专题讲座椭圆离心率的常规求法理科 ppt课件
- 格式:ppt
- 大小:234.50 KB
- 文档页数:16
离心率的五种求法椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ace =来解决。
例1:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A.23 B. 23 C. 26 D. 332解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( )A.43 B. 32 C. 21 D. 41 解:由()0,11F 、()0,32F 知 132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A.23 B. 26 C. 23 D 2 解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=a 的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c c a 解得3=a ,1=c ,则33==a c e ,故选A二、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
椭圆的离心率是椭圆的一个重要性质,它是反映椭圆的扁平程度的量.求椭圆的离心率问题比较常见.这类问题常与平面几何、三角函数、平面向量等知识相结合,侧重于考查同学们的逻辑推理和数学运算能力.那么,求椭圆的离心率有哪些方法呢?下面结合实例进行探讨.一、公式法我们知道,圆锥曲线的离心率公式为e=ca.因此要求椭圆x2a2+y2b2=1(a>b>0)的离心率,只需求出椭圆方程中的参数a、c的值或c与a的比值即可.例1.已知椭圆E:x2a2+y2b2=1(a>b>0)的长轴长是短轴长的2倍,则E的离心率为_______.解:因为椭圆的长轴长是短轴长的2倍,所以2a=4b,所以ba=12,可得e=ca本题较为简单,由题意可以很容易确定椭圆中参数a、b之间的关系,直接根据椭圆方程中参数a、b、c之间的关系a2=b2+c2,即可求得c与a的比值,从而求得椭圆的离心率.例2.已知椭圆C:x2a2+y2b2=1()a>b>0的右焦点为F()2,0,P为椭圆的左顶点,且||PF=5,则椭圆C的离心率为().A.23B.12C.25D.13解:因为椭圆的右焦点为F()2,0,所以c=2,因为P为椭圆的左顶点,所以||PF=a+c=a+2=5,解得a=3,所以椭圆C的离心率为e=ca=23.故选A.我们首先根据题意可以确定c的值;然后根据P点的位置,确定a的值,即可根据椭圆离心率的公式求得问题的答案.二、几何性质法几何性质法是指利用平面几何图形的性质解题.在求椭圆的离心率时,我们可以根据题意画出几何图形,将椭圆参数方程中的a视为长半轴长、b视为短半轴长、c视为焦半径,根据椭圆、三角形、平行四边形、梯形的性质来求得椭圆的长半轴长、短半轴长、焦半径,或建立三者之间的关系式.例3.已知椭圆C:x2a2+y2b2=1()a>b>0的左右焦点分别为F1,F2,点M是椭圆C上第一象限的点,若||MF1=||F1F2,直线F1M与y轴交于点A,且F2A是∠MF2F1的角平分线,则椭圆C的离心率为_______.解:由题意得||MF1=||F1F2=2c,由椭圆的定义得||MF2=2a-2c,记∠MF1F2=θ,则∠AF2F1=∠MF2A=θ,∠F1F2M=∠F1MF2=∠MAF2=2θ,则||AF2=||AF1=2a-2c,所以||AM=4c-2a,故ΔMF1F2∽ΔMF2A,则||MF2||F1F2=||AM||MF2,则2a-2c2c=4c-2a2a-2c,可得e2+e-1=0,解得e=5-12或e=-5-12(舍).解答本题,需运用相似三角形的性质建立关于||MF1、||F1F2||AM、||MF2的关系式,并根据椭圆的定义,即在平面内到两个定点的距离之和为定值的点的轨迹,确定||MF1、||F1F2||AM、||MF2与a、c之间的关系,从而使问题获解.例4.如图1,已知椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点分别为F1(-c,0),F2(c,0),点M()x0,y0()x0>c是C上的一点,点A是直线MF2与y轴的交点,ΔAMF1的内切圆与MF1相切于点N,若|MN|=2||F1F2,则椭圆C的离心率e=______.解:设内切圆与AM切于Q,与AF1切于P,所以||MN=||MQ=2||F1F2=22c,||F1N=||F1P,||AP=||AQ,图141由圆的对称性知||AF 1=||AF 2,所以||PF 1=||QF 2,即||NF 1=||QF 2,所以2a=||MF 2+||MF 1=()||MQ -||QF 2+()||MN +||NF 1=||MQ +||MN =42所以e =c a =242我们先结合图形明确点、圆、椭圆之间的位置关系;然后根据椭圆的定义将问题转化为线段问题,即可根据圆的对称性、圆与切线的位置关系建立线段||MF 2、||MF 1、||MQ 、||QF 2、||MN 、||NF 1之间的关系,得到关于a 、c 的关系式,进而求出椭圆的离心率.用几何性质法解题的计算量较小,有利于提升解题的效率.三、构造齐次式在求椭圆的离心率时,若不易求出a 、c 的值或比值,则可考虑根据题目中的条件与椭圆的方程,建立关于a 、b 、c 的二次齐次式,即可根据离心率公式e =ca,得到关于e 的二次方程,进而通过解方程求得离心率e 的值.例5.如图2,已知椭圆的方程为:x 2a 2+y 2b2=1()a >b >0,过原点的直线交椭圆于M ,N 两点,点P 在x 轴上,其横坐标是点M 横坐标的3倍,直线NP 交椭圆于点Q .若直线QM 恰好是以MN 为直径的圆的切线,求椭圆的离心率.解:设M ()x 1,y 1,Q ()x 2,y 2,则N ()-x 1,-y 1,P ()3x 1,0,设直线MN 、QM 、NP 的斜率分别为k 1、k 2、k 3,则k 1=y 1x 1,k 2=y 2-y 1x 2-x 1,k 3=0+y 13x 1-()-x 1=y 14x 1=14k 1,因为直线QM 是圆的切线,所以QM ⊥MN ,k 1k 2=-1,所以k 2k 3=-14,又Q 在直线NP 上,所以k 3=y 2+y 1x 2+x 1,因为M 、Q 在椭圆x 2a 2+y 2b 2=1()a >b >0上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,将上述两式相减得x 21-x 22a 2+y 21-y 22b 2=0,整理得y 2+y 1x 2+x 1⋅y 2-y 1x 2-x 1=-b 2a 2,故k 2k 3=-b 2a 2=-14,即b 2a 2=14,可得a 2-c 2a 2=34,即a2-c 2a 2=1-e 2=14,解得e 我们先根据三条直线与圆、椭圆的位置关系建立关于a 、c 的二次齐次式a 2-c 2a 2=34;再根据离心率公式e=c a ,建立关于e 的方程,即可求得e 的值.在求得e 的值后,一定要注意检验所得的值是否在(0,1)内,以确保得到的答案是正确的.图2图3例6.如图3,已知AB 直线过椭圆x 2a 2+y 2b2=1()a >b >0的左焦点F ()-2,0,且与椭圆交于A 、B 两点,与y 轴交于点C ,若点C ,F 分别是线段AB 的三等分点,则该椭圆的离心率为_______.解:因为点C 、F 是线段AB 的三等分点,由图3可知C 为AF 的中点,右焦点为F 2,所以AF 2//OC ,所以AF 2⊥x 轴,由椭圆的方程得A 点的坐标为()c ,b 2a ,C ()0,b 22a,因为C ,B 关于F 对称,所以B 点的坐标为()-2c ,-b 22a ,将其代入椭圆的方程x 2a 2+y 2b2=1()a >b >0中得:4c 2a 2+b 24a2=1,即16c 2+b 2=4a 2,得a 2=5c 2,所以离心率为e =c a 先由点C 、F 是线段AB 的三等分点可得AF 2//OC ;再根据线段的对称性可求得B 点的坐标;最后将其代入椭圆中,即可建立关于a 、b 、c 的二次齐次式,进而得到关于椭圆离心率e 的方程.无论采用哪种方法求椭圆的离心率,我们需明确解题的目的有两个:一是通过计算求得c 与a 的值;二是利用已知条件建立关于c 与a 的齐次式,进一步将其转化为关于ca的方程.(作者单位:四川省内江市威远中学校)42。
离心率的五种求法椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ace =来解决。
例1:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( ) A. 23 B. 23 C. 26D. 332解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D 变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( )A. 43B. 32C. 21D. 41解:由()0,11F 、()0,32F 知 132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A.23 B. 26 C. 23 D 2 解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=a 的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c ca 解得3=a ,1=c ,则33==a c e ,故选A 二、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。