电动力学数学基础
- 格式:ppt
- 大小:7.55 MB
- 文档页数:65
需要具备哪些物理和数学基础,才能完全理解狭义和广义相对
论?
先说物理基础。
其实很显然,按照历史的发展顺序,爱因斯坦提出狭义相对论的时候,物理学只有经典力学和电动力学,前者包括牛顿力学和分析力学。
一般在物理专业课中是四大力学的第一门《经典力学》,在大学普物课中是《力学》但因为你的目的是“完全理解”,那么我就不提普物了,只提物理学专业课。
后者包括早期电磁学和麦克斯韦方程组,在物理专业课中是四大力学的第三门《电动力学》。
这就是学习相对论之前需要掌握的物理基础。
顺便提一下,物理专业课中是四大力学的第二门是《热力学和统计物理》,这个对学习相对论来说不是必需的,但标准的课程都会按照这个顺序讲,所以还是逃不过一起学,对经典物理学有一个完整印象。
经典力学,电动力学,热力学和统计物理(不含量子统计部分)合称经典物理学。
再说数学基础。
狭义相对论对数学要求其实不高,推导洛伦兹变换甚至连微积分都用不到。
但既然你想完全理解和狭义相对论,还是要具备完整的《高等数学》基础,主要包括微积分,偏微分方程,线性代数三个部分,这都是学习经典物理学必备的工具。
此外,还要学习一门《数理方程》。
更难一些的《复变函数》不是狭义相对论必需的。
但广义相对论对数学的要求就更高了,因为时空不再是简单的欧几里得几何,而是有曲率的黎曼几何,这在数学上就进入了《微分几何》的领域。
想要完全理解广义相对论,不但要把前面的高等数学,数理方程和复变函数统统学一遍,还要增加微分几何内容。
所以这样一趟下来,广义相对论在物理学专业中已经属于研究生课程难度(当然入门知识可以在本科最后一年选修)。
电动⼒学复习第⼀章电磁现象的基本规律1、描写静电场的基本⽅程(积分与微分),各⾃反映静电场的什么性质,以及微分⽅程反映场的局域性质的意义。
2、描写静磁场的基本⽅程(积分与微分),各⾃反映静磁场的什么性质,以及微分⽅程反映场的局域性质的意义。
3、电荷守恒定律的微分形式;欧姆定律的微分形式4、电荷系统单位体积所受电磁场作⽤的⼒密度(即洛伦兹⼒公式)5、1)电介质极化,极化体束缚电荷密度与极化强度的关系,极化⾯电荷密度与极化强度的关系;引⼊辅助量,电位移⽮量,电位移⽮量的定义式;对各向同性线性介质,电位移⽮量的表达式;如:均匀介质内部的体极化电荷密度p ρ总是等于体⾃由电荷密度f ρ的)1(0εε--倍。
2)磁介质磁化,引⼊辅助量,磁场强度,磁场强度的定义式;对各向同性⾮铁磁质,磁场强度的表达式6、电磁场边值关系如:1)介电常数分别为ε1和ε2两种绝缘介质的分界⾯上不带⾃由电荷时,分界⾯上电场线的曲折满⾜什么关系2)⽤边值关系证明:在绝缘介质与导体的分界⾯上,在静电情况下,导体外的电场线总是垂直于导体表⾯,在恒定电流的情况下,导体内电场线总是平⾏于导体表⾯。
7、麦克斯韦⽅程组,两个基本假设:感⽣电场和位移电流。
其中位移电流如何产⽣,位移电流与传导电流的共同点与不同点。
8、1)电磁场和电荷系统的能量转化和守恒定律的微分形式;2)电磁场的能量密度和能流密度表达式9、结合场的微分⽅程的数学上的散度、旋度的计算(如P34 习题3)如:已知电位移⽮量z y x e z e y e x D323++=,求电荷密度;已知电极化强度,求极化电荷密度;x e y e B y x+=是否为能表⽰磁感应强度的⽮量函数;若给出磁感强度为,求m 的值;⽮量是否可能是静电场的解第⼆章静电场1、在静电场中,电场强度 E和电位 ? 之间的关系;如:已知电势222z y x -=?,求电场强度;已知电势,求电场强度等2、静电势的微分⽅程和边值关系(注意导体的静电条件)3、⽤电荷密度和电势表⽰的静电场能量(注意只对总能量计算有意义,不能当做能量密度看待),如计算带电量Q﹑半径为a 的导体球的静电场总能量; 4、唯⼀性定理是解静电学问题的理论基础5、分离变量法解拉普拉斯⽅程(球坐标系下通解的形式,以及问题具有轴对称性以及球对)()23(3mzy e z y e x e B z y x +--+=(2)xyzE yz x e xze xye=-++称性下的简化形式)如:P49-51 例题 2 与例题3补充习题:1)真空中半径为R 的带电球⾯,其电荷⾯密度为σ =σ0cos θ(σ0为常数),试⽤分离变量法求球⾯内外的电势分布。
电动⼒学电动⼒学第⼀章静电场⼀、考核知识点1、真空与介质中静电场场⽅程,场的性质、物理特征。
2、电场的边值关系、在两种介质分界⾯上电场的跃变性质。
3、由场⽅程、边值关系,通过电荷分布确定场分布及极化电荷的分布。
4、静电场的势描述。
由势分布确定场分布、荷分布;通过静电势的定解问题,确定静电势的分布、场分布及介质极化性质的讨论。
⼆、考核要求(⼀)、场⽅程、场的确定1、场⽅程,场的边值关系,体、⾯极化电荷密度的确定式等规律的推导。
2、识记:(1)、真空与介质静电场⽅程。
(2)、电场的边值关系。
(3)、体、⾯极化电荷密度的确定式。
3、领会与理解:(1)、静电场的物理特征。
12(2)、P D E ,,与电荷的关系,⼒线分布的区别与联系。
(3)、在介质分界⾯上场的跃变性质。
4、应⽤:通过对称性分析,运⽤静电场的⾼斯定理确定场,讨论介质的极化,正确地由电荷分布画出场的⼒线分布。
(⼆)、静电势1、静电势⽅程、边值关系的推导。
2、识记:静电势的积分表述、势⽅程、势的边值关系、势的边界条件、唯⼀性定理。
3、领会与理解:势的边值关系与边界条件,荷、势与场的关系,解的维数的确定,电像法的指导思想与像电荷的确定。
4、应⽤:求解静电势定解问题的⽅法(分离变量法、电像法)的掌握及应⽤,求解的准确性,场的特征分析及由势对介质极化问题的讨论。
第⼆章稳恒磁场⼀、考核知识点1、电荷守恒定律。
2、稳恒磁场场⽅程,场的性质特点。
3、由场⽅程,通过流分布确定场分布与磁化流。
4、磁场的边值关系。
5、稳恒磁场的⽮势。
6、由磁标势法确定场。
3⼆、考试要求1、规律的推导:真空、介质中稳恒磁场场⽅程,电荷守恒定律的微分表述,体、⾯磁化电流密度的确定式,磁场的边值关系,⽮势⽅程及其积分解,磁标势⽅程和边值关系等。
2、识记:电荷守恒定律,稳恒磁场场⽅程,体、⾯磁化电流密度的确定式,⽮势引⼊的定义式,磁标势引⼊条件,磁场的边值关系,0=f α情况磁标势的边值关系。
电动力学内容简介The Summery of Contents in Electrodynamics电动力学:研究电磁场的基本属性、运动规律、与带电物质的相互作用。
1. 场:物理量在空间或一部分空间的分布。
通过对电磁场的研究加深对场的理解。
场是一种物质,有其特殊的运动规律和物质属性,但是又是一种特殊的物质它可以与其他物质共同占有一个空间(存在形式的特点)。
有关电磁场的概念是有法拉第提出的,麦克斯韦进一步完善。
一个很核心的问题:“物质能不能在它们不存在的地方发生相互作用” “实验证实超距作用的不正确”所以说场的引入可以说正是解释了这一问题。
电磁场作为电磁现象的共性所引入的2. 如何研究电磁场所对应的物理量()(),,,,,,,E x y z t B x y z t :从理论上和实验上证明了是必需的也是最基本的。
3. 电磁学和电动力学的区别:(学过了数学物理方法)就像中学中的电与磁的现象与电磁学的区别在于学了微积分一样。
电磁学:麦克斯韦方程组:只有积分的形式只是作为最后的结果并没有给出应用。
求解静电场的问题:库伦定理+积分、高斯定理、已知电势求电场电动力学:麦克斯韦方程组:不仅有积分形式而且还有位分形式,先结果再应用。
求解静电场的问题:分离变量法、镜像法、格林函数法4. 本书的主要结构:⎧⎧→⎨⎪⎪⎩→⎨⎧⎪→⎨⎪⎩⎩第二章静电场静第三章静磁场第一章电磁现象的普遍规律第四章电磁场的的传播动第五章电磁场的发射第六章相对论第一章 电磁现象的普遍规律Universal Law of Electromagnetic Phenomenon本章将从基本的电磁实验定律出发建立真空中的Maxwell’s equations 。
并从微观角度论证了存在介质时的Maxwell’s equations 的形式及其电磁性质的本构关系。
继而给出Maxwell’s equat ions 在边界上的形式,及其电磁场的能量和能流,最后讨论Maxwell’s equations 的自洽性和完备性。
电动力学基尔霍夫定律证明-概述说明以及解释1.引言1.1 概述电动力学是物理学中研究电荷与电流相互作用的分支,它是现代科学和技术中至关重要的学科。
电动力学的核心理论之一就是基尔霍夫定律,它是描述电路中电流分布和电压规律的基本原理。
基尔霍夫定律由德国物理学家叶夫根尼·奥托·波波夫(Gustav Robert Kirchhoff)于19世纪中叶提出,至今仍然被广泛应用于电路分析和设计。
这个定律在电路中的应用非常重要,因为它允许我们准确地计算电流和电压在复杂电路中的分布情况。
基尔霍夫定律包括两个关键点:基尔霍夫电流定律(Kirchhoff's Current Law, KCL)和基尔霍夫电压定律(Kirchhoff's Voltage Law, KVL)。
KCL指出在任何一个节点上,流入节点的电流总和等于流出节点的电流总和。
而KVL则表明沿着一个闭合回路的电压总和等于零。
通过基尔霍夫定律,我们可以推导出电路中复杂的电流和电压关系,从而有效地解决电路设计和分析中的问题。
这不仅在电子工程和电路设计中发挥着重要作用,也为各种电子设备的正常运行提供了基础。
本文将详细介绍基尔霍夫定律的理论基础和应用方法,并从数学角度给出基尔霍夫定律的证明过程。
通过这篇文章,读者们将能够更深入地理解基尔霍夫定律的原理和意义,以及如何利用它们进行电路分析与设计。
1.2文章结构文章结构部分的内容:文章结构部分旨在向读者介绍本文的组织结构和各个部分的主要内容。
通过清晰的文章结构,读者可以更好地理解文章的逻辑脉络和论证过程。
本文分为引言、正文和结论三个部分。
下面将对每个部分的主要内容进行简要介绍。
引言部分(Introduction)旨在引起读者的注意并提出问题。
首先,我们将概述电动力学在物理研究中的重要性。
然后,对本文的结构进行说明,包括各个部分的目的和内容。
最后,明确本文的目的是为了证明基尔霍夫定律。
《芝加哥大学物理学讲义:电动力学讲义》阅读札记1. 电动力学概述在电动力学的世界中,物理现象既神秘又充满魅力。
从电荷的运动到电磁波的传播,电动力学为我们揭示了自然界中电与磁的奇妙联系。
本次阅读《芝加哥大学物理学讲义:电动力学讲义》,我深入了解了电动力学的核心概念和原理,对这一领域有了更为深刻的认识。
电动力学作为物理学的一个重要分支,主要研究电荷、电流以及它们产生的电场和磁场之间的关系。
它不仅描述了电场的产生、传播和变化,还涉及了磁场的性质以及电流产生磁场的原因。
在这个过程中,我们探讨了电磁感应、电磁辐射等问题,并学习了麦克斯韦方程组这一电动力学的基石,它统一了电场和磁场的关系,为我们理解电磁现象提供了基本框架。
电动力学还与许多现代技术紧密相关,如无线通信、电磁铁、电动机等。
这些应用不仅展示了电动力学的实用价值,也激发了我们对于探索未知领域的兴趣。
通过学习电动力学,我更加明白理论知识的重要性,以及它在解决实际问题中的巨大作用。
我期待着将所学应用于实践,为科学的发展贡献自己的力量。
1.1 电荷与电场在阅读《芝加哥大学物理学讲义:电动力学讲义》的第一章中,我首先被引导理解电荷这一基础概念。
电荷是物理学中描述物质带电性质的物理量,其载体可以是电子、质子等带电粒子。
理解电荷的关键在于理解其在电动力学中所起的作用以及其带电量的大小。
当电荷聚集在某一空间时,它们会产生电场,这是电动力学研究的核心内容之一。
电场是由于电荷的存在而产生的,每个电荷周围都存在一个电场,它会对放入其中的其他电荷施加力。
电场具有空间性和物质性,电场是存在于一定空间的,并且可以对其他物体产生影响。
电场的强度取决于源电荷的电量和距离,电场还表现出一些独特的性质,如叠加性、保守性等。
这些性质对于理解电动力学中的许多现象至关重要。
电荷是电场的源头,电场的存在和传播是由于电荷的作用。
当电荷产生时,它会在其周围形成电场,这个电场会向周围空间传播。
电场的强度和方向取决于源电荷的电量、距离和方向。
电动力学课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:电动力学所属专业:理学专业课程性质:基础课学分:4(二)课程简介、目标与任务;电动力学是宏观电磁现象的经典理论,是研究电磁场的基本属性、运动规律以及它与带电物质之间相互作用的一门重要基础理论课。
电动力学是物理学科的一门重要基础理论课,是物理学的“四大力学”之一。
基本目标:1. 掌握处理电磁问题的一般理论和方法2. 学会狭义相对论的理论和方法学习目的与要求:1. 通过学习电磁运动的基本规律,加深对电磁场基本性质的理解;2. 通过学习狭义相对论理论了解相对论的时空观及有关的基本理论;3. 获得在本门课程领域内分析和处理一些基本问题的初步能力;4. 为学习后续课程和独力解决实际问题打下必要的基础。
为了达到以上目的和要求,在教材内容和课程设置中应注意以下问题:1. 由于本课程是理论物理课程的一部份,因而在要注意与研究生课程的衔接,尽量使这二者有机结合。
介绍麦克斯韦方程组的相对论形式时,本课程主要介绍物理量和方程如何从三维过渡到四维空间的表述形式。
结合科研工作,我们将从更深知识层次的广义相对论、微分几何角度来阐述狭义相对论时空观和Maxwell方程组的四维张量表述。
2. 详细阐述如何把学过的数理方程知识用于解决实际物理问题,即求解一定边界条件下静电势和磁矢势所满足的偏微分方程,达到提高学生分析和解决问题的能力。
3. 在电动力学课程中,讨论了如何从经典物理过度到相对论物理,因此,在介绍这些内容时要从相对论时空观上加以阐述,以使学生真正掌握狭义相对论的物理精髓,达到培养学生抽象思维的目的。
4. 适当介绍一些与课程相关的科研前沿知识,如A-B效应,超导体的磁通量子化,超颖材料(隐身材料),高维时空中的电磁理论(库伦定律),电磁与引力的统一(Kaluza-Klein理论),额外维与膜世界理论等以开阔学生的眼界。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程:高等数学矢量分析、数学物理方法、电磁学关系:其中高等数学矢量分析和数学物理方法是电动力学的数学基础,电磁学是电动力学的物理基础,电动力学在电磁学的基础上系统阐述电磁场的基本理论,并进一步在狭义相对论框架下讲述电磁场的四维协变规律。
电动力学阐述经典电动力学以矢量分析、张量分析、复变函数、格林函数、特殊函数、数学物理方程、矩阵等数学知识为工具,以库仑定律、安培-毕奥-萨伐尔定律、法拉第电磁感应定律、楞茨定律等实验定律为基础,以宏观电磁现象为研究对象,在麦克斯韦、亥姆霍兹、达朗伯、菲涅耳等科学家的研究中逐步发展起来的。
研究对象宏观电磁现象主要包括内容:电磁场的激发、辐射和传播,介质在电磁场作用下的极化和磁化,电场和电荷,电流系统的相互作用,以及电磁场和导体间的相互作用等等。
电磁场是一种运动的物质,运动的根本原因是空间中变动的电场和变动的磁场的相互激发转化。
对于电磁场的分布可以通过研究电场强度E 和磁感应强度B (电标势φ和磁矢势A )来描述。
和其他物体一样,通过能量和动量两物理量实现对电磁场运动特性的描述,在一些特殊情况下,他们也满足能量守恒和动量守恒。
描述宏观电磁现象的基本关系是:库仑定律、奥斯特定律、安培力、洛仑兹力、麦克斯韦方程组、介质的电磁性质方程、麦克斯韦方程在介质分界面上的边值关系,以及电磁场与带电物质之间能量守恒和动量守恒定律,还有电荷守恒定律。
明确电动力学的学习目的:1) 掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解; 2) 获得本课程领域内分析和处理一些基本问题的初步能力,为以后解决实际问题打下基础;3)通过电磁场运动规律和狭义相对论的学习,更深刻领会电磁场的物质性,帮助我们加深辩证唯物主义的世界观。
第零章 预备知识—矢量场论复习 Preliminary Knowledge —Revise in theVector Field Theory学习电动力学前需要补充的数学知识,矢量场论部分主要包括:梯度、散度、旋度三个重要概念及其在不同坐标系中的运算公式,它们三者之间的关系。
其中包括两个重要定理:即 高斯定理(Gauss Theorem) 和斯托克斯定理(Stokes Theorem),以及二阶微分运算和算符运算的重要公式和格林定理(Green Theorem)。