第二章 产酶微生物的分离与筛选
- 格式:ppt
- 大小:5.11 MB
- 文档页数:67
蛋白酶产生菌的分离、鉴定和筛选是一项重要的微生物学工作,通常用于寻找能够产生具有特定功能的蛋白酶的细菌或真菌菌株。
以下是一般的步骤和方法:
1. 样品采集:首先从土壤、水体、食品等环境中采集样品,可能含有潜在的蛋白酶产生菌。
2. 分离:将样品进行稀释处理后,通过涂布法、稀释涂布法、过滤法等分离方法,在富含寒原蛋白酶的寒原平板培养基上培养,以分离出单菌种。
3. 纯化:将分离得到的单菌种进行多次传代,确保单一菌株的纯化。
4. 鉴定:利用生理生化试验、形态学观察、生物学特性和分子生物学方法(如16S rRNA序列分析)等手段,对分离得到的菌株进行鉴定,确定其分类地位。
5. 筛选:利用含有蛋白质底物的培养基(如乳清蛋白、明胶等)进行筛选,观察菌株在培养基上的透明圈或发酵液的浑浊度变化,筛选出产生蛋白酶活性高的菌株。
6. 活性测定:对筛选出的蛋白酶产生菌株进行蛋白酶活性测定,确
定其蛋白酶活性水平。
7. 保存与应用:对获得的蛋白酶产生菌株进行保存,并进一步研究其生物学特性和应用潜力,如酶学特性、温度和pH稳定性等。
通过以上步骤,可以有效地从环境样品中分离、鉴定并筛选出具有高蛋白酶产量和活性的菌株,为后续的蛋白酶生产及应用研究提供了可靠的菌种资源。
产脂肪酶微生物的筛选及脂肪酶基因的克隆表达产脂肪酶微生物的筛选及脂肪酶基因的克隆表达摘要:脂肪酶是一类催化脂肪水解的酶,广泛应用于食品、制药和生物工程等领域。
本文旨在概述产脂肪酶微生物的筛选方法以及如何克隆和表达脂肪酶基因。
通过筛选出高产脂肪酶的微生物,并利用基因克隆技术将其基因表达,可以为大规模生产纯脂肪酶提供基础。
1. 引言脂肪酶是一种催化脂质的水解反应酶,广泛存在于微生物中。
它们通过将脂肪酯水解为脂肪酸和甘油,起到重要的催化作用。
因此,寻找高产脂肪酶的微生物,并将其脂肪酶基因克隆和表达,具有重要的应用价值。
2. 产脂肪酶微生物的筛选产脂肪酶的微生物广泛存在于土壤、水体和动物消化系统等环境中。
筛选产脂肪酶微生物的方法主要有:直接筛选法、改进筛选法和基因工程筛选法。
2.1 直接筛选法直接筛选法是最常见也是最简单直接的方法之一。
通过将微生物菌株进行培养,然后检测菌液中产酶能力。
其中,利用酶抑制剂和显色剂的方法可以进行定性和定量的检测。
该方法的优点是操作简便,易于操作。
2.2 改进筛选法改进筛选法通过加入酶诱导剂、化合物诱导剂和高浓度含油样品等方式,提高产脂肪酶的微生物菌株筛选效果。
例如,可使用大豆油、浓缩桔子油等作为诱导剂,增强菌株胞外酶的产酶能力。
2.3 基因工程筛选法基因工程筛选法是利用基因工程技术构建含有脂肪酶基因的表达载体,转化到宿主菌株中,使其表达目标基因并产生脂肪酶。
这种方式可通过对基因进行改造和优化,提高脂肪酶活性和稳定性。
同时,基因工程筛选法还可以利用高通量筛选技术,如流式细胞术和高通量测序技术,提高筛选效率。
3. 脂肪酶基因的克隆和表达脂肪酶基因的克隆和表达是关键步骤,它们可以为脂肪酶的高效生产提供基础。
3.1 脂肪酶基因的克隆脂肪酶基因的克隆可以通过PCR扩增、限制性内切酶切割和连接等方法实现。
首先,从目标微生物的基因组DNA或环境DNA中提取目标基因的DNA序列。
然后,使用特异性引物进行PCR扩增,得到目标基因的DNA片段。
第二章 微生物育种的原理和方法微生物育种原理和方法微生物育种筛选方法微生物育种原理和方法一、微生物育种原理方法:突变、体内重组体外重组(基因工程)1、从自然界中获得新菌种微生物资源分布:土壤、水、空气、动植物及其腐败残骸都是微生物的主要栖居和生长繁殖场所2、分离微生物新种的步骤 采样、增殖、纯化和性能测定等步骤3、典型的微生物采样和筛选方法生物进化过程中微生物形成完善的代谢调节机制不会有代谢产物的积累解除或突破微生物的代谢调节控制目的产物积累微生物育种的目的直接从自然界分离得到的菌株为野生型菌株。
往往低产甚至不产所需的产物,只有经过进一步的人工改造才能真正用于工业生产二、诱变育种方法1、物理诱变:紫外线2、化学诱变:5-溴尿密啶1)紫外线诱变机理:造成DNA链的断裂,或使DNA分子内或分子之间发生交联反应2)诱变过程中需要注意光复活作用:微生物等生物的细胞内存在光复活酶,光复活酶识别胸腺嘧啶二聚体,并与之结合形成复合物(此时的光复活酶没有活性),可见光光能(300-500nm)激活光复活打开二聚体,将DNA复原。
暗修复:细胞内还存在另一种修复体系,它不需要光激活,可修复由紫外线、γ射线和烷化剂等对DNA造成的损伤。
暗修复体系有四种酶参与反应。
紫外诱变的特点:方便、诱变效果很好的常用诱变剂由此说明紫外线照射引起微生物突体形成是一个复杂的生物学过程。
紫外线引起DNA结构的改变仅仅使微生物,于亚稳定状态,点亚稳定到稳定的突变体的形成需要“定时间和过程,所以在实际诱变工作中要采取某些措施避免以上的修复作用,要注意避光或加入某些物质,提高突变的频率。
因此,用紫外线进行诱变时,照射或分离均应在红光下进行。
3)化学诱变剂诱变机理:5-溴尿嘧啶诱变——碱基类似物机理:与碱基的结构类似,在DNA复制时,它们可以被错误地掺入DNA,引起诱变效应注意的参数:参数:浓度、时间、缓冲液三、诱变育种的基本过程诱变育种的基本过程如下:1)出发菌株的选择A、一是考虑出发菌株是否具有特定生产性状的能力或潜力,即菌株是否具有产生特定代谢产物的催化酶系的基因。
产酶微生物的分离与筛选实验报告组别:第6组组长:冯建阳组员:崔国强、石勇、于锦项目:产纤维素酶的筛选与分离时间:2014年5月11日一、实验目的1.从富含纤维素的土壤中分离出可以产生纤维素酶的菌种。
2.掌握菌种的筛选方法以及菌种的鉴定方法。
3.掌握培养基的设计和配置。
4.熟练掌握无菌接种技术,微生物分离筛选技术和微生物形态观察技术。
5.学习设计性,综合性实验报告的书写规范。
二、实验原理纤维素是地球上分布最广泛、含量最丰富的可再生资源,探索纤维素资源的有效利用方法具有重要的意义。
纤维素酶最早是1904年在蜗牛消化液中首次发现,由多种组分组成的一个复杂酶系,为水解纤维素及其衍生物的一组酶的总称。
纤维素酶的来源很广泛,自然界中能产生纤维素酶的物种非常多,合成的纤维素酶在组成上有显著的差异,对纤维素的酶解能力也大不相同。
在过去的半个世纪内,人们在各种原生动物、圆虫类、软体动物、甲壳类、昆虫、藻类、真菌类、细菌及放线菌中都发现了纤维素酶。
近年来陆续在古菌中也发现很多纤维素酶的存在。
菌种采集:产纤维素酶细菌的采集选择在纤维素含量较高的地方,如花园表层土壤、腐烂的木头、造纸厂废水及反刍动物的瘤胃及其排泄物等。
本次实验拟从森林土及朽木中获得产酶菌株。
采样的土层太深则厌氧菌占优,而浅层土受紫外线照射,细菌难以存活。
故实验选取距表层土壤10cm处的土壤进行筛选。
纤维素刚果红培养基筛选菌种的原理:1、刚果红可以跟大分子多糖牢固结合。
2、纤维素是大分子多糖,跟刚果红牢固结合。
3、纤维素酶降解平板中的纤维素小分子糖,那么刚果红无法与小分子糖结合,就被洗脱下来,呈现透明圈。
4、在通常的纤维素刚果红培养基筛选菌种的程序中,先用含有纤维素的平板培养菌,等菌长出来后,把菌体刮离,然后加入刚果红染色10-15分钟,再用NaCl冲洗2-3次,产生透明圈的就是能水解纤维素的菌。
三、实验步骤(一)菌种的采集采集人民公园距湿润的表层10cm处的土壤样本40g左右,用研钵研成粉末称取1g样本加入灭菌的250mL锥形瓶中,加入99mL无菌水摇匀静置。
微生物大实验报告产酶微生物的筛选微生物大实验报告:产酶微生物的筛选一、实验背景酶是一种具有高效催化作用的生物大分子,在生物体内参与各种代谢反应,对生命活动起着至关重要的作用。
在工业生产中,酶也被广泛应用于食品、制药、化工等领域。
然而,天然存在的酶往往不能满足工业生产的需求,因此筛选具有高活性、高稳定性和特异性的产酶微生物成为了获取优质酶的重要途径。
二、实验目的本实验旨在从环境中筛选出能够产生特定酶的微生物,并对其产酶能力进行初步评估,为后续的酶学研究和工业应用提供基础。
三、实验材料与方法(一)实验材料1、样品采集:从土壤、污水、腐烂的植物等不同环境中采集样品。
2、培养基:富集培养基:用于增加目标微生物的数量。
筛选培养基:含有特定底物,以筛选出能够产生目标酶的微生物。
鉴定培养基:用于微生物的种类鉴定。
3、试剂:包括显色剂、酸碱指示剂等。
(二)实验仪器1、恒温培养箱:用于培养微生物。
2、超净工作台:提供无菌操作环境。
3、显微镜:观察微生物形态。
4、离心机:分离微生物细胞和上清液。
(三)实验方法1、样品预处理:将采集的样品进行适当处理,如稀释、研磨等。
2、富集培养:将预处理后的样品接种到富集培养基中,在适宜条件下培养一段时间,使目标微生物得到增殖。
3、平板筛选:将富集培养后的菌液稀释后涂布在筛选培养基平板上,培养后观察平板上的菌落形态和颜色变化,筛选出可能的产酶菌株。
4、摇瓶发酵:将筛选得到的菌株接种到液体培养基中进行摇瓶发酵,培养一定时间后测定酶活。
5、菌株鉴定:通过形态观察、生理生化实验和分子生物学方法对产酶菌株进行鉴定。
四、实验结果与分析(一)筛选结果经过平板筛选,共获得了_____株具有产酶潜力的菌株。
这些菌株在筛选培养基上表现出了不同的特征,如菌落形态、颜色变化等。
(二)酶活测定结果对筛选得到的菌株进行摇瓶发酵后,测定其酶活。
结果发现,菌株_____的酶活最高,达到了_____U/ml,其次是菌株_____,酶活为_____U/ml。
酶工程复习要点名词解释:1、酶活性中心:只有少数特异的氨基酸残基与底物结合及催化作用。
这些特异的氨基酸残基比较集中的区域,即与酶活力直接相关的区域称为没得活性中心或活性部位。
2、酶别构调节的定义:某些小分子物质与酶的非催化部位或别位特异地结合,引起酶蛋白构象的变化,从而改变酶活性的方式。
能发生别构效应的酶称为别构酶。
3、效应物:与别构酶的别构中心结合,能调节酶的反应速率和代谢过程的物质。
4、同促效应和异促效应:当一个效应物分子和酶结合后,影响另一个相同的效应物分子与酶的另一部位结合称为同促效应;如果一分子效应物和酶结合后,影响另一不同的效应物分子与酶的另一部位结合则称为异促效应。
一个效应物分子与别构酶的别构中心结合后对第二个效应物分子结合的影响称为协同效应。
当一个效应物分子与酶蛋白的一个部位结合后,可使另一部位对效应物亲和力增高的效应称为正协同效应,反之称为负协同效应。
5、酶的专一性:酶对催化的反应和反应物有严格的选择性。
1、结构专一性:分为绝对专一性和相对专一性2、立体异构专一性:分为光学专一性和几何专一性6、酶原的激活:分子内肽键的一处或多处断裂,进而使分子构象发生某种改变,形成酶的活性中心。
7、酶原:有些酶在细胞内合成及初分泌时是没有活性的酶的前体,称为酶原。
8、酶活力:又称为酶活性,是指酶催化某一化学反应的能力。
9、抑制剂:能降低酶的活性,使酶促反应速率减慢的物质10、分解代谢物阻遏:是指细胞内同时有两种分解底物(碳源或氮源)存在时,利用快的那种分解底物会阻遏利用慢的底物有关酶合成的现象。
11、反馈阻遏作用:是指酶催化作用的产物或代谢途径的末端产物使该酶的生物合成受阻的过程。
12、操纵子:原核基因组中,由几个功能相关的结构基因及其调控区组成一个基因表达的协同单位,这种单位称为操纵子。
操纵子分:诱导型操纵子、阻遏型操纵子13、效应物:效应物是一类低相对分子质量的信号物质(如糖类及其衍生物、氨基酸和核苷酸等),包括诱导物和辅阻遏物两种。