医学分子生物学与实验(精)
- 格式:doc
- 大小:16.50 KB
- 文档页数:4
分子生物学大实验习题及解答一、名词解释1、genome;2、基因芯片;3、持家基因;4、Operon;5、感受态细胞;6、逆转录酶;7、PCR技术;8、转化;9、重组DNA技术;10、基因沉默;11、hnRNA;12、复制子;13、反义RNA;14、衰减子;15、拟基因;16、RNA编辑;17、颠换;18、拓扑异构酶;19、变性;20、转座子二、基础理论单项选择题1、DNA连接酶的作用为()A、合成RNA引物B、将双螺旋解链C、去除引物、填补空隙D、使双螺旋DNA链缺口的两个末端连接2、DNA复制中RNA引物的主要作用是( )。
A、引导合成冈奇片段B、作为合成冈奇片段的模板C、为DNA合成原料dNTP 提供附着点D、激活DNA聚合酶3、下列哪一种蛋白不是组蛋白的成分()A、 H1B、H2A 、H2BC、 H3、H4D、 H54、DNA的变性:()A、包括双螺旋的解旋B、可以由低温产生C、是可逆的D、是磷酸二酯键的断裂5、转录需要的原料是:()A、 dNTPB、 dNDPC、 dNMPD、 NTP6、在原核生物复制子中以下哪种酶除去RNA引发体并加入脱氧核糖核甘酸:A、DNA聚合酶ⅢB、 DNA聚合酶ⅡC、DNA聚合酶ⅠD、外切核酸酶MFl7、下真核生物复制起始点的特征包括()A、富含GC区B、富含AT区C、 Z DNAD、无明显特征8、SDS凝胶电泳测定蛋白质的相对分子量是根据各种蛋白质()A、在一定pH值条件下所带的净电荷的不同B、分子大小不同C、分子极性不同D、溶解度不同9、DNA复制时不需要以下哪种酶?()A、 DNA指导的DNA聚合酶B、RNA指导的DNA聚合酶C、拓扑异构酶D、连接酶10、1、证明DNA是遗传物质的两个关键性实验是:肺炎链球菌在老鼠体内的毒性和T2噬菌体感染大肠杆菌。
这两个实验中主要的论点证据是:()A、从被感染的生物体内重新分离得到DNA,作为疾病的致病剂B、DNA突变导致毒性丧失C、生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能D、DNA是不能在生物体间转移的,因此它一定是一种非常保守的分子11、利用自己的位点专一重组酶把自己从寄主基因组中的一个地方移到另一个地方的遗传元件叫()A、启动子B、转座子C、T-DNAD、顺反子12、原核DNA合成酶中()的主要功能是合成前导链和冈崎片段A、DNA聚合酶ⅠB、DNA聚合酶ⅡC、DNA聚合酶ⅢD、引物酶13、在基因工程中,需使用特定的限制酶切割目的基因和质粒以便于重组和筛选。
分子生物学在医学检验中有哪些应用随着科技的进步和发展,医疗技术也在不断地革新。
医学检验作为患者诊疗环节中必不可少的一项,不但影响到医护人员对患者后续病情的评估诊断,更是跟患者是否可以得到对症治疗,早日恢复健康息息相关。
因此,为了提高医学检验的质量,分子生物学也逐渐被引入临床检验中,并起到了重要作用。
一、了解分子生物学1.什么是分子生物学在人类对化学和生命科学的不断认知和发展下,目前对生物体的认知已经逐渐深入到了微观层面,已经开始对核酸和蛋白的分子水平进行了相关研究。
并且人们还意识到,可以通过对分子水平的线性结构检测,通过横向来比较不同物种,以及同物种之间不同的个体差异。
这种研究也为医学的发展提供了新的方向。
分子生物学,就是从分子水平研究生物大分子的结构和功能,从而阐明生命现象的一种科学。
主要研究的是细胞不同系统之间的相互作用,研究的领域包括蛋白质体系、蛋白质-核酸体系,以及蛋白质-脂质体系。
这是对生物在分子层次上的研究,也是化学和生物学之间的跨学科研究。
且分子生物学包含了各个领域,例如化学、生物学、遗传学以及物理学等等。
2.分子生物学技术优势(1)灵敏度高:分子生物学技术可以用于检测和识别极微量的生物分子,例如DNA、RNA以及蛋白质等。
这些技术可以帮助医护人员在早期时检测到疾病或遗传变异,有助于疾病的早期发现和治疗。
(2)特异性高:分子生物学技术可以对生物分子进行高度特异性的检测和识别,例如通过PCR技术可以特异性地扩增和检测DNA序列,通过测序技术可以准确地确定DNA序列的碱基组成和顺序。
(3)高效快速:分子生物学技术具有高效、快速的特点,PCR技术在段时间内就可以扩增DNA序列,而DNA的测序技术也有快速、高通量的特点,可以快速获取大量的基因序列信息。
(4)适用范围广:分子生物学技术可应用的范围较广,包括各种生物样本的分析,例如血液、细胞、组织和排泄物等。
这些技术还可以对微生物、病毒以及癌症等进行检测和鉴定。
分子生物学与细胞生物学实验基本技术2005-02实验一组织块培养法一、目的学习原代培养方法,从供体取得组织细胞后在体外进行的首次培养。
二、概述组织块培养法是常用的、简便易行和成功率较高的原代培养方法。
可以采用剪切法,即将组织块剪切成小块后,接种于培养瓶,组织小块贴壁24h或更长时间后,细胞就从组织四周游出。
但由于在反复剪切和接种过程中对组织块的损伤,并不是每个小块都能长出细胞。
用于组织块培养的培养瓶可根据不同细胞生长的需要作适当处理,如预先涂以胶原薄层,以利于上皮样细胞等的生长。
(本节以新生牛主动脉平滑肌培养为例)三、材料(一)仪器1.净化工作台2.恒温水浴箱3.冰箱(4℃、-20℃)4.倒臵相差显微镜5.培养箱(二)玻璃器皿1.培养皿(Φ100mm)2.吸管(弯头)3.烧杯(500ml、200ml、10ml)4.广口试剂瓶(500ml)5.玻璃瓶(250ml、100ml)6.培养瓶7.废液缸(三)塑料器皿1.吸头2.枪头3.胶塞4.EP管(四)其他物品1.微量加样枪2.眼科组织剪(直尖、弯)3.眼科组织镊(直、弯)4.12.5cm组织镊(无钩、1×2钩)5.25cm敷料镊(无钩)6.止血钳(18cm直纹式、12.5cm直纹式、弯纹式)7.解剖剪(五)试剂1.D-Hanks液2.小牛血清3.RPMI16404.双抗(青霉素、链霉素)5.1N HCl6.7.4%NaHCO3四、操作步骤1.取材:打开胸腔,无菌操作下取出主动脉胸段,浸到预先配制好的含双抗(500u/ml青、链酶素)的D-Hanks液中漂洗。
2.组织的冲洗、修剪:取出主动脉,用锋利的剪刀修剪除去周围组织,再用D-Hanks冲洗主动脉3次,除去血块及杂组织等。
3.平滑肌组织分离:纵向剖开主动脉,撕下主动脉内层,取主动脉中层的平滑肌组织,无血清RPMI1640漂洗3次。
4.剪切:将平滑肌组织用锋利的眼科剪反复剪切至剪成1mm3小块,在剪切过程中,可以适当向组织中滴加1~2滴培养液,以保持湿润。
分子生物学实验技术分类分子生物学实验技术是现代生物学研究中不可或缺的一部分,它涉及到对生物体内分子结构、功能和相互作用的研究。
这些实验技术在基础科学研究、医学诊断和药物研发等领域发挥着重要作用。
在分子生物学实验技术中,根据其应用和原理可以进行分类,主要包括以下几类:1. 基因克隆技术,基因克隆技术是分子生物学研究中常用的技术之一,它包括DNA片段的定向克隆、质粒构建、DNA序列分析等。
通过基因克隆技术,研究人员可以将感兴趣的基因或DNA片段放入适当的载体中,进行进一步的研究和应用。
2. 蛋白质分离和纯化技术,蛋白质是生物体内重要的功能分子,其结构和功能的研究对于理解生物学过程至关重要。
蛋白质分离和纯化技术包括凝胶电泳、亲和层析、离子交换层析等方法,可以将混合的蛋白质样品分离并得到纯净的蛋白质。
3. 核酸分离和检测技术,核酸是生物体内的遗传物质,包括DNA和RNA。
核酸分离和检测技术包括DNA/RNA提取、聚合酶链式反应(PCR)、原位杂交等方法,可以用于检测和分析生物体内的核酸序列。
4. 基因组学和转录组学技术,基因组学和转录组学技术是对生物体内所有基因组和转录组的研究,包括全基因组测序、RNA测序、ChIP-seq等方法,可以帮助研究人员全面了解生物体内基因的组成和表达模式。
5. 蛋白质-核酸相互作用技术,蛋白质和核酸之间的相互作用对于细胞内的生物学过程至关重要。
蛋白质-核酸相互作用技术包括免疫共沉淀、荧光共聚焦、电泳迁移变性等方法,可以帮助研究人员研究蛋白质和核酸之间的相互作用。
以上是分子生物学实验技术的一些分类,这些技术的不断发展和创新为生物学研究提供了强大的工具,也推动了生物医学领域的进步。
在未来,随着技术的不断进步,分子生物学实验技术将继续发挥重要作用,为人类健康和生命科学研究带来更多的突破和进展。
分子生物学实验第一篇:PCR技术在分子生物学中的应用PCR(聚合酶链式反应)是分子生物学中一项广泛应用的技术,被用于DNA的扩增和检测。
PCR技术已经成为了分子生物学和生物医学研究的基础技术之一。
PCR技术被广泛的应用于遗传学、人类学、医学研究、植物学和动物学研究等各领域。
PCR技术的基本原理是:通过提取DNA,将DNA特异性引物与模板DNA相结合,利用热稳定DNA聚合酶和四种脱氧核苷酸为反应体系提供能量,使其在一定条件下循环扩增目标DNA片段。
通过PCR扩增后的DNA片段可以进行进一步的分析和检测。
PCR技术的扩增具有明显的优势,可同时扩增不同长度的DNA片段,扩增时间短,扩增的精度和重复性高,且所需的样本量小。
PCR技术在分子诊断、基因组学和分子系统学等领域的应用不断扩展和深化。
随着PCR技术的不断发展,PCR在分子生物学研究中的应用越来越广泛,成为分子生物学研究的重要工具。
第二篇:RNA干扰技术在分子生物学中的应用RNA干扰(RNAi)是分子生物学中一种重要的现象,其中小分子RNA片段通过RNAi途径参与靶基因的沉默和调节。
RNAi技术是人类基因功能研究中最具前途的一种技术之一。
RNA干扰技术的基本原理是通过利用RNAi分子的特异性配对功能,引导RNAi分子与靶基因mRNA相结合,导致mRNA的降解和翻译的抑制,实现对基因表达的调控。
RNA干扰技术在分子生物学研究中有广泛的应用,如:功能基因的筛选、基因表达调节、基因功能验证等。
RNA干扰技术具有多种优点,如高效性、特异性强、节约时间、资源和成本等方面的优势,逐步成为生命科学研究中的重要工具。
在研究过程中,RNA干扰技术常用于寻找分子病理学中新的治疗靶点,鉴定靶点基因和靶点蛋白,为新药物的开发和临床治疗提供了重要的理论和实验基础。
第三篇:基因克隆技术在分子生物学中的应用基因克隆技术始于20世纪70年代,是指将DNA分子导入到载体中,使其在细胞中进行表达的过程。
分子生物学在微生物检验中的应用南京军区福州总医院全军临床检验研究所兰小鹏21 世纪是以分子生物学为代表的生命科学的时代,近年来,随着现代生物技术的快速发展,人类基因组计划的完成,尤其是生物化学、免疫学、生物仪器及计算机理论与技术的进步,分子生物学技术在医学、遗传学、法医学、生物学等各个领域广泛应用, 新的诊断技术和方法不断涌现并被广泛应用于微生物检测,为传染病的流行病学调查、基因的多样性、微生物的生物学特性、微生物的致病性和药物的耐受性、微生物的生物降解能力等各个方面提供了重要的信息。
一.核酸杂交法最初应用于微生物检测的分子生物学技术是基因探针方法,它是用带有同位素标记或非同位素标记的DNA 或RNA 片段来检测样本中某一特定微生物核苷酸的方法。
核酸杂交有原位杂交、打点杂交、斑点杂交、Sorthern杂交、Northern杂交等,核酸分子探针又可根据它们的来源和性质分为DNA探针、cDNA探针、RNA探针及人工合成的寡聚核苷酸探针等。
其原理是通过标记根据病原体核酸片段制备的探针与病原体核酸片段杂交,观察是否产生特异的杂交信号。
核酸探针技术具有特异性好、敏感性高、诊断速度快、操作较为简便等特点。
目前,已建立了多种病原体的核酸杂交检测方法,尤其是近年来发展起来的荧光原位杂交技术(FISH) 更为常用。
二.质粒DNA图谱分型技术细菌质粒分析是较早被使用的对病原微生物流行病学进行调查的分子分型技术。
这种技术包括萃取质粒DNA ,通过琼脂糖凝胶电泳分离DNA。
由于不同菌株质粒DNA序列和大小不同,通过琼脂糖凝胶电泳分离得到的DNA质粒图谱也将不同,因此,与流行病相关的分离株能够被分类分型。
质粒图谱分析的再现性和分辨力可通过限制性内切酶消化质粒而提高。
虽然2个不相关质粒有相同的分子量, 但性内切酶位点的位置和频率是不同的。
但质粒是可移动的非染色体遗传物质,细菌能自发的失去或很容易的获得,结果流行病相关的菌株可以展示不同质粒指纹图谱。
分子生物学课程教学大纲课程简介一、课程简介分子生物学主要研究核酸蛋白质等所有生物大分子的结构、功能及基因结构、基因表达,以及生物大分子互相作用以及生理功能,以此了解不同生命形式特殊规律的化学和物理的基础。
分子生物化学是在分子水平上研究生命奥秘的学科,代表当前生命科学的主流和发展的趋势。
医学分子生物学是分子生物学的重要分支,本课程包括三方面的内容:一是介绍分子生物学基本原理;二是阐述某些疾病发生和发展的分子机制;三是介绍分子生物学技术在临床上的应用。
本大纲适用于夜大专升本等专业学生。
二、总体要求通过本课程学习,要求学生做到:1. 掌握、熟悉分子生物学的基本原理以及与相关临床知识的联系。
2. 学会应用基本分子生物学技术进行生物大分子的检测,并能应用于临床。
3. 树立良好的学习态度,培养创新能力与实践能力,注重知识、能力、素质的协调发展。
三、时数分配绪论学习目的和要求通过本章学习,掌握医学分子生物学的定义、内容。
课程内容一、介绍医学分子生物学的定义。
二、介绍医学分子生物学的发展历史。
三、医学分子生物学的现状与未来。
考核知识点一、医学分子生物学的定义。
二、医学分子生物学的内容。
三、医学分子生物学发展过程中的一些重要历史事件。
四、医学分子生物学的现状与未来。
考核要求一、掌握医学分子生物学的定义。
二、熟悉医学分子生物学主要解决的问题。
三、了解1. 医学分子生物学发展过程中的一些重要历史事件。
2. 医学分子生物学的未来发展方向。
第一章基因学习目的和要求通过本章学习,掌握基因的基本概念、基因的结构特点及基因的遗传功能,了解基因突变的机制及其与疾病的关系。
课程内容一、基因的基本概念及基因的结构特点1.核酸是遗传信息的载体大部分生物中构成基因的核酸物质是DNA, 少数生物(如RNA病毒)中是RNA。
2.基因的基本概念基因的现代分子生物学概念。
3.基因的结构特点基因的基本结构包括结构基因和转录调控序列。
原核生物的结构基因是连续的,而真核生物的结构基因是不连续的,由内含子和外显子组成。
分子生物学实验在分子生物学领域,实验是非常重要的手段,可以帮助科学家们深入研究细胞和遗传信息的奥秘。
本文将介绍分子生物学实验的一般步骤和常见技术,为读者提供一个全面的了解。
实验准备在进行任何分子生物学实验之前,实验室必须准备好所有必需的试剂和器材。
这些试剂包括DNA酶、引物、缓冲液等,而器材则包括PCR仪、电泳仪、热循环仪等。
此外,实验室还需要保持清洁、有序,以确保实验结果的准确性和可重复性。
核酸提取在进行分子生物学实验时,研究人员通常需要提取目标细胞或组织中的核酸,如DNA和RNA。
这个步骤非常关键,因为核酸是遗传信息的载体,对后续实验至关重要。
PCR扩增PCR(聚合酶链反应)是一种常用的技术,可以在体外复制DNA片段。
通过PCR扩增,科学家们可以快速获得大量特定DNA序列,为后续实验提供充足的材料。
凝胶电泳凝胶电泳是一种常用的分离和分析DNA片段的技术。
通过在凝胶电泳仪中施加电场,可以使DNA片段根据大小在凝胶中移动,从而实现分离和检测。
蛋白表达和纯化在分子生物学研究中,研究人员经常需要表达和纯化特定蛋白。
通过基因工程技术,科学家们可以将目标基因插入表达载体中,在宿主细胞中大量表达目标蛋白,并通过纯化步骤获得纯净的蛋白样品。
分子克隆分子克隆是将某一DNA片段插入到另一DNA分子中的过程,常用于构建重组DNA、重组蛋白等。
通过分子克隆技术,科学家们可以研究和改变生物体内的基因组成。
实验结果分析一旦实验完成,科学家们需要对实验结果进行分析和解读。
这通常涉及到数据处理、图表绘制、统计学分析等工作,以确保实验结论的准确性和可靠性。
结论与展望分子生物学实验在揭示生命的奥秘和解决重大疾病方面起着至关重要的作用。
随着技术的不断发展和创新,我们相信分子生物学实验将在未来展现出更广阔的发展前景,为人类健康和生活质量带来更多的希望。
希望本文能够帮助读者更好地了解分子生物学实验的基本原理和方法,激发更多人对分子生物学这一神奇领域的兴趣和热爱。
1病原生物基因组在医学上有何应用?详见书P3a菌种鉴定b确定病毒感染和病毒载量c病毒分析d细菌耐药监测和分子流行病学调查2什么是原癌基因,原癌基因有什么特性,原癌基因可以分为哪些种类以及原癌基因常见的激活机制有哪些?原癌基因是指人类或其他动物细胞(以及致癌病毒)固有的一类基因,能诱导细胞正常转化并使之获得新生物特征的基因总称。
特性:进化上高度保守,负责调控正常细胞生命活动,可以转化为癌基因。
功能分类:生长因子,生长因子受体,信号转导蛋白,核调节蛋白,细胞周期调节蛋白,抑制凋亡蛋白激活机制:插入激活,基因重排,基因点突变,基因扩增,基因转录改变3试述Down综合征(21三体综合征)的主要临床特征及核型。
临床特征:生长发育障碍,智力低。
呆滞面容,又称伸舌样痴呆。
40%患者有先天性心脏畸形。
肌张力低,50%患者有贯通手,男患者无生育能力,女患者少数有生育能力,遗传风险高。
核型:92.5%患者游离型:核型为47,XX(XY),+212.5%患者为嵌合型:46,XX(XY)/47,XX(XY),+215%患者为易位型:46,XX(XY),-14,+t(14q21q)4简述淋球菌感染的主要传统实验室诊断方法及其主要特点,对比分析分子生物学方法的优势1直接涂片染镜检:敏感度和特异性差,不能用于确诊。
2分离培养法:诊断NG感染的金标准,但是其对标本和培养及营养要求高,培养周期长,出报告慢,难以满足临床要求。
3免疫学法:分泌物标本中的非特异性反应严重以及抗体法间的稳定性和条件限制,推广受限。
分子生物学的优点:敏感,特异,可直接从了临床标本中检出含量很低的病原菌,适应于快速检测5、在单基因遗传病的分子生物学检验中,点突变检测常用方法有哪些?1异源双链分析法(HA)2突变体富集PCR法3变性梯度凝胶电泳法4化学切割错配法5等位基因特异性寡核苷酸分析法6DNA芯片技术7连接酶链反应8等位基因特异性扩增法9RNA酶A切割法10染色体原位杂交11荧光原位杂交技术6、简述白假丝酵母菌的分子生物学检验方法白假丝酵母菌分子生物学检验主要包括白假丝酵母菌特异性核酸(DNA RNA)的检测、基因分型和耐药基因分析等。
1. 简述动物组织蛋白质, DNA ,RNA提取的大致过程及原理。
答:共同的第一步都是取动物组织进行清洗剪碎,然后用高速组织捣碎机破碎。
DNA 的提取:
通过匀浆、离心得到细胞核组分,然后用 SDS (十二烷基硫酸钠, sodium dodecyl sulfate裂解核膜,释放出 DNA-蛋白质复合物,再加入高浓度 NaCl ,以增加 DNP 的溶解度,然后加入氯仿—异戊醇混合液,振荡、乳化,使蛋白质变性, DNP 复合物解离,离心后, DNA 溶于上层水相,蛋白质沉淀夹在水相和有机相之间得以除去,最后用有机溶剂沉淀出 DNA 。
RNA 的提取 :
取组织,剪成小块,在乳钵种研碎,加 20mLSDS-缓冲盐溶液(见试剂 1. 使成均浆,倒入磨口具塞锥形瓶内,再加同样体积的含水酚液,室温下剧烈振荡 10分钟。
置冰浴中分层,在 0-4℃下,以 4000rpmn 离心 15分钟。
吸出上清液,加等体积氯仿-异戊醇,室温下剧烈振荡 10分钟,以 4000rpm 离心 5分钟,或在室温下放置 10分钟使分层。
吸出上清液(若有必要,该操作可反复多次 ,加 2倍体积 2%乙酸钾的乙醇溶液,在冰
浴中放置 1小时使 RNA 沉淀,此沉淀液可在冰箱内较长期存放。
若要得到干燥制品,可将沉淀液以 4000rpm 离心 10分钟,倾去上清液。
沉淀用少许 75%乙醇、 95%乙醇、无水乙醇各洗 1次,同上法离心,倾去乙醇后,空气干燥。
蛋白质的提取 :
1. 组织称重,切小块放入管中。
2. 配置含抑制剂的蛋白质抽提试剂(1ml 抽提试剂中加入5 μl蛋白酶抑制剂混合液, 5 μl PMSF和 5ul 磷酸酶混合液。
3. 加入预冷的含抑制剂的蛋白质抽提试剂(250mg 组织中加入 1ml 抽提试剂。
4. 用匀浆器每次 30秒低速匀浆,每次匀浆间隔冰浴 1分钟,至组织完全裂解。
5. 裂解液于预冷的离心机中 14, 000xg 离心 15分钟。
上清液立刻转移入新的离心管中保存待用。
原理:在细胞核内, 核酸通常是与某些组织蛋白质结合成复合物,因此在提取和
制备 DNA 或 RNA 时, 首先必须设法将这两类核蛋白分开。
在不同浓度的盐溶液中, RNP 与 DNP 的溶解度有很大的差别。
在低浓度的 NaCl 溶液中, DNP 的溶解度随着 NaCl 浓度的增加而逐渐下降, 当 NaCl 浓度为 0.14mol/L时, DNP 的溶解度仅
为其在纯水中溶解度的 1%,而当 NaCl 浓度继续增加时, DNP 的溶解度又渐次增大,当 NaCl 浓度增至 0.5 mol/L时, DNP 的溶解度约与其在纯水中的溶解度近似,当NaCl 浓度继续增加至 1.0 mol/L时, DNP 的溶解度约为其在纯水中的溶解度的两倍,且随着盐浓度的上升,其溶解度仍继续呈增大的趋势。
但 RNP 则与之不同,在 0.14 mol/L的盐溶液中, DNP 溶解度很低,而 RNP 的溶解度仍相当大,因此,通常采用 0.14 mol/L的盐溶液来除去 RNP ,使 DNP 仍保持在沉淀中,然后使用浓盐溶液 (1.7 mol/L 浓度以上的 NaCl 来提取 DNP 。
提取出 DNA 或 RNA-蛋白质复合体(DNP 后,在将其中的蛋白质除去
2. 简述基因工程的原理及过程。
答:基因工程 (genetic engineering 又称基因拼接技术和 DNA 重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图 ,在体外构建杂种 DNA 分子 ,然后导入活细胞 ,以改变生物原有的遗传特性、获得新品种、生产新产品。
基因工程技术为基因的结构和功能的研究提供了有力的手段。
所谓基因工程 (genetic engineering是在分子水平上对基因进行操作的复杂技术。
是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。
它是用人为的方法将所需要的某一供体生物的遗传物质—— DNA 大分子提取出来, 在离体条件下用适当的工具酶进行切割后,把它与作为载体的 DNA 分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“ 安家落户” ,进行正常的复制和表达,从而获得新物种的
一种崭新技术。
它克服了远缘杂交的不亲和障碍。
一般步骤:1克隆重组:提取供体生物目的基因,酶解,连接到另一个 DNA 分子(克隆载体上形成重组 DNA ; 2转化:将重组子转入受体细胞,并在其中复制保存; 3筛选鉴定:已吸收重组子的细胞; 4大量培养监测外源性基因是否表达。
3. 比较原核生物与真核生物的基因表达调控机制。
答:
原核生物基因表达调控真核生物基因表达调控
启动因子:σ因子决定 RNA 聚合酶识别的特异性 TF2D 决定 RNA 聚合酶识别的特异性
转录激活:操纵子调节蛋白顺式作用元件转录因子
主要机制:操纵子模型具有普遍性顺式作用元件具有普遍性
主要为负性调节(阻遏调节主要为正性调节
特有机制:转录衰减染色体结构变化
共同点:1. 基因表达都有时间特异性和空间特异性 2. 基因调控的多层次性和复杂性 3转录起始部分是基因表达的基本调控点
4. 简述 PCR 的原理及其应用,引物设计的原则。
答:PCR 的原理:以扩增的 DNA 分子为模板,以 1对与模板互补的寡核苷酸片段为引物,在 DNA 聚合酶的作用下,依半保留机制沿模板链延伸直至完成 2条新链合成。
通过变性, 退火和延伸重复这一过程, 即可使目的 DNA 片段得到扩增。
反应体系基本成分有模板 DNA , 特异引物,耐热性 DNA 聚合酶, dNTP 和含有 Mg²+的缓冲液。
PCR 的主要用途:1目的基因的克隆; 2. 基因的体外突变 3.DNA 和 RNA 的微量分析 4.DNA 序列测定 5. 基因突变分析
PCRD 的衍生技术:1锚定 PCR(anchored PCR2. .不对称 PCR(asymmetric PCR3. 反向 PCR(inverse PCR4. 多重 PCR(multiplex PCR5. 逆转录 PCR(reverse transcription PCR,RT-PCR
引物设计的基本原则
①引物长度:15-30bp , 常用为 20bp 左右。
②引物碱基:G+C含量以 40-60%为宜, G+C太少扩增效果不佳, G+C 过多易出现非特异条带。
ATGC 最好随机分布 ,避免5个以上的嘌呤或嘧啶核苷酸的成串排列参照。
③引物内部不应出现互补序列。
④两个引物之间不应存在互补序列, 尤其是避免3 ′ 端的互补重叠。
⑤引物与非特异扩增区的序列的同源性不要超过 70%, 引物3′ 末端连续 8个碱基在待扩增区以外不能有完全互补序列,否则易导致非特异性扩增。
⑥引物3… 端的碱基,特别是最末
及倒数第二个碱基,应严格要求配对,最佳选择是 G 和 C 。
⑦引物的5 ′ 端可以修饰。
如附加限制酶位点,引入突变位点,用生物素、荧光物质、地高辛标记,加入其它短序列,包括起始密码子、终止密码子等。
5. 简 southern blot的原理及其应用。
答:原理:将待检测的 DNA 分子用 /不用限制性内切酶消化后,通过琼脂糖凝胶电泳进行分离,继而将其变性并按其在凝胶中的位置转移到硝酸纤维素薄膜或尼龙膜上, 固定后再与同位素或其它标记物标记的 DNA 或 RNA 探针进行反应。
如果待
检物中含有与探针互补的序列, 则二者通过碱基互补的原理进行结合,游离探针洗涤后用自显影或其它合适的技术进行检测,从而显示出待检的片段及其相对大小。
可
用于检测样品中的 DNA 及其含量,了解基因的状态 , 如是否有点突变、扩增重排等。
主要应用于 1. 遗传病诊断 2.DNA 图谱分析 3.PCR 产物分析。
例如在研究转基因的时候,可用于检测外源基因的插入和整合情况。