中国邮递员问题 ppt课件
- 格式:ppt
- 大小:1.90 MB
- 文档页数:37
§4.中国邮递员问题(Chinese Postman Problem)1.问题的提出例5. 一个邮递员从邮局出发投递信件, 然后再返回邮局, 如果他必须至少一次地走过他负责投递范围内的每条街道, 街道路线如下图所示, 问选择怎样的路线才能使所走的路为最短?5 6 78问题的图论表述:在赋权G=[V, E]上找一条经每条边至少一次的权最小的圈。
1960年山东师范学院管梅谷教授首先提出此问题,并设计了一个“奇偶点表上作业法”,后来发现此法不是多项式算法,1973年,Edmonds和Johnson给出一个多项式算法。
2.哥尼斯堡七桥问题18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如下图所示。
城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。
3.Euler圈Euler圈:经图G的每条边的简单圈Euler图:具有Euler圈的图Euler图非Euler图下面讨论的图G允许有重边,且重边被认为是有区别的边。
伪Euler 圈:经图G 的每条边至少一次的圈点v 的次:与点V 关联的边的数目奇(偶)点:该点的次为奇(偶)数命题1:G 的奇点个数为偶数命题2:G 中有伪Euler 圈 ⇔ G 无奇点中国邮递员问题可表述为:在图G 中找一条权最小的伪Euler 圈。
对于邮递员来说,有些街道可能会重复走,原问题便转化为尽可能少走重复的 街道。
我们将这些重复的边组成的集合称可行集,即找最小的可行集。
命题3:E *是最小可行集 ⇔ωωμμμ()()()()*()*()e e e E E E e E E ≤∑∑∀μ∈∩∈∩\初等圈重复的边 非重复的边4.算法思路由命题1,简单图G 的奇点个数为偶数,可设为v 1 , v 2 , …, v 2k , 对每个1≤ i ≤k, 找v 2i − 1 至v 2i 的链p i ,将p i 的边重复一次。
中国邮递员问题引言H T T P ://W W W .588K U .C O M /P P Tu 中国邮递员问题是由山东师范大学管梅谷同志1960年首先提出的。
u 该问题涉及著名的的哥尼斯堡(Königsberg)七桥问题。
u 这是数学中为数不多的几个以“中国”命名的问题或定理之一。
u 七桥问题是图论和拓扑学的起源。
引言1哥尼斯堡七桥问题2欧拉图及判定定理3Fleury算法4中国邮递员问题5奇偶点图上作业法6理论根据(选讲)哥尼斯堡(Königsberg)今称加里宁格勒,建城于1255年,是位于波罗的海海岸的俄罗斯海港城市与加里宁格勒州的首府。
加里宁格勒州位于波兰北方、立陶宛西南,原为德国东普鲁士一部分,现为俄罗斯的外飞地。
图1 加里宁格勒图2 哥尼斯堡七桥示意图有一条普雷格尔(Pregel)河流经哥尼斯堡,河上有七个桥。
一个散步者能否从某处出发走遍七个桥且每个桥只走一次,最后回到出发点?哥尼斯堡七桥问题大数学家欧拉在1736年解决了这个问题。
欧拉Euler(1707-1783)莱昂哈德·欧拉(Leonhard Euler,1707年4月15日-1783年9月18日)u瑞士数学家和物理学家,近代数学先驱之一。
u欧拉是18世纪数学界最杰出的人物之一。
u欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文。
u30岁左右右眼几乎完全失明,60岁左右左眼又几乎完全失明。
u在1775年,他平均每周就完成一篇数学论文。
u1783年9月18日于俄国彼得堡去逝。
n 将上图中A,B,C和D这四个区域各看成一个顶点,两区域之间有一个桥相连,就将相应的两个顶点连一条边,得到一个图。
AB CD图3 七桥问题对应图欧拉Euler(1707-1783)的走法为一个欧拉通路。
n如果进一步该走法还回到出发点,则称之为欧拉环游(回路)。
n具有欧拉环游的图称之为欧拉图。