E I指数逐渐上升,当R S E I在0.66~0.73时,随着降水的增加R S E I反而下降㊂在对我国西南山地城市生态环境质量及其影响因素的讨论基础上,对西南山地城市的生态环境保护提出一些建议:1)建议相关部门完善生态环境相关的保护政策,着重对主城区进行生态质量的修护,可以通过增加主城区绿化面积㊁合理利用土地㊁设置生态保护红线㊁保护水资源等方式进行保护㊂2)在低海拔地区加大生态保护力度,中㊁高海拔地区坚持生态环境的基本维护㊂3)产业结构的发展要顺应生态环境,坚持绿色可持续发展的理念,减少高污染㊁高排放量的企业,加强对气候异常情况的监测㊂参考文献:[1]赵其国,黄国勤,马艳芹.中国生态环境状况与生态文明建设[J].生态学报,2016,36(19):6328-6335.Z H A O Q G,H U A N G G Q,M A Y Q.E c o l o g i c a l e n-v i r o n m e n t s t a t u s a n d e c o l o g i c a l c i v i l i z a t i o n c o n s t r u c-t i o n i n C h i n a[J].A c t a E c o l o g i c a S i n i c a,2016,36(19): 6328-6335.(I n C h i n e s e)[2]岳文泽,徐建华,徐丽华.基于遥感影像的城市土地利用生态环境效应研究 以城市热环境和植被指数为例[J].生态学报,2006,26(5):1450-1460.Y U E W Z,X U J H,X U L H.S t u d y o n e c o l o g i c a l e n-v i r o n m e n t a l e f f e c t s o f u r b a n l a n d u s e b a s e d o n r e m o t e s e n s i n g i m a g e:a c a s e s t u d y o f u r b a n t h e r m a l e n v i r o n-m e n t a n d v e g e t a t i o n i n d e x[J].A c t a E c o l o g i c a S i n i c a, 2006,26(5):1450-1460.(I n C h i n e s e)[3]方创琳.中国新型城镇化高质量发展的规律性与重点方向[J].地理研究,2019,38(1):13-22.F A NG C L.B a s i c r u l e s a n d k e y p a t h s f o r h i g h-q u a l i t y d e v e l o p m e n t o f t h e n e w u r b a n i z a t i o n i n C h i n a[J].G e-o g r a p h i c a l R e s e a r c h,2019,38(1):13-22.(I n C h i n e s e) [4]国家环保总局.中华人民共和国环境保护行业标准(试行)H J/T192-2006[S].S t a t e E n v i r o n m e n t a l P r o t e c t i o n A d m i n i s t r a t i o n.E n-v i r o n m e n t a l p r o t e c t i o n i n d u s t r y s t a n d a r d o f t h e p e o p l e's r e p u b l i c o f C h i n a(T r i a l)H J/T192-2006[S].(I n C h i-n e s e)[5]满卫东,刘明月,李晓燕,等.1990-2015年三江平原生态功能区生态功能状况评估[J].干旱区资源与环境, 2018,32(2):136-141.M A N W D,L I U M Y,L I X Y,e t a l.A s s e s s m e n t o n232物探化探计算技术46卷。