初中几何一对一第03讲——直角三角形边角关系
- 格式:docx
- 大小:397.02 KB
- 文档页数:10
直角三角形的边角关系知识点一、勾股定理勾股定理是指在直角三角形中,直角边的平方等于两个其他两边平方的和。
即a^2+b^2=c^2,其中c表示直角边,a和b分别表示斜边。
二、正弦定理正弦定理是指在任意三角形中,任意两边的比例等于它们所对的角的正弦值的比例。
在直角三角形中,不包含直角的两个角分别为A和B,直角所对的边为c,则正弦定理可以表示为sinA=a/c,sinB=b/c。
三、余弦定理余弦定理是指在任意三角形中,任意一边的平方等于另外两边的平方和减去它们的两倍乘以它们夹角的余弦。
在直角三角形中,不包含直角的两个角分别为A和B,直角边所对的边为c,则余弦定理可以表示为cosA=b/c,cosB=a/c。
四、正切定理正切定理是指在任意三角形中,两条边的比例等于它们所对的角的正切值的比例。
在直角三角形中,不包含直角的两个角分别为A和B,直角所对的边为c,则正切定理可以表示为tanA=a/b,tanB=b/a。
五、边角关系1.直角三角形中,一个角是90度,另外两个角的和是90度。
2.直角三角形中,直角边所对的角是90度,而另外两边所对的角是锐角。
3.直角三角形中,两个锐角的正弦、余弦、正切值彼此互为倒数。
4.直角三角形中,两个锐角的余弦值等于彼此的正弦值。
5.直角三角形中,一个锐角的正弦值等于另一个锐角的余弦值。
六、特殊三角形1.在直角三角形中,当两个直角边的长度相等时,该直角三角形为等腰直角三角形。
2.在等腰直角三角形中,两个锐角相等,且为45度。
3.在等腰直角三角形中,斜边的长度等于直角边的平方根的两倍。
以上是直角三角形的边角关系的主要知识点。
通过对直角三角形的边长和角度关系的了解,我们可以应用这些关系来解决与直角三角形相关的问题。
同时,直角三角形也是三角学中一个重要的基础概念,为后续学习提供了坚实的基础。
飞行距离BD(结果保留根号).2、(2013•衡阳)如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)3、(2013•湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)4、(2013•益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)米,探测线与地面的夹角分别为°和60米,参考数据≈,≈为钓鱼岛东西两端。
某日,203点向正北方向巡航,其航线距离钓鱼岛最近距离CF=公里,在同一直线上)。
求钓9、(2013•乐山)如图11,山顶有一铁塔AB的高度为20米,为测量山的高度BC,在山脚点D处测得塔顶A和塔基B的仰角分别为60º和45º,求山的高度BC.(结果保留根号)10、(2013•内江)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).11、(2013•遂宁)钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)。
直角三角形的边角关系【知识点一:正切】定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tan A ,即的邻边的对边A A A ∠∠=tan ;①tan A 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tan A 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tan A 不表示“tan ”乘以“A ”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tan A 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tan A 的值越大.【重点题型】【例一】如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC ′B ′,则tan B ′的值为 .【变式练习一】如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是 .【变式练习二】如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为 .【例二】如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则tan α等于 .【例三】如图,Rt △ABC 中,∠A =90°,AD ⊥BC 于点D ,若BD :CD =3:2,则tan B = .【例四】菱形的两条对角线分别是16和12. 较长的一条对角线与菱形的一边的夹角为θ,则tan θ=______.【知识点二:坡度】坡面的铅垂高度(h )和水平长度(l )的比叫做坡面坡度(或坡比),记作i ,即i =lh,坡度通常写成1:m 的形式坡面与水平面的夹角叫做坡角,记作α,i =lhαtan = 1、斜坡的坡比是1:1 ,则坡角α=______度. 2、斜坡的坡角是600 ,则坡比是_______. 3、斜坡长是12米,坡高6米,则坡比是_______.4、传送带和地面所成的斜坡的坡比为1:2,把物体从地面送到离地面9米高的地方,则物体通过的路程为 _______米.5、斜坡的坡度是1:3,斜坡长=100米,则斜坡高为_______米.【知识点三:正余弦】正弦定义:在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即斜边的对边A A ∠=sin余弦定义:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即斜边的邻边A A ∠=cos【例一】如图,在△ABC 中,∠C =90°,AB =5,BC =3,则sin A 的值是 . 【变式练习一】在Rt △ABC 中,若∠C =90°,BC =6,AC =8,则sin A 的值为 . 【变式练习二】把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值 . 【例二】如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为 .【变式练习一】如图,△ABC 的顶点都是正方形网格中的格点,则sin ∠ABC 等于 .【例三】在△ABC 中,∠C =90°,BC =4,AB =5,则cos B 的值是 .【变式练习一】三角形在正方形网格纸中的位置如图所示,则cos α的值是 .【变式练习二】三角形在正方形网格中的位置如图所示,则cos a 的值是 .【知识点四:基本概念综合演练】BDCAO11yx 【例四】如图P是α∠的边OA上一点,P的坐标为(3,4),则=αsin.【变式练习一】在直角坐标系中,点M(sin50°,-cos70°)所在的象限是.【变式练习二】如图,已知一次函数bkxy+=的图象经过)1,2(--A,)3,1(B,两点,并且交x轴于点C,交y轴于点D,(1)求该一次函数的解析式;(2)求OCD∠tan的值;(3)求证:︒=∠135AOB.【例五】如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点都在格点上,E为AC中点.(1)画AD∥BC(D为格点),连接CD;(2)试说明△ABC是直角三角形;(3)在△ACD中,tan∠CAD= ,四边形ABCD的面积是.【变式练习一】如图:已知,梯形ABCD中,∠B=90°,AD∥BC,AB⊥BC,AB=AD=3,BC=7.求cos∠C.【综合演练】1、在ABC ∆中,,,A B C ∠∠∠对边分别为,,a b c ,5,12,13a b c ===,下列结论成立的是( ) A .12sin 5A =B .5cos 13A =C .5tan 12A =D .12cos 13B = 2、如果把ABC Rt ∆的三边同时扩大n 倍,则A sin 的值( ) A 、不变 B 、扩大n 倍 C 、缩小n 倍D 、不确定3、如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC =5,则tan ∠AFE 的值为 .4、直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )【知识点五:30°,45°,60°角的三角函数值练习】 熟记几个特殊角的三角函数值【基础过关】1. 计算:001245cos602-=____________.2. 已知tan 3α=α的度数为_____;若1cos 302α=,则锐角α的度数为_____. 3. 已知∠B 是锐角,若1sin22B =,则tan B 的值为_______. 4. 式子1-2sin30°·cos30°的值为_________. 5.cos 260°-sin 260°的值为________.6.cos30°cos301sin30︒⋅+︒=________.7.在△ABC 中,AB =1,AC 2,BC =1,则sin A =______,∠A =______. 82(sin601)︒-.9.已知α为锐角,tan (90°-α)3α的度数为 . 10.(1+sin30°-cos45°)(1+sin30°+cos45°)= _______________.11、若A ∠是锐角,2cos A =A ∠= . 12、化简:sin 30tan 60sin 60︒-︒=︒.13. 在△ABC 中,∠C =90°,sin A =2,则cos B 的值为( )A .1BCD .1214. 若tan a ,且α为锐角,则cos α等于( )A .12B C D15. 在Rt △ABC 中,∠C =90°,且tan A ,则sin B 的值为( )A .2B .2C .12D .316.在△ABC 中,若|sin A -1|+2cos )0B -=,则∠C 的度数是( )A .75°B .60°C .45°D .30°17.α为锐角,且关于x 的方程2sin 10x α-+=有两个相等的实根,则α=( )A .60°B .45°C .30°D .30°或60°18. 在△ABC 中,若21sin tan 02A B ⎫-+-=⎪⎪⎝⎭,则∠C 的度数为( ) A .30° B .60° C .90° D .120° 19. 计算5sin30°+2cos 245°-tan 260°的值是( )A B .12 C .-12D .1 20.在ABC ∆中,::1:2:1A B C ∠∠∠=,,,A B C ∠∠∠对边分别为,,a b c ,则::a b c 等于( )A .1:2:1B .C .2D .1:2 21.计算22sin 60tan 45(-︒︒-结果是( ) A .94 B .114 C . 94- D .114- 22.等腰三角形的顶角是120︒,底边上的高为30,则三角形的周长是( )A .120+B .120+C .150+D .150+23、计算题:2(tan 45)︒ sin 353tan 3012sin 60cos55︒︒--+︒︒21cos45cot 60sin 60cos302︒-︒+︒︒ 33sin 602cos 458-+;sin 30(1tan 60)tan 45sin 60--- 01)41.12(45tan 32)31(-++---【知识点六:直角三角形边角关系的应用】 【题型一:解直角三角形】 【基础练习】1.在Rt △ABC 中,∠C =90°,若AB =4,sin A =35,则斜边上的高等于( ) A .6425B .4825C .165D .1252.如图,在Rt △ABO 中,斜边AB =1.若OC ∥BA ,∠AOC =36°,则( ) A .点B 到AO 的距离为sin54° B .点B 到AO 的距离为tan36° C .点A 到OC 的距离为sin36°sin54° D .点A 到OC 的距离为cos36°sin54° 3.如图,△ABC 中,cos B =22,sin C =35,AC =5,则△ABC 的面积是( ) A .2B .12C .14D .214.如图,矩形ABCD中,对角线AC、BD相交于点0,∠AOB=60°,AB=5,则AD的长是()A.53B.52C.5 D.105.如图,在菱形ABCD中,DE⊥AB,cos A=35,BE=2,则tan∠DBE的值()A.12B.2 C.52D.55【提高练习】1.如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cos∠DCA=45,BC=10,则AB的值是()A.3 B.6 C.8 D.92.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB 于点H,且DH与AC交于G,则GH=()A.2825cm B.2120cm C.2815cm D.2521cm3.如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为()A.B.C.D.4.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.B.C.D.【题型二:解直角三角形的实际应用】【基础练习】1.在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为()A.24米B.20米C.16米D.12米2.一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为()A.5sin40°B.5cos40°C.D.3.如图,AC是电杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为()A.米B.米C.6•cos52°米D.米4.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为()A.30米B.60米C.303D.603米5.如图,为安全起见,萌萌拟加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB的长为3m,点D、B、C在同一水平地面上,那么加长后的滑梯AD的长是()A.22m B.23m C.32m D.33m6.如图,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的正午时刻阳光刚好不能射入窗户,则AB的长度是米.(假设夏至正午时的阳光与地平面的夹角是60°)【提高练习】如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯,若把甲杯中的液体全部倒人乙杯,则乙杯中的液面与图中点P的距离是cm.【题型三:解直角三角形的应用----触礁问题】【基础练习】1.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.103海里/小时B.30海里/小时C.203海里/小时D.303海里/小时2、如图1-l-8,点A是一个半径为300米的圆形森林公园的中心,在森林公园附近有B、C两个村庄,现在B、C两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC=45°,∠ACB=30°,问此公路是否会穿过森林公园? 请通过计算进行说明.3、如图,为测得峰顶A到河面B的高度h,当游船行至C处时测得峰顶A的仰角为α,前进m米至D处时测得峰顶A的仰角为β(此时C、D、B三点在同一直线上).(1)用含α、β和m的式子表示h;(2)当α=45°,β=60°,m=50米时,求h的值.(精确到0.1m,2≈1.41,3≈1.73)【提高练习】1、如图1-1-29,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量AB之间的距离,他从湖边的C处测得A在北偏西45°方向上,测得B在北偏东32°方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米.参考数据:sin32○≈0.5299,cos32○≈0.8480)2、某住宅小区修了一个塔形建筑物AB,如图l-1-30所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45°,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60°,求建筑物的高度.(精确0.1米)3、如图1-l-31,海平面上灯塔O方圆100千米范围内有暗礁.一艘轮船自西向东方向行,在A 处测量得灯塔O在北偏东60°方向,继续航行100千米后,在点B处测量得灯塔O在北偏东37°方向.请你作出判断为了避免触礁,这艘轮船是否要改变航向?(参考数据:sin37°≈0.6018,cos37°≈0.7986,tan37°≈0.7536,co t37°≈l.3270, 3 ≈1.7321)4、如图,甲、乙两只捕捞船同时从A 港出海捕鱼.甲船以每小时152千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度沿东北方向前进.甲船航行2小时到达C 处,此时甲船发现鱼具丢在了乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B 处相遇.(1) 甲船从C 处追赶乙船用了多长时间?(2) 甲船追赶乙船的速度是每小时多少千米?5、欲拆除一电线杆AB ,已知电线杆AB 距水平距离14m 的D 处有有大坝,背水坡CD 的坡度1:2=i ,坝高C F 为2m ,在坝顶C 处测地杆顶的仰角为30,D 、E 之间是宽度位2m 的人行道.试问:在拆除电线杆AB 时,为确保行人安全是否需要将此人行道封闭? 请说明你的理由(在地面上以B 为圆心,以AB 为半径的图形区域为危险区域,414.12,732.13≈≈).。
直角三角形的边角关系
三角函数值,会用计算器由已知三角函数值求锐角的度数,会解决生活中的实际问题。
本单元的学习难点是:记住30度、45度、60度角的三角函数值,会用锐角三角函数解决生活中的实际问题。
本单元主要学习方式:学生自己通过观察、分析、讨论发现直角三角形中边角之间的关系,在解决实际问题时,小组合作、讨论逐步把实际问题转化为数学问题。
主题单元规划思维导图
主题单元学习目标
知识与技能:1、理解锐角三角函数(正切、正弦、余弦)的含义,2、能用三角函数表示直角三角形的两条边的比,。
九年级数学下册《直角三角形的边角关系》知识点总结北师大版九年级数学下册《直角三角形的边角关系》知识点总结北师大版一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...及a都是常数, 这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f (n)(a)/n!*(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
2.直角三角形的三条高交点在一个顶点上。
3.勾股定理:两直角边平方和等于斜边平方四、利用三角函数测高1、解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.直角三角形的边角关系单元知识点的全部内容就是这些,不知道大家是否已经都掌握了呢?预祝大家以更好的学习,取得优异的成绩。
初三数学直角三角形的边角关系全章教案北师版第一章直角三角形的边角关系§1.1 从梯子的倾斜程度谈起课时安排2课时从容说课直角三角形中边角之间的关系是现实世界中应用广泛的关系之—.锐角三角函数在解决现实问题中有着重要的作用.如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,一般来说,这些实际问题的数量关系往往归结为直角三角形中边与角的关系问题.本节首光从梯子的倾斜程度谈起。
引入了第—个锐角三角函数——正切.因为相比之下,正切是生活当中用的最多的三角函数概念,如刻画物体的倾斜程度,山的坡度等都往往用正切,而正弦、余弦的概念是类比正切的概念得到的.所以本节从现实情境出发,让学生在经历探索直角:三角形边角关系的过程中,理解锐角三角函数的意义,并能够举例说明;能用sinA、cosA、tanA表示直角三角形中两边的比,并能够根据直角三角形的边角关系进行计算.本节的重点就是理解tanA、sinA、cosA的数学含义.并能够根据它们的数学意义进行直角三角形边角关系的计算,难点是从现实情境中理解tanA、sim4、cosA的数学含义.所以在教学中要注重创设符合学生实际的问题情境,引出锐角三角函数的概念,使学生感受到数学与现实世界的联系,鼓励他们有条理地进行表达和思考,特别关注他们对概念的理解.第一课时课题§ 1.1.1 从梯子的倾斜程度谈起(一)教学目标(一)教学知识点1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.(二)能力训练要求1.经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地,清晰地阐述自己的观点.2.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力.3.体会解决问题的策略的多样性,发展实践能力和创新精神.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.教学难点理解正切的意义,并用它来表示两边的比.教学方法引导—探索法.教具准备FLASH演示教学过程1.创设问题情境,引入新课用FLASH课件动画演示本章的章头图,提出问题,问题从左到右分层次出现:[问题1]在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗?[问题2]随着改革开放的深入,上海的城市建设正日新月异地发展,幢幢大楼拔地而起.70年代位于南京西路的国际饭店还一直是上海最高的大厦,但经过多少年的城市发展,“上海最高大厦”的桂冠早已被其他高楼取代,你们知道目前上海最高的大厦叫什么名字吗?你能应用数学知识和适当的途径得到金茂大厦的实际高度吗?通过本章的学习,相信大家一定能够解决.这节课,我们就先从梯子的倾斜程度谈起.(板书课题§1.1.1从梯子的倾斜程度谈起).Ⅱ.讲授新课用多媒体演示如下内容:[师]梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示)(1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?[生]梯子AB比梯子EF更陡.[师]你是如何判断的?[生]从图中很容易发现∠ABC>∠EFD ,所以梯子AB 比梯子EF 陡.[生]我觉得是因为AC =ED ,所以只要比较BC 、FD 的长度即可知哪个梯子陡.BC<FD ,所以梯子AB 比梯子EF 陡.[师]我们再来看一个问题(用多媒体演示)(2)在下图中,梯子AB 和EF 哪个更陡?你是怎样判断的?[师]我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,就比较困难了.能不能从第(1)问中得到什么启示呢?[生]在第(1)问的图形中梯子的垂直高度即AC 和ED 是相等的,而水平宽度BC 和FD 不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡.[师]这位同学的想法很好,的确如此,在第(2)问的图中,哪个梯子更陡,应该从梯子AB 和EF 的垂直高度和水平宽度的比的大小来判断.那么请同学们算一下梯子AB 和EF 哪一个更陡呢?[生]385.14==BC AC , 13353.15.3==FD ED . ∵133538〈=, ∴梯子EF 比梯子AB 更陡. 多媒体演示:想一想如图,小明想通过测量B 1C 1:及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系?(2)和111AC C B 222AC C B 和有什么关系? (3)如果改变B2在梯子上的位置呢?由此你能得出什么结论?[师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.[生]在上图中,我们可以知道Rt △AB 1C 1,和Rt △AB 2C 2是相似的.因为∠B 2C 2A =∠B 1C 1A =90°,∠B 2AC 2=∠B 1AC 1,根据相似的条件,得Rt △AB 1C 1∽Rt △AB 2C 2.[生]由图还可知:B 2C 2⊥AC 2,B 1C 1⊥AC 1,得 B 2C 2//B 1C 1,Rt △AB 1C 1∽Rt △AB 2C 2.[生]相似三角形的对应边成比例,得2221111212211,AC C B C A C B C A AC C B C B ==即. 如果改变B 2在梯子上的位置,总可以得到Rt △B 2C 2A ∽Rt △Rt △B 1C 1A ,仍能得到222111AC C B AC C B =因此,无论B 2在梯子的什么位置(除A 外), 222111AC C B AC C B =总成立. [师]也就是说无论B 2在梯子的什么位置(A 除外),∠A 的对边与邻边的比值是不会改变的.现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?[生]∠A 的大小改变,∠A 的对边与邻边的比值会改变.[师]你又能得出什么结论呢?[生]∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.[师]这位同学回答得很棒,现在我们再返回去看一下小明和小亮的做法,你作何评价?[生]小明和小亮的做法都可以说明梯子的倾斜程度,因为图中直角三角形中的锐角A 是确定的,因此它的对边与邻边的比值也是唯一确定的,与B 1、B 2在梯子上的位置无关,即与直角三角形的大小无关.[生]但我觉得小亮的做法更实际,因为要测量B 1C 1的长度,需攀到梯子的最高端,危险并且复杂,而小亮只需站在地面就可以完成.[师]这位同学能将数学和实际生活紧密地联系在一起,值得提倡.我们学习数学就是为了更好地应用数学.由于直角三角形中的锐角A 确定以后,它的对边与邻边之比也随之确定,因此我们有如下定义:(多媒体演示)如图,在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent),记作tanA ,即tanA=的邻边的对边A A ∠∠ .注意:1.tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”.2.tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.3.tanA不表示“tan”乘以“A”.4.初中阶段,我们只学习直角三角形中,∠A是锐角的正切.思考:1.∠B的正切如何表示?它的数学意义是什么?2.前面我们讨论了梯子的倾斜程度,课本图1—3,梯子的倾斜程度与tanA有关系吗? [生]1.∠B的正切记作tanB,表示∠B的对边与邻边的比值,即tanB=的邻边的对边BB∠∠.2.我们用梯子的倾斜角的对边与邻边的比值刻画了梯子的倾斜程度,因此,在图1—3中,梯子越陡,tanA的值越大;反过来,tanA的值越大,梯子越陡.[师]正切在日常生活中的应用很广泛,例如建筑,工程技术等.正切经常用来描述山坡的坡度、堤坝的坡度.如图,有一山坡在水平方向上每前进100m,就升高60 m,那么山坡的坡度(即坡角α的正切——tanα就是tanα=α5310060=.这里要注意区分坡度和坡角.坡面的铅直高度与水平宽度的比即坡角的正切称为坡度.坡度越大,坡面就越陡.Ⅲ.例题讲解多媒体演示[例1]如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?分析:比较甲、乙两个自动电梯哪一个陡,只需分别求出tanα、tanβ的值,比较大小,越大,扶梯就越陡.解:甲梯中,tanα=125513522=-=∠∠的邻边的对边αα.乙梯中,tanβ=4386==∠∠的邻边的对边ββ.因为tanβ>tanα,所以乙梯更陡.[例2]在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB的值.分析:要求tanA ,tanB 的值,根据勾股定理先求出直角边AC 的长度.解:在△ABC 中,∠C =90°,所以AC=22221220-=-BC AB =16(cm), tanA=,431612===∠∠AC BC A A 的邻边的对边 tanB=.341216===∠∠BC AC B B 的邻边的对边 所以tanA=43,tanB=34. Ⅳ,随堂练习1.如图,△ABC是等腰直角三角形,你能根据图中所给数据求出tanC 吗?分析:要求tanC.需从图中找到∠C 所在的直角三角形,因为BD ⊥AC ,所以∠C 在Rt △BDC 中.然后求出∠C 的对边与邻边的比,即DCBD 的值. 解:∵△ABC 是等腰直角三角形,BD ⊥AC ,∴CD =21AC =21×3=1.5. 在Rt △BDC 中,tanC =DC BD =5.15.1=1. 2.如图,某人从山脚下的点A 走了200m 后到达山顶的点B ,已知点B 到山脚的垂直距离为55m ,求山的坡度.(结果精确到0.001)分析:由图可知,∠A 是坡角,∠A 的正切即tanA 为山的坡度.解:根据题意:在Rt △ABC 中,AB=200 m ,BC =55 m , AC=46.385147955520022⨯≈=-=192.30(m).TanA=.286.030.19255≈=AC BC 所以山的坡度为0.286.Ⅴ.课时小结本节课从梯子的倾斜程度谈起,经历了探索直角三角形中的边角关系,得出了在直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定,并以此为基础,在“Rt △”中定义了tanA =的邻边的对边A A ∠∠.接着,我们研究了梯子的倾斜程度,工程中的问题坡度与正切的关系,了解了正切在现实生活中是一个具有实际意义的一个很重要的概念.Ⅵ.课后作业1.习题1.1第1、2题.2.观察学校及附近商场的楼梯,哪个更陡.Ⅶ.活动与探究(2003年江苏盐城)如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)[过程]要求DB 的长,需分别在Rt △ABC 和Rt △ACD 中求出BC 和DC.根据题意,在Rt △ABC 中,∠ABC=45°,AB =12 m ,则可根据勾股定理求出BC ;在Rt △ADC 中,坡比为1:1.5,即tanD=1:1.5,由BC =AC ,可求出CD.[结果]根据题意,在Rt △ABC 中,∠ABC=45°,所以△ABC 为等腰直角三角形.设BC=AC =xm ,则x 2+x 2=122, x=62, 所以BC =AC=62.在Rt △ADC 中,tanD=5.11=CD AC , 即5.1126=CD CD=92. 所以DB =CD-BC =92-62=32(m).板书设计§1.1.1 从梯子的倾斜程度谈起(一)1.当直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定.2.正切的定义:在Rt △ABC 中,锐角A 确定,那么∠A 的对边与邻边的比随之确定,这个比叫做∠A 的正切,记作tanA ,即 tanA =的邻边的对边A A ∠∠. 注:(1)tanA 的值越大.梯子越陡.(2)坡度通常表示斜坡的倾斜程度,是坡角的正切.坡度越大,坡面越陡.3.例题讲解(略)4.随堂练习5.课时小结备课资料[例1](2003年浙江沼兴)若某人沿坡度i =3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.分析:根据题意(如图):在Rt △ABC中AC :BC =3:4,AB =10米.设AC =3x ,BC =4x ,根据勾股定理,得(3x)2+(4x)2=10,∴x =2.∴AC =3x=6(米).因此某人沿斜坡前进10米后,所在位置比原来的位置升高6米.解:应填“6 m ”.[例2](2003年内蒙古赤峰)菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tan θ=______.分析:如图,菱形ABCD ,BD =16,AC =12,∠ABO =θ, 在Rt △AOB 中,AO=21AC=6, BO=21BD=8. tan θ=4386==OB OA . 解:应填“43”.第二课时课 题§1.1.2 从梯子的倾斜程度谈起(二)教学目标(一)教学知识点1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义.(二)能力训练要求1.经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.2.体会数形结合的思想,并利用它分析、解决问题,提高解决问题的能力.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成合作交流的意识以及独立思考的习惯.教学重点1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算.教学难点用函数的观点理解正弦、余弦和正切.教学方法探索——交流法.教具准备多媒体演示.教学过程Ⅰ.创设情境,提出问题,引入新课[师]我们在上一节课曾讨论过用倾斜角的对边与邻边之比来刻画梯子的倾斜程度,并且得出了当倾斜角确定时,其对边与斜边之比随之确定.也就是说这一比值只与倾斜角有关,与直角三角形的大小无关.并在此基础上用直角三角形中锐角的对边与邻边之比定义了正切.现在我们提出两个问题:[问题1]当直角三角形中的锐角确定之后,其他边之间的比也确定吗?[问题2]梯子的倾斜程度与这些比有关吗?如果有,是怎样的关系?Ⅱ.讲授新课1.正弦、余弦及三角函数的定义多媒体演示如下内容:想一想:如图(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系? (2) 211122BA C A BA C A 和有什么 关系? 2112BA BC BA BC 和呢?(3)如果改变A 2在梯子A 1B 上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B 的倾斜角的大小呢?你由此又可得出什么结论?请同学们讨论后回答.[生]∵A 1C 1⊥BC 1,A 2C 2⊥BC 2,∴A 1C 1//A 2C 2.∴Rt △BA 1C 1∽Rt △BA 2C 2.211122BA C A BA C A 和 2112BA BC BA BC 和 (相似三角形对应边成比例). 由于A 2是梯子A 1B 上的任意—点,所以,如果改变A 2在梯子A 1B 上的位置,上述结论仍成立.由此我们可得出结论:只要梯子的倾斜角确定,倾斜角的对边.与斜边的比值,倾斜角的邻边与斜边的比值随之确定.也就是说,这一比值只与倾斜角有关,而与直角三角形大小无关.[生]如果改变梯子A 1B 的倾斜角的大小,如虚线的位置,倾斜角的对边与斜边的比值,邻边与斜边的比值随之改变.[师]我们会发现这是一个变化的过程.对边与斜边的比值、邻边与斜边的比值都随着倾斜角的改变而改变,同时,如果给定一个倾斜角的值,它的对边与斜边的比值,邻边与斜边的比值是唯一确定的.这是一种什么关系呢?[生]函数关系.[师]很好!上面我们有了和定义正切相同的基础,接着我们类比正切还可以有如下定义:(用多媒体演示)在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.如图,∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即sinA =斜边的对边A ∠ ∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即cosA=斜边的邻边A ∠ 锐角A 的正弦、余弦和正切都是∠A 的三角函数(trigonometricfunction).[师]你能用自己的语言解释一下你是如何理解“sinA 、cosA 、tanA 都是之A 的三角函数”呢?[生]我们在前面已讨论过,当直角三角形中的锐角A 确定时.∠A 的对边与斜边的比值,∠A 的邻边与斜边的比值,∠A 的对边与邻边的比值也都唯一确定.在“∠A 的三角函数”概念中,∠A 是自变量,其取值范围是0°<A<90°;三个比值是因变量.当∠A 变化时,三个比值也分别有唯一确定的值与之对应. 2.梯子的倾斜程度与sinA 和cosA 的关系[师]我们上一节知道了梯子的倾斜程度与tanA 有关系:tanA 的值越大,梯子越陡.由此我们想到梯子的倾斜程度是否也和sinA 、cosA 有关系呢?如果有关系,是怎样的关系?[生]如图所示,AB =A 1B 1,在Rt △ABC 中,sinA=ABBC,在 Rt △A 1B 1C 中,sinA 1=111B A CB . ∵AB BC<111B A C B , 即sinA<sinA 1,而梯子A 1B 1比梯子AB 陡,所以梯子的倾斜程度与sinA 有关系.sinA 的值越大,梯子越陡.正弦值也能反映梯子的倾斜程度. [生]同样道理cosA=ABACcosA 1=111B A C A ,∵AB=A 1B 1AB AC>111B A C A 即cosA>cosA 1, 所以梯子的倾斜程度与cosA 也有关系.cosA 的值越小,梯子越陡.[师]同学们分析得很棒,能够结合图形分析就更为妙哉!从理论上讲正弦和余弦都可以刻画梯子的倾斜程度,但实际中通常使用正切. 3.例题讲解 多媒体演示.[例1]如图,在Rt △ABC 中,∠B=90°,AC = 200.sinA =0.6,求BC 的长.分析:sinA 不是“sin ”与“A ”的乘积,sinA 表示∠A 所在直角三角形它的对边与斜边的比值,已知sinA =0.6,ACBC=0.6. 解:在Rt △ABC 中,∠B =90°,AC =200. sinA =0.6,即=ACBC0.6,BC =AC ×0.6=200×0.6=120. 思考:(1)cosA =? (2)sinC =? cosC =?(3)由上面计算,你能猜想出什么结论? 解:根据勾股定理,得 AB =2222120200-=-BC AC =160.19在Rt △ABC 中,CB =90°.cosA =54200160==AC AB =0.8, sinC= 54200160==AC AB =0.8,cosC = 53200120==AC BC =0.6,由上面的计算可知 sinA =cosC =O.6, cosA =sinC =0.8.因为∠A+∠C =90°,所以,结论为“一个锐角的正弦等于它余角的余弦”“一个锐角的余弦等于它余角的正弦”. [例2]做一做:如图,在Rt △ABC 中,∠C=90°,cosA =1312,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.分析:这是正弦、余弦定义的进一步应用,同时进一步渗透sin(90°-A)=cosA ,cos (90°-A)=sinA.解:在Rt △ABC 中,∠C =90°,AC=10,cosA =1312,cosA =AB AC ,∴AB=665121310131210cos =⨯==A Ac ,sinB =1312cos ==A AB Ac 根据勾股定理,得BC 2=AB 2-AC 2=(665)2-102=2222625366065=- ∴BC =625. ∴cosB =1356525665625===AB BC ,sinA=135=AB BC 可以得出同例1一样的结论. ∵∠A+∠B=90°,∴sinA :cosB=cos(90-A),即sinA =cos(90°-A); cosA =sinB =sin(90°-A),即cosA =sin(90°-A). Ⅲ.随堂练习 多媒体演示1.在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.分析:要求sinB ,cosB ,tanB ,先要构造∠B 所在的直角三角形.根据等腰三角形“三 线合一”的性质,可过A 作AD ⊥BC ,D 为垂足.解:过A 作AD ⊥BC ,D 为垂足. ∴AB=AC ,∴BD=DC=21BC=3. 在Rt △ABD 中,AB =5,BD=3, ∴AD =4.sinB =54=AB AD cosB =53=AB BD ,tanB=34=BD AD .2.在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积.解:sinA=AB BC ,∵sinA=54,BC =20,∴AB =5420sin =A BC ==25. 在Rt △BC 中,AC =222025-=15, ∴ABC 的周长=AB+AC+BC =25+15+20=60, △ABC 的面积:21AC ×BC=21×15×20=150. 3.(2003年陕西)(补充练习) 在△ABC 中.∠C=90°,若tanA=21, 则sinA= . 解:如图,tanA=AC BC =21.设BC=x ,AC=2x ,根据勾股定理,得 AB=x x x 5)2(22=+. ∴sinA=55515===x x AB BC . Ⅳ.课时小结本节课我们类比正切得出了正弦和余弦的概念,用函数的观念认识了三种三角函数,即在锐角A 的三角函数概念中,∠A 是自变量,其取值范围是0°<∠A<90°;三个比值是因变量.当∠A 确定时,三个比值分别唯一确定;当∠A 变化时,三个比值也分别有唯一确定的值与之对应.类比前一节课的内容,我们又进一步思考了正弦和余弦的值与梯子倾斜程度之间的关系以及用正弦和余弦的定义来解决实际问题. Ⅴ.课后作业习题1、2第1、2、3、4题 Ⅵ.活动与探究已知:如图,CD 是Rt △ABC 的斜边AB 上的高,求证:BC 2=AB ·BD.(用正弦、余弦函数的定义证明)[过程]根据正弦和余弦的定义,在不同的直角三角形中,只要角度相同,其正弦值(或余弦值)就相等,不必只局限于某一个直角三角形中,在Rt △ABC 中,CD ⊥AB.所以图中含有三个直角三角形.例如∠B 既在Rt △BDC 中,又在Rt △ABC 中,涉及线段BC 、BD 、AB ,由正弦、余弦的定义得cosB =AB BC ,cosB= BCBD. [结果]在Rt △ABC 中,cosB =ABBC又∵CD ⊥AB.∴在Rt △CDB 中,cosB =BCBD∴AB BC =BCBD BC 2=AB ·BD. 板书设计§1.1.2 从梯子倾斜程度谈起(二)1.正弦、余弦的定义在Kt △ABC 中,如果锐角A 确定. sinA =斜边的对边A ∠cosA =斜边的对边A ∠2.梯子的倾斜程度与sinA 和cosA 有关吗? sinA 的值越大,梯子越陡 cosA 的值越小,梯子越陡3.例题讲解4.随堂练习§1.2 30°、45°、60°角的三角函数值课时安排1课时从容说课本节在前两节介绍了正切、正弦、余弦定义的基础上,经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义,并能够进行含有30°、45°、60°角的三角函数值的计算.因此本节的重点是利用三角函数的定义求30°、45°、60°这些特殊角的特殊三角函数值,并能够进行含有30°、45°、60°角的三角函数值的计算.难点是利用已有的数学知识推导出30°、45°、60°这些特殊角的三角函数值.三角尺是学生非常熟悉的学习用具,教学中,教师应大胆地鼓励学生用所学的数学知识如“直角三角形中,30°角所对的边等于斜边的一半”的特性,经历探索30°、45°、60°角的三角函数值的过程,发展学生的推理能力和计算能力.第三课时课题§1.2 30°,45°,60°角的三角函数值教学目标(一)教学知识点1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.(二)思维训练要求1.经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现的能力.2.培养学生把实际问题转化为数学问题的能力.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心.培养学生独立思考问题的习惯.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教具重点1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.教学难点进一步体会三角函数的意义.教学方法自主探索法教学准备一副三角尺多媒体演示教学过程Ⅰ.创设问题情境,引入新课[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.(用多媒体演示上面的问题,并让学生交流各自的想法)[生]我们组设计的方案如下:让一位同学拿着三角尺站在一个适当的位置B 处,使这位同学拿起三角尺,她的视线恰好和斜边重合且过树梢C 点,30°的邻边和水平方向平行,用卷尺测出AB 的长度,BE 的长度,因为DE=AB ,所以只需在Rt △CDA 中求出CD 的长度即可.[生]在Rt △ACD 中,∠CAD =30°,AD =BE ,BE 是已知的,设BE=a 米,则AD =a 米,如何求CD 呢? [生]含30°角的直角三角形有一个非常重要的性质:30°的角所对的边等于斜边的一半,即AC =2CD ,根据勾股定理,(2CD)2=CD 2+a 2. CD =33a. 则树的高度即可求出.[师]我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30°的正切值,在上图中,tan30°=aCDAD CD =,则CD= atan30°,岂不简单.你能求出30°角的三个三角函数值吗? Ⅱ.讲授新课1.探索30°、45°、60°角的三角函数值.[师]观察一副三角尺,其中有几个锐角?它们分别等于多少度?[生]一副三角尺中有四个锐角,它们分别是30°、60°、45°、45°. [师]sin30°等于多少呢?你是怎样得到的?与同伴交流. [生]sin30°=21. sin30°表示在直角三角 形中,30°角的对边与斜边的比值,与直角三角形的大小无关.我们不妨设30°角所对的边为a(如图所示),根据“直角三角形中30°角所对的边等于斜边的一半”的性质,则斜边等于2a.根据勾股定理,可知30°角的邻边为a ,所以sin30°=212=a a . [师]cos30°等于多少?tan30°呢? [生]cos30°=2323=a a . tan30°=33313==a a [师]我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?[生]求60°的三角函数值可以利用求30°角三角函数值的三角形.因为30°角的对边和邻边分别是60°角的邻边和对边.利用上图,很容易求得sin60°=2323=a a , cos60°=212=a a ,tan60°=33=aa. [生]也可以利用上节课我们得出的结论:一锐角的正弦等于它余角的余弦,一锐角的余弦等于它余角的正弦.可知sin60°=cos(90°-60°)=cos30°=23cos60°=sin(90°- 60°)=sin30°=21. [师生共析]我们一同来 求45°角的三角函数值.含 45°角的直角三角形是等腰 直角三角形.(如图)设其中一 条直角边为a ,则另一条直角 边也为a ,斜边2a.由此可求得sin45°=22212==a a , cos45°=22212==a a , tan45°=1=aa[师]下面请同学们完成下表(用多媒体演示) 30°、45°、60°角的三角函数值三角函数角sin αco αtan α30°21 23 33 45°22 22 160°23 21 3°、45°、60°角的三角函数值,说出相应的锐角的大小.为了帮助大家记忆,我们观察表格中函数值的特点.先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢?[生]30°、45°、60°角的正弦值分母都为2,分子从小到大分别为1,2,3,随着角度的增大,。
解直角三角形的边角关系解直角三角形的边角关系-解直角三角形常用公式-直角三角形的判定方法-手机版移动版一、直角三角形的判定方法判定1:有一个角为90°的三角形是直角三角形。
判定2:若a²+b²=c²,则以a、b、c为边的三角形是以c 为斜边的直角三角形(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。
那么判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于某一邻边的一半,则这个三角形为直角三角形。
(与判定3不同,此定理用于已知斜边的三角形。
)二、解直角三角形:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
三、解直角三角形——锐角三角形函数(1)互余角的三角函数值之间的关系:若∠ a+∠ b=90°,那么sina=cosb或sinb=cosa(2)同角的三角函数值之间的关系:①sin^2a+cos^2a=1②tana=sina/cosa③tana=1/tanb④a/sina=b/sinb=c/sinc(3)锐角三角函数随角度的变化规律:角a的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。
直角三角形的定义有一个角为90°的三角形,叫做直角三角形(rt△)(英文:right triangle)。
四、解直角三角形概念:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形。
第三讲 直角三角形的边角关系
第1节 从梯子的倾斜程度谈起
本节内容:
正切的定义 坡度的定义及表示(难点) 正弦、余弦的定义 三角函数的定义(重点)
在确定,那么A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA 。
即tanA=b
a
A =∠∠的邻边的对边A
例1 如图, 已知在Rt △ABC 中,∠C=90°,CD ⊥AB ,AD=8,BD=4,求tanA 的值。
我们通常把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或坡比)。
坡度常用字母i 表示。
斜坡的坡度和坡角的正切值关系是:l
h
a =
tan 注意:
(1)坡度一般写成1:m 的形式(比例的前项为
1,后项可以是小数); (2)若坡角为a ,坡度为a l
h
i tan ==
,坡度越大,则a 角越大,坡面越陡。
例2 如图,拦水坝的横断面为梯形ABCD ,坝顶宽BC 为6m ,坝高为3.2m ,为了提高水坝的拦水能力,需要将水坝加高2m ,并且保持坝顶宽度不变,迎水坡CD •的坡度不变,但是背水坡的坡度由原来的i =1:2变成i ′=1:2.5,(有关数据在图上已注明).•求加高后的坝底HD 的长为多少?
D C B A
例4方方和圆圆分别将两根木棒AB=10cm,CD=6cm斜立在墙上,其中BE=6cm,DE=2cm,你能判断谁的木棒更陡吗?说明理由。
第2节 30°,45°,60°角的三角函数值
本节内容:
30°,45°,60°角的三角函数值(重点)
1、30°,45°,60°角的三角函数值(重点)
根据正弦、余弦和正切的定义,可以得到如下几个常用的特殊角的正弦、余弦和正切值。
练习
1、 已知a 为锐角,且tana=5,求
a
a a
a sin cos 2cos 3sin +-的值。
2、(2008·成都中考)2︒45cos 的值等于________。
3、(2008·义乌中考)计算3845cos 260sin 3+︒-︒。
4、(2010深圳)( 13 )-2-2sin45º+ (π -3.14)0+ 1 2 8+(-1)3.
俯角:当从高处观测低处的目标时,视线与水平线所成的锐角成为俯角。
为了防止山体滑坡,保障安全,学校决定对土坡进行改造,经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡。
(1) 求改造前坡顶与地面的距离BE 的长;(精确到0.1m )
(2) 为确保安全,学校计划改造时,保持坡脚A 不动,坡顶B 沿BC 前进到F 点处,问BF 至少是多少?(精
确到0.1m )(,4751.268tan ,3746.068cos ,9272.068sin ≈︒≈︒≈︒,7660.050sin ≈︒,
6428
.050cos ≈︒198
.150tan ≈︒)
例6要求︒45tan 的值,可构造如图所示直角三角形,作Rt △ABC,使∠C=90°,两直角边AC=BC=a ,则∠ABC=45°,所以145tan ===
︒a
a
BC AC 。
你能否在此基础上,求出'︒3022tan 的值?
例7某轮船自西向东航行,在A处测得某岛C在其北偏东60°方向上,前进8千米到达B,测得该岛在轮船的北偏东30°方向上,问轮船继续前进多少千米与小岛的距离最近?
第3节船有触礁的危险吗
本节内容:
方向角的定义解直角三角形(重点)解直角三角形的实际应用(难点)
方向角:方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标所形成的锐角,方向角也称象限角。
如图,目标方向线0A、0B、0C的方向角分别为北偏东15°、南偏东20°、北偏西60°。
其中南偏东45°习惯上又叫东南方向,同样北偏西45°又叫西北方向。
如OE的方向角为南偏东45°,OG的方向角为南偏西45°,那么,G、E可以说在O的哪个方向呢?由方向角的定义可知,G在O的西南方向,E在O的东南方向。
例1 某次台风袭击了我国南部海域。
如图,台风来临前,我们海上搜救中心A 接到一越南籍渔船遇险的报警,于是指令位于A 的正南方向180海里的救援队B 立即前往施救。
已知渔船所处位置C 在A 的南偏东34°方向,在B 的南偏东63°方向,此时离台风来到C 处还有12小时,如果救援船每小时行驶20海里,试问能否在台风来到之前赶到C 处对其施救?(参考数据:3
234tan ,5334sin ,263tan ,10963sin ≈︒≈︒≈︒≈
︒)
例2某公园“六一”亲新增设一台滑梯,如图。
滑梯高度AC=2m,滑梯着地点B与梯架之间的距离BC=4m。
(1)求滑梯AB的长;(结果精确到0.1m)
(2)若规定滑梯的倾斜角(∠ABC)不超过45°属于安全范围,请通过计算说明这架滑梯的倾斜角是否符合要求?
距沿海某城市A的正南方向220千米的B处有一台风中心,其中心的最大风力为12级,每远离台风中心20千米,台风就会弱一级。
台风中心现正以15千米/时的速度沿北偏东30°方向往C移动,且台风中心风力不变,若城市风力达到或超过4级,则称为受台风影响。
(1)该城市是否会受到这次台风的影响?请说明理由。
(2)若会受到台风影响,那么台风影响该市的持续时间有多长?
典型例题:
例1如图,甲、乙两只捕捞船同时从A港出海捕鱼。
甲船以每小时
152千米的速度沿北偏西60°方向前进,乙船以每小时15千米的
速度沿东北方向前进。
甲船航行2小时到达C处,此时甲船发现鱼具丢在了乙船上,于是甲船快速(匀速)沿北偏
东75°的方向追赶,结果两船在B处相遇。
(1)甲船从C处追赶乙船用了多长时间?
(2)甲船追赶乙船的速度是每小时多少千米?
例2某年入夏以来,松花江哈尔滨段水位不断下降,一条船在松花江某段自西向东沿直线航行,在A 处测得航标C 在北偏东60°防西哪个上。
前进100m 到达B 处,又测得航标C 在北偏东45°方向上(如图),在以航标C 为圆心,120m 为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险?(73.13≈)
第4节 测量物体的高度
本节内容:
测量底部可以到达的物体的高度(重点) 测量底部不可以到达的物体的高度(难点)
简单的测倾器由度盘、铅锤和支杆组成。
如图。
使用测倾器测量倾斜角的步骤如下:
(1) 把支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时
度盘的顶线PQ 在水平位置。
(2) 转动转盘,使度盘的直径对准目标M,记下此时铅垂线所指的度数。
此度数就是
测点相对于被测点的仰角或俯角。
说明:
(1)所谓“底部可以到达“,就是在地面上可以无真纳干碍地直接测得测点与被测物体的底部
之间的距离。
(2)测量步骤如图(测量物体MN 的高度):
①在测点A 处安置测倾器,测得M 的仰角∠MCE=α;
②量出测点A 到物体底部N 的水平距离AN=l ;
③量出测倾器的高度AC=a (即顶线PQ 成水平位置时,它与地面的距离)。
(3) 物体MN 的高度 = a l +αtan 。
例1如图,两建筑物的水平距离为36m,从A点测得D点的俯角α为36°,测得C点的俯角β为45°,求这两座建筑物的高度。
(sin36°≈0.588,cos36°≈0.412,tan36°≈0.723,结果保留2位小数)。