参数估计(parameterestimation)对于未知.
- 格式:ppt
- 大小:1.11 MB
- 文档页数:35
一、参数估计(一)参数估计内涵参数估计(parameter estimation )是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。
它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。
(二)估计量的评价准则对于同一参数,用不同方法来估计,结果是不一样的。
例1 设总体X 服从参数为λ的泊松分布,即,2,1,0,!}{===-k k ek X P kλλ则易知λλ==)(,)(X D X E ,分别用样本均值和样本方差取代)(X E 和)(X D ,于是得到λ的两个矩估计量21ˆ,ˆS X ==λλ. 既然估计的结果往往不是唯一的,那么究竟孰优孰劣?这里首先就有一个标准的问题。
1、 无偏性(Unbiased)定义1 设),,,(ˆˆ21nX X X θθ=是θ的一个估计量,若对任意的Θ∈θ,都有θθθ=)ˆ(E ,则称θˆ是θ的无偏估计量(Unbiased estimator),如果 0)(lim )),,,((lim 21=∆-∞→∧∞→θθθδn n n n b X X X E则称θˆ是θ的渐近无偏估计量(Approximation unbiased estimator),其中)(θn b 称为是θˆ的偏差(affect)。
无偏性反映了估计量的取值在真值θ周围摆动,显然,我们希望一个量具有无偏性。
例2 X 是总体期望值μ=)(X E 的无偏估计,因为μμ===⎪⎭⎫ ⎝⎛=∑∑==n n X E n X n E X E ni i n i i 1)(11)(112、 最小方差性和有效性(Minimum Variance and efficiency) 前面已经说过,无偏估计量只说明估计量的取值在真值周围摆动,但这个“周围”究竟有多大?我们自然希望摆动范围越小越好,即估计量的取值的集中程度要尽可能的高,这在统计上就引出最小方差无偏估计的概念。
定义2 对于固定的样本容量n ,设),,,(21n X X X T T =是参数函数)(θg 的无偏估计量,若对)(θg 的任一个无偏估计量),,,(21n X X X T T '='有Θ∈≤θθθ对一切),'()(T D T D则称),,,(21n X X X T 为)(θg 的(一致)最小方差无偏估计量,简记为UMVUE(Uniformly Minimum Variance Unbiased Estimation)或者称为最优无偏估计量。
第31章参数估计(Parameter Estimation)PowerStation®参数估计程序为感应电机和同步发电机在起动条件下计算等效电路模型参数。
该计算基于先进的数学估计和曲线拟合技术,它只需要电机特性的特征数据。
这些数据可以从电机制造商或现场测试中简单地获得。
估计的模型参数包括表示电机定子,转子的电阻和电抗以及励磁支路特性,估计模型以及它的参数在电机起动和暂态稳定分析期间可以用来表示电机动态模型。
本章描述可在运行参数估计程序是涉及到的界面、输入数据和输出数据。
所有相关的操作,包括数据更新、绘制和打印也将被阐述。
提供关于计算算法的一个总体介绍供您参考。
本章按照以下5个部分进行组织。
启动参数估计章节描述了如何启动参数估计计算。
参数估计编辑器章节阐述了用于计算的输入数据和计算得到的数据,以及其它输出信息。
发电机参数更新编辑器章节阐述了采用了估计模型及其参数的电机编辑器的可更新的数据。
计算方法章节提供了一些用于参数估计算法的技术背景。
最后,输出报告章节说明了可以提供的具有不同格式的输出报告以及如何查看和打印输出报告。
31.1 启动参数估计(Start Parameter Estimation)为了启动参数估计,点击位于感应级器编辑器的模型页中的参数估计启动按钮。
敲击该机可以打开参数估计编辑器。
31.2 参数估计编辑器(Parameter EstimationEditor)参数估计编辑器包含一个参数页和一个曲线页。
31.2.1 参数页(Parameters Page)该页提供了一个运行参数估计计算所必需的所有数据的录入字段。
估计的参数和其它输出数据也显示在该页上。
需求(Requirement)在这个选项中,包括三个数据集合:输入数据、计算得到的数据和偏差。
输入字段是用户定义的,而其它剩余的字段由ETAP®计算得到。
输入(Input)输入部分包含电机运行特性数据,这些数据可以从电机制造商、电机铭牌值或现场测试中获得。
统计学之参数估计
参数估计是统计学的一个重要分支,它主要是用来估计未知参数的值。
参数估计关注模型的参数值,而不是模型本身。
参数估计的主要目的是确
定模型背后的重要参数,包括均值、方差、协方差、系数、正则参数等等。
参数估计的主要方法包括极大似然估计(MLE)、贝叶斯估计、解析
估计。
MLE是最常用的参数估计方法,它的目的是寻找一些未知参数
$\theta$,使得根据已知的样本数据,其概率最大。
MLE是一种极大似然
估计,极大似然估计依赖于模型选择,模型选择是极大似然估计的基础。
MLE的关键点是估计参数,并使参数能够使似然函数是极大值。
贝叶斯估计需要对模型参数和概率分布进行假设,以求出参数的期望值。
与极大似然估计不同,贝叶斯估计注重的是参数的后验概率,它不仅
考虑参数的以前的信息,受到先验假设的影响,而且考虑参数的可能性。
解析估计是为了解决极大似然估计和贝叶斯估计的缺点而发展出来的。
解析估计不仅考虑参数的估计,还考虑参数的分布。
解析估计是一种独特
的参数估计方法,它并不依赖于概率模型,也不需要假定概率分布,只需
要估计参数的值即可。
总之,参数估计是统计学的一个重要分支。
SPSS在生物统计学中的应用——实验指导手册实验三:参数估计一、实验目的与要求1.理解参数估计的概念2.熟悉区间估计的概念与操作方法二、实验原理1. 参数估计的定义●参数估计(parameter estimation)是根据从总体中抽取的样本估计总体分布中的未知参数的方法。
它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。
●点估计(point estimation):又称定值估计,就是用实际样本指标数值作为总体参数的估计值。
当总体的性质不清楚时,我们须利用某一量数(样本统计量)作为估计数,以帮助了解总体的性质,如:样本平均数乃是总体平均数μ的估计数,当我们只用一个特定的值,亦即数线上的一个点,作为估计值以估计总体参数时,就叫做点估计。
✧点估计的数学方法很多,常见的有“矩估计法”、“最大似然估计法”、“最小二乘估计法”、“顺序统计量法”等。
✧点估计的精确程度用置信区间表示。
●区间估计(interval estimation)是从点估计值和抽样标准误出发,按给定的概率值建立包含待估计参数的区间。
其中这个给定的概率值称为置信度或置信水平(confidence level),这个建立起来的包含待估计函数的区间称为置信区间,指总体参数值落在样本统计值某一区内的概率●置信区间(confidence interval)是指在某一置信水平下,样本统计值与总体参数值间误差范围。
置信区间越大,置信水平越高。
划定置信区间的两个数值分别称为置信下限(lower confidence limit,lcl)和置信上限(upper confidence limit,ucl)2. 参数估计的基本原理统计分析的目的就是由样本推断总体,参数估计即是实现这一目的的方法之一。
3. 参数估计的方法参数估计的结果,常用点估计值(样本均值)+置信区间(置信下限、置信上限)来表示。
三、实验内容与步骤1. 单个总体均值的区间估计打开数据文件“描述性统计(100名女大学生的血清蛋白含量).sav”选择菜单【分析】—>【描述统计】—>【探索】”,打开图3.1探索(Explore)对话框。
我们总是希望能够从一些样本数据中去探究数据总体的表现特征,在网站数据分析中也是如此,我们试图从最近几天的数据表现来推测目前网站的整体形势是怎么样的,有没有变好或者变差的信号,但当前几天的数据无法完全代表总体,所以这里只能使用“估计”。
同时,网站的数据始终存在波动,将最近时间段的数据作为抽样样本很可能数据正好处于较低或者较高水平,所以我们用样本得到的估计值不可能是无偏差的,我们同时需要去评估这个估计值可能的变化区间。
参数估计(Parameter Estimation)是指用样本的统计量去估计总体参数的方法,包括点估计和区间估计。
点估计点估计(Point Estimation)是用抽样得到的样本统计指标作为总体某个未知参数特征值的估计,是一种统计推断方法。
一般对总体参数的估计会包括两类:一种是用样本均值去估计总体均值,对应到网站数据中的数值型指标,比如网站每天的UV,我们可以用近一周的日均UV去估计目前网站每天唯一访客数量的大体情况;另外一种是用样本概率去估计总体概率,对应到网站数据中的比率型指标,比如网站的目标转化率,我们可以用近3天的转化率去预估网站当天目标转化的水平;同时我们会计算样本的标准差来说明样本均值或者概率的波动幅度的大小,从而估计总体数据的波动情况。
点估计还包括了使用最小二乘法对线性回归做曲线参数的拟合,以及最大似然估计的方法计算样本集分布的概率密度函数的参数。
区间估计区间估计(Interval Estimation)是依据抽取的样本,根据一定的正确度与精确度的要求,估算总体的未知参数可能的取值区间。
区间估计一般是在一个既定的置信水平下计算得到总体均值或者总体概率的置信区间(Confidence Interval),一般会根据样本的个数和标准差估算得到总体的标准误差,根据点估计中用样本均值或样本概率估计总体均值或总体概率,进而得出一个取值的上下临界点。
我们可以将样本标准差记作S,如果我们抽样获取的有n个样本,那么总体的标准差σ就可以用样本标准差估算得到:从这个公式中我们可以看到大数定理的作用,当样本个数n越大时,总体指标差σ越小,样本估计值越接近总体的真实值。