流体力学第七章
- 格式:ppt
- 大小:3.71 MB
- 文档页数:101
第七章不可压缩流体动力学基础在询面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的 观点,求得平均量。
但是,很多问题需要求得更加详细的信息,如流速、压强等 流动参数在二个或三个坐标轴方向上的分布情况。
本章的容介绍流体运动的基本 规律、基本方程、定解条件和解决流体问题的基本方法。
第一节流体微团的运动分析运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。
位移 和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则 是基于液体的易流动性而特有的运动形式,在刚体是没有的。
在直角坐标系中取微小立方体进行研究。
(b)谥.A n(d)一. 平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成(c)A B(a)A了液体基体的单纯位移,其移动速度为心、®、“,。
基体在运动中可能沿直线也 可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不 变)。
二、 线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比 A 点和D 点大了竺如 而比就代表〃y = l 时液体基体运动时,在单位时间沿勿dyy 轴方向的伸长率。
du x °"、. du : dxdydz三、 角变形(角变形速度)—BIA ■ dp -------------------------------- Jda-0 = dp + 00 =J"些+些k dz. dx四、旋转(旋转角速度)1O = —0 =—21勿du vdx—dx角变形:血 A那么,代入欧拉加速度表达式,得:du r du Tdu r八 八5=说=古叫 云+"卑+"0+-叭巴加、6仇 du Ya v = ----- = — + u v ---------- + U.0, +ii t a ). -iLCoydt dt dy “'2 …加.du diL q 。
第七章波浪理论课堂提问:为什么海面上“无风三尺浪”船舶与海洋工程中:船舶摇摆和拍击,船舶稳性,兴波阻力。
沿岸工程中:波浪对港口、防波堤的作用。
离岸工程中:钻井平台,海工建筑、海底油管等水波起制约作用的物理因素是重力,粘性力可略而不计,因此可用理想流体的势流理论来研究波浪运动的规律。
本章内容:着重介绍小振幅波(线性波)理论,相关内容为:1.小振幅波的基本方程和边界条件2.波浪运动的有关概念(波速、波长、周期、波数、频率、深水波、浅水波等)3. 流体质点的轨道运动4. 前进水波中的压力分布5. 波群与波群速6. 船波7. 波能传递与兴波阻力7-1 微振幅波的基本方程与边界条件§一简谐前进波沿x轴正向移动,h—水深(从平均水平面到底部的距离)η(x , t)—自由面在平均水面以上的瞬时垂直距离a—振幅H—波高,对于小振幅波 H = 2aL—波长(两相邻波峰或波谷间的距离)T—周期(固定点处重复出现波峰(或波谷)的时间间隔,或波形传播一个波长所需的间。
C—波速,或相速度(波阵面的传播速度) C = L/T (7-2)k—波数(2π距离内波的数目)K = 2π/L (7-3)σ—圆频率(2π时间内波振动的次数)σ=2π/T (7-4)微振幅波理论的基本假设1.理想不可压缩流体,重力不能忽略;2.运动是无旋的,具有速度势;3.波浪是微振幅波(线性波),即H<<L (7-5) 速度势φ(x ,z ,t ),满足xz v x v z ϕϕ∂=∂∂=∂ (7-6)且满足Laplace 方程:22220x zϕϕ∂∂+=∂∂(, )h z x η-<<-∞<<+∞ (7-7)底部条件(不可穿透条件):0z v z ϕ∂==∂( z = -h ) (7-8)自由表面边界条件:1z g t ηϕη=∂=-∂(7-10)令z=η,自由表面上相对压力p=0。
为使边界条件线性化,假定速度平方v 2→0 而得到。
第七章孔口及管嘴不可压缩流体恒定流本章主要介绍流体力学基本方法和水头损失计算方法在孔口与管嘴出流中的应用,得出了孔口、管嘴出流的基本公式。
概念一、孔口出流(orifice discharge):在容器壁上开孔,水经孔口流出的水力现象就称为孔口出流,如图7-1。
应用:排水工程中各类取水,泄水闸孔,以及某些量测流量设备均属孔口。
图7-11.根据d/H的比值大小可分为:大孔口、小孔口大孔口(big orifice):当孔口直径d(或高度e)与孔口形心以上的水头高H的比值大于0.1,即d/H>0.1时,需考虑在孔口射流断面上各点的水头、压强、速度沿孔口高度的变化,这时的孔口称为大孔口。
小孔口(small orifice ):当孔口直径d(或高度e)与孔口形心以上的水头高度H的比值小于0.1,即d/H<0.1时,可认为孔口射流断面上的各点流速相等,且各点水头亦相等,这时的孔口称为小孔口。
2.根据出流条件的不同,可分为自由出流和淹没出流自由出流(free discharge):若经孔口流出的水流直接进入空气中,此时收缩断面的压强可认为是大气压强,即p c=p a,则该孔口出流称为孔口自由出流。
淹没出流(submerged discharge):若经孔口流出的水流不是进入空气,而是流入下游水体中,致使孔口淹没在下游水面之下,这种情况称为淹没出流。
3.根据孔口水头变化情况,出流可分为:恒定出流、非恒定出流恒定出流(steady discharge):当孔口出流时,水箱中水量如能得到源源不断的补充,从而使孔口的水头不变,此时的出流称为恒定出流。
非恒定出流(unsteady discharge):当孔口出流时,水箱中水量得不到补充,则孔口的水头不断变化,此时的出流称为非恒定出流。
二、管嘴出流:在孔口周边连接一长为3~4倍孔径的短管,水经过短管并在出口断面满管流出的水力现象,称为管嘴出流。
圆柱形外管嘴:先收缩后扩大到整满管。
第七章 粘性流体动力学基础粘性是流体的属性,真实流动都是具有粘性的流动。
本章包括: (1) 粘性流体动力学问题的建立; (2) 粘性流动的基本特性; (3) 若干具体问题的解析求解和近似求解。
§7.1 流动的粘性效应一、圆柱绕流 (参讲义) 二、管内流动§7.2 层流与湍流§7.3 广义牛顿粘性应力公式流体作直线层流运动时,试验得到切应力与变形速率之间的关系式为:dy du μτ=)(212xv y u ∂∂+∂∂=μ 牛顿粘性应力公式yx p yx με2=流体作非直线层流动运动时,无法由试验给出应力p ij 与变形速率εij的关系一、应力张量由第四章,粘性流体的应力是二阶对称张量 pxx p xy p xz P={p ij }= p ij e i e j = p yx p yy p yzp zx p zy p zzp yx =p xy p zx =p xz p zy =p yz p n =n ﹒P =-e j n i p ij另外,在静止或理想流体中,过一点的任意平面的法向应力p n 的方向,都与该平面的单位法线向量n 的方向相反,且法向应力的数值p 与n 无关,即P n =-p n式中p 只是位置及时间的函数p =p(x,y,z,t)。
这个压力就是经典热力学平衡态意义上的压力。
在粘性流体动力学中,流体质点的物理量都处在变化过程中,过一点的不同平面上的法向应力的数值并不一定相同。
因此,严格说来,并不存在平衡态意义上的压力。
但定义一平均压力p m ,它是球形流体微团(也可取任意形状的流体微团)表面所受法向应力p nn 的平均值的负值,即⎰⎰→-=Ann a m dA p a p 0241limπ式中 a 为球形微团的半径。
球面上的法向应力p nn 和球面微元面积可写成 p nn =n ﹒p n =n i n j p ijn 1=sin θcos ε n 2=sin θsin ε n 3=cos θ dA =a 2sin θd θd ε于是⎰⎰-=ππεθθπ020sin 4d d n n p p j i ijm此式右侧包括9项,分别积分之,最后得3)(31332211ij m p p p p p -=++-=即:流场中任意一点的平均压力p m ,等于过此点的三个坐标面上的法向应力p 11、p 22、p 33的算术平均值的负值。