数学(文)二轮复习通用版课时(十七) 圆锥曲线中的最值、范围、证明问题(大题练)
- 格式:doc
- 大小:181.55 KB
- 文档页数:8
第3讲圆锥曲线中的最值、范围、证明问题最值问题函数最值法:当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有(1)配方法;(2)基本不等式法;(3)判别式法;(4)单调性法;(5)三角换元法;(6)导数法等.高考真题思维方法[典型例题](2019·安徽宣城二模)已知椭圆C的方程为错误!+错误!=1,A是椭圆上的一点,且A在第一象限内,过A且斜率等于-1的直线与椭圆C交于另一点B,点A关于原点的对称点为D.(1)证明:直线BD的斜率为定值;(2)求△ABD面积的最大值.【解】(1)证明:设D(x1,y1),B(x2,y2),则A(-x1,-y1),直线BD的斜率k=错误!,由错误!两式相减得错误!=-错误!×错误!,因为k AB=错误!=-1,所以k=错误!=错误!,故直线BD的斜率为定值1 2 .(2)连接OB,因为A,D关于原点对称,所以S△ABD=2S△OBD,由(1)可知BD的斜率k=错误!,设BD的方程为y=错误!x+t,因为D在第三象限,所以-2<t<1且t≠0,O到BD的距离d=错误!=错误!,由错误!整理得3x2+4tx+4t2-8=0,所以x 1+x 2=-4t 3,x 1x 2=错误!, 所以S △ABD =2S △OBD =2×错误!×|BD |×d=错误!错误!·错误!=|t |·错误!=|t |·错误!=错误!·错误!≤2错误!.所以当且仅当t =-错误!时,S △ABD 取得最大值2错误!.错误!最值问题的2种基本解法[对点训练](2017·高考山东卷)在平面直角坐标系xOy 中,椭圆E :错误!+错误!=1(a>b〉0)的离心率为错误!,焦距为2.(1)求椭圆E的方程;(2)如图,动直线l:y=k1x-错误!交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=错误!,M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T。
第三讲 大题考法——圆锥曲线中的最值、范围、证明问题[典例感悟][典例] (2017·浙江高考)如图,已知抛物线x 2=y ,点A ⎝⎛⎭⎫-12,14,B ⎝⎛⎭⎫32,94,抛物线上的点P (x ,y )⎝⎛⎭⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|P A |·|PQ |的最大值.[解] (1)设直线AP 的斜率为k , k =x 2-14x +12=x -12,因为-12<x <32,所以-1<x -12<1,即直线AP 斜率的取值范围是(-1,1).(2)设直线AP 的斜率为k .则直线AP 的方程为y -14=k ⎝⎛⎭⎫x +12, 即kx -y +12k +14=0,因为直线BQ 与直线AP 垂直,所以可得直线BQ 的方程为x +ky -94k -32=0,联立⎩⎨⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标x Q =-k 2+4k +32(k 2+1). 因为|P A |=1+k 2⎝⎛⎭⎫x +12= 1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|P A |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3,因为f ′(k )=-(4k -2)(k +1)2,令f (k )=0,得k =12或k =-1(舍),所以f (k )在区间⎝⎛⎭⎫-1,12上单调递增,⎝⎛⎭⎫12,1上单调递减,因此当k =12时,|P A |·|PQ |取得最大值2716.[类题通法]最值问题的基本解法有几何法和代数法(1)几何法是根据已知的几何量之间的相互关系、平面几何和解析几何知识加以解决的(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等);(2)代数法是建立求解目标关于某个(或两个)变量的函数,通过求解函数的最值(普通方法、基本不等式方法、导数方法等)解决的.[对点训练](2018·武汉调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,22,且离心率为22.(1)求椭圆C 的方程;(2)若直线l :y =x +m 与椭圆C 交于两个不同的点A ,B ,求△OAB 面积的最大值(O 为坐标原点).解:(1)由题意,知⎩⎪⎨⎪⎧1a 2+12b 2=1,c a =22,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=2,b 2=1,所以椭圆C 的方程为x 22+y 2=1.(2)将直线l 的方程y =x +m 代入椭圆C 的方程x 22+y 2=1,整理得3x 2+4mx +2(m 2-1)=0.则Δ=(4m )2-24(m 2-1)>0,得m 2<3.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4m3,x 1x 2=2(m 2-1)3,所以|AB |=2·(x 1+x 2)2-4x 1x 2=2·⎝⎛⎭⎫-4m 32-4·2(m 2-1)3=2·24-8m 29=433-m 2,又原点O (0,0)到直线AB :x -y +m =0的距离d =|m |2, 所以S △OAB =12|AB |·d =12×433-m 2×|m |2=23m 2(3-m 2).因为m 2(3-m 2)≤⎝ ⎛⎭⎪⎫m 2+3-m 222=94,当且仅当m 2=3-m 2, 即m 2=32时取等号,所以S △OAB ≤23×32=22,即△OAB 面积的最大值为22.[典例感悟][典例] (2018·浙江高考)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围.[解] (1)证明:设P (x 0,y 0),A ⎝⎛⎭⎫14y 21,y 1,B ⎝⎛⎭⎫14y 22,y 2. 因为P A ,PB 的中点均在抛物线上, 所以y 1,y 2为方程⎝⎛⎭⎫y +y 022=4·14y 2+x 02, 即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0,因此PM 垂直于y 轴.(2)由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22(y 20-4x 0).因此△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 20+y 24=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],所以△P AB 面积的取值范围是⎣⎡⎦⎤62,15104.[类题通法]圆锥曲线中的取值范围问题的5种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.[对点训练](2018·南昌模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.解:(1)由题知e =c a =32,2b =2,又a 2=b 2+c 2,∴b =1,a =2,∴椭圆C 的标准方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,整理得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1,① x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2, 若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km ·⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简得m 2+k 2=54,②由①②得120<k 2≤54,∵原点O 到直线l 的距离d =|m |1+k2,∴d 2=m 21+k 2=54-k 21+k 2=-1+94(1+k 2),又120<k 2≤54,∴0≤d 2<87, ∴原点O 到直线l 的距离的取值范围是⎣⎡⎭⎫0,2147.[典例感悟][典例] (2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .[解] (1)由已知得F (1,0),l 的方程为x =1. 则点A 的坐标为⎝⎛⎭⎫1,22或⎝⎛⎭⎫1,-22. 又M (2,0),所以直线AM 的方程为y =-22x +2或y =22x -2, 即x +2y -2=0或x -2y -2=0.(2)证明:当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,直线MA ,MB 的斜率之和为 k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k , 得k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0. 从而k MA +k MB =0, 故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB 成立.[类题通法]圆锥曲线证明问题的类型及求解策略(1)圆锥曲线中的证明问题,主要有两类:①证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;②证明直线与圆锥曲线中的一些数量关系(相等或不等).(2)解决证明问题时,主要根据直线与圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明.[对点训练](2018·成都模拟)已知椭圆x 25+y 24=1的右焦点为F ,设直线l :x =5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点.(1)若直线l 1的倾斜角为π4,求|AB |的值;(2)设直线AM 交直线l 于点N ,证明:直线BN ⊥l . 解:由题意知,F (1,0),E (5,0),M (3,0).(1)∵直线l 1的倾斜角为π4,∴k =1.∴直线l 1的方程为y =x -1.代入椭圆方程,可得9x 2-10x-15=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=109,x 1x 2=-53.∴|AB |=2(x 1-x 2)2=2·(x 1+x 2)2-4x 1x 2=2×⎝⎛⎭⎫1092+4×53=1659.(2)证明:设直线l 1的方程为y =k (x -1). 代入椭圆方程,得(4+5k 2)x 2-10k 2x +5k 2-20=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2-204+5k 2.设N (5,y 0),∵A ,M ,N 三点共线, ∴k AM =k MN ,即-y 13-x 1=y 02,∴y 0=2y 1x 1-3. 而y 0-y 2=2y 1x 1-3-y 2=2k (x 1-1)x 1-3-k (x 2-1)=3k (x 1+x 2)-kx 1x 2-5kx 1-3=3k ·10k 24+5k 2-k ·5k 2-204+5k 2-5k x 1-3=0.∴直线BN ∥x 轴,即BN ⊥l .[课时跟踪检测] A 卷——大题保分练1.(2018·长春模拟)已知椭圆C 的两个焦点为F 1(-1,0),F 2(1,0),且经过E ⎝⎛⎭⎫3,32. (1)求椭圆C 的方程;(2)过点F 1的直线l 与椭圆C 交于A ,B 两点(点A 位于x 轴上方),若AF 1―→=λF 1B ―→,且2≤λ<3,求直线l 的斜率k 的取值范围.解:(1)由⎩⎪⎨⎪⎧2a =|EF 1|+|EF 2|,a 2=b 2+c 2,c =1,解得⎩⎪⎨⎪⎧a =2,c =1,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)由题意得直线l 的方程为y =k (x +1)(k >0),联立方程⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,整理得⎝⎛⎭⎫3k 2+4y 2-6k y -9=0,Δ=144k 2+144>0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=6k3+4k 2,y 1y 2=-9k 23+4k 2,又AF 1―→=λF 1B ―→,所以y 1=-λy 2,所以y 1y 2=-λ(1-λ)2(y 1+y 2)2, 则(1-λ)2λ=43+4k 2,λ+1λ-2=43+4k 2,因为2≤λ<3,所以12≤λ+1λ-2<43,即12≤43+4k 2<43,且k >0,解得0<k ≤52. 故直线l 的斜率k 的取值范围是⎝⎛⎦⎤0,52. 2.(2018·陕西模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1和F 2,由M (-a ,b ),N (a ,b ),F 2和F 1这4个点构成了一个高为3,面积为33的等腰梯形.(1)求椭圆的方程;(2)过点F 1的直线和椭圆交于A ,B 两点,求△F 2AB 面积的最大值.解:(1)由已知条件,得b =3,且2a +2c2×3=33,∴a +c =3.又a 2-c 2=3,∴a =2,c =1,∴椭圆的方程为x 24+y 23=1.(2)显然直线的斜率不能为0,设直线的方程为x =my -1,A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x 24+y 23=1,x =my -1,消去x 得,(3m 2+4)y 2-6my -9=0.∵直线过椭圆内的点,∴无论m 为何值,直线和椭圆总相交.∴y 1+y 2=6m3m 2+4,y 1y 2=-93m 2+4.∴S △F 2AB =12|F 1F 2||y 1-y 2|=|y 1-y 2|=(y 1+y 2)2-4y 1y 2=12m 2+1(3m 2+4)2=4m 2+1⎝⎛⎭⎫m 2+1+132=41m 2+1+23+19(m 2+1),令t =m 2+1≥1,设f (t )=t +19t ,易知t ∈⎝⎛⎭⎫0,13时,函数f (t )单调递减,t ∈⎝⎛⎭⎫13,+∞时,函数f (t )单调递增,∴当t =m 2+1=1,即m =0时,f (t )取得最小值,f (t )min =109,此时S △F 2AB 取得最大值3.3.(2018·郑州模拟)已知圆C :x 2+y 2+2x -2y +1=0和抛物线E :y 2=2px (p >0),圆心C 到抛物线焦点F 的距离为17.(1)求抛物线E 的方程;(2)不过原点O 的动直线l 交抛物线于A ,B 两点,且满足OA ⊥OB ,设点M 为圆C 上一动点,求当动点M 到直线l 的距离最大时的直线l 的方程.解:(1)x 2+y 2+2x -2y +1=0可化为(x +1)2+(y -1)2=1,则圆心C 的坐标为(-1,1).∵F ⎝⎛⎭⎫p 2,0,∴|CF |= ⎝⎛⎭⎫p 2+12+(0-1)2=17,解得p =6.∴抛物线E 的方程为y 2=12x .(2)显然直线l 的斜率非零,设直线l 的方程为x =my +t (t ≠0),A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y 2=12x ,x =my +t ,得y 2-12my -12t =0, Δ=(-12m )2+48t =48(3m 2+t )>0, ∴y 1+y 2=12m ,y 1y 2=-12t ,由OA ⊥OB ,得OA ―→·OB ―→=0,∴x 1x 2+y 1y 2=0, 即(m 2+1)y 1y 2+mt (y 1+y 2)+t 2=0,整理可得t 2-12t =0,∵t ≠0,∴t =12,满足Δ>0,符合题意. ∴直线l 的方程为x =my +12,故直线l 过定点P (12,0).∴当CP ⊥l ,即线段MP 经过圆心C (-1,1)时,动点M 到动直线l 的距离取得最大值, 此时k CP =1-0-1-12=-113,得m =113,此时直线l 的方程为x =113y +12,即13x -y -156=0.4.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12.(2)设F 为C 的右焦点,P 为C 上一点,且, 证明: .证明:(1)设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1, y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34,B 卷——深化提能练1.(2018·胶州模拟)已知椭圆Ω:x 2a 2+y 2b 2=1(a >b >0且a ,b 2均为整数)过点⎝⎛⎭⎫2,62,且右顶点到直线l :x =4的距离为2.(1)求椭圆Ω的方程;(2)过椭圆的右焦点F 作两条互相垂直的直线l 1,l 2,l 1与椭圆Ω交于点A ,B ,l 2与椭圆Ω交于点C ,D .求四边形ACBD 面积的最小值.解:(1)由题意,得2a 2+32b 2=1,且|4-a |=2,若a =2,则b 2=3;若a =6,则b 2=2717(舍去),所以椭圆Ω的方程为x 24+y 23=1.(2)由(1)知,点F 的坐标为(1,0).当l 1,l 2中有一条直线的斜率不存在时,可得|AB |=4,|CD |=3或者|AB |=3,|CD |=4,此时四边形ACBD 的面积S =12×4×3=6.当l 1,l 2的斜率均存在时,设直线l 1的斜率为k ,则k ≠0,且直线l 2的斜率为-1k .直线l 1:y =k (x -1),l 2:y =-1k(x -1).联立⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0.由直线l 1过椭圆内的点,知Δ>0恒成立,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2. |AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=1+k 2·⎝ ⎛⎭⎪⎫8k 23+4k 22-4×4k 2-123+4k 2=12(k 2+1)3+4k2. 以-1k 代替k ,得|CD |=12(k 2+1)4+3k 2.所以四边形ACBD 的面积S =12|AB |·|CD |=72(k 2+1)2(3+4k 2)(4+3k 2)≥72(k 2+1)2⎣⎢⎡⎦⎥⎤(3+4k 2)+(4+3k 2)22=72(k 2+1)2⎣⎢⎡⎦⎥⎤7(k 2+1)22=28849,当且仅当k 2=1,即k =±1时等号成立.由于28849<6,所以四边形ACBD 面积的最小值为28849.2.设椭圆C :x 2a 2+y 2b 2=1(a >b >0),定义椭圆C 的“相关圆”方程为x 2+y 2=a 2b 2a 2+b 2.若抛物线y 2=4x 的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和其两个焦点构成直角三角形.(1)求椭圆C 的方程和“相关圆”E 的方程;(2)过“相关圆”E 上任意一点P 作“相关圆”E 的切线l 与椭圆C 交于A ,B 两点,O 为坐标原点.证明:∠AOB 为定值.解:(1)因为抛物线y 2=4x 的焦点(1,0)与椭圆C 的一个焦点重合,所以c =1. 又椭圆C 短轴的一个端点和其两个焦点构成直角三角形,所以b =c =1, 故椭圆C 的方程为x 22+y 2=1,“相关圆”E 的方程为x 2+y 2=23.(2)证明:当直线l 的斜率不存在时,不妨设直线AB 的方程为x =63,A ⎝⎛⎭⎫63,63,B ⎝⎛⎭⎫63,-63,则∠AOB =π2. 当直线l 的斜率存在时,设其方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得x 2+2(kx +m )2=2,即(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=8(2k 2-m 2+1)>0,即2k 2-m 2+1>0,⎩⎨⎧x 1+x 2=-4km1+2k2,x 1x 2=2m 2-21+2k 2.因为直线l 与“相关圆”E 相切, 所以|m |1+k 2=m 21+k 2=23, 即3m 2=2+2k 2,所以x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)(2m 2-2)1+2k 2-4k 2m 21+2k2+m 2=3m 2-2k 2-21+2k 2=0,所以OA ―→⊥OB ―→,所以∠AOB =π2.综上,∠AOB =π2,为定值.3.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b ≥1)的离心率为22,其右焦点到直线2ax +by -2=0的距离为23. (1)求椭圆C 1的方程;(2)过点P ⎝⎛⎭⎫0,-13的直线l 交椭圆C 1于A ,B 两点.证明:以AB 为直径的圆恒过定点. 解:(1)由题意,e =c a =22,e 2=a 2-b 2a 2=12,a 2=2b 2.所以a =2b ,c =b . 又|2ac -2|4a 2+b 2=23,a >b ≥1,所以b =1,a 2=2, 故椭圆C 1的方程为x 22+y 2=1.(2)证明:当AB ⊥x 轴时,以AB 为直径的圆的方程为x 2+y 2=1. 当AB ⊥y 轴时,以AB 为直径的圆的方程为x 2+⎝⎛⎭⎫y +132=169, 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+⎝⎛⎭⎫y +132=169,可得⎩⎪⎨⎪⎧x =0,y =1, 由此可知,若以AB 为直径的圆恒过定点,则该定点必为Q (0,1). 下证Q (0,1)符合题意.当AB 不垂直于坐标轴时,设直线AB 方程为y =kx -13,A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧x 22+y 2=1,y =kx -13,得(1+2k 2)x 2-43kx -169=0,由根与系数的关系得,x 1+x 2=4k3(1+2k 2), x 1x 2=-169(1+2k 2),∴QA ―→·QB ―→=(x 1,y 1-1)·(x 2,y 2-1) =x 1x 2+(y 1-1)(y 2-1) =x 1x 2+⎝⎛⎭⎫kx 1-43⎝⎛⎭⎫kx 2-43 =(1+k 2)x 1x 2-43k (x 1+x 2)+169=(1+k 2)-169(1+2k 2)-43k ·4k 3(1+2k 2)+169=-16-16k 2-16k 2+16(1+2k 2)9(1+2k 2)=0,故QA ―→⊥QB ―→,即Q (0,1)在以AB 为直径的圆上. 综上,以AB 为直径的圆恒过定点(0,1).4.(2018·沈阳模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx 与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程; (2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值; (3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线P A 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解:(1)由题意得c =3,根据2a +2c =16,得a =5.结合a 2=b 2+c 2,解得a 2=25,b 2=16.所以椭圆的方程为x 225+y 216=1.(2)由⎩⎨⎧x 2a 2+y 2b 2=1,y =24x ,得⎝⎛⎭⎫b 2+18a 2x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2). 所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+18a2,由AB ,F 1F 2互相平分且共圆,易知,AF 2⊥BF 2, 因为F 2A ―→=(x 1-3,y 1),F 2B ―→=(x 2-3,y 2), 所以F 2A ―→·F 2B ―→=(x 1-3)(x 2-3)+y 1y 2 =⎝⎛⎭⎫1+18x 1x 2+9=0. 即x 1x 2=-8,所以有-a 2b 2b 2+18a2=-8,结合b 2+9=a 2,解得a 2=12, 所以离心率e =32.(3)由(2)的结论知,椭圆方程为x 212+y 23=1,由题可知A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21,又y 20-y 21x 20-x 21=3⎝⎛⎭⎫1-x 2012-3⎝⎛⎭⎫1-x 2112x 20-x 21=-14,即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14.即直线PB 的斜率k 2∈⎝⎛⎭⎫18,14.。
7.4.2圆锥曲线中的最值、范围、证明问题必备知识精要梳理1.圆锥曲线的弦长(1)直线方程的设法,已知直线过定点(x0,y0),设直线方程为y-y0=k(x-x0),若已知直线的纵截距为(0,b),设直线方程为y=kx+b,若已知直线的横截距为(a,0),设直线方程为x=ty+a;(2)弦长公式,斜率为k的直线与圆锥曲线交于点A(x1,y1),B(x2,y2)时,|AB|=·|x1-x2|=|y1-y2|,如何求|x1-x2|,若x1,x2是ax2+bx+c=0的两根,x1+x2=-,x1x2=,方法一:|x1-x2|=;方法二:利用求根公式,|x1-x2|==.2.处理中点弦问题常用的求解方法(1)已知AB是椭圆=1(a>b>0)的一条弦,其中点M的坐标为(x0,y0).运用点差法求直线AB的斜率,设A(x1,y1),B(x2,y2)(x1≠x2),∵A,B都在椭圆上,则有两式相减得=0,∴=0,∴=-=-,故k AB=-.(2)已知AB是双曲线=1(a>0,b>0)的一条弦,且A(x1,y1),B(x2,y2),x1≠x2,弦的中点M(x0,y0),则用点差法同理可得k AB=.(3)已知AB是抛物线y2=2px(p>0)的一条弦,且A(x1,y1),B(x2,y2),x1≠x2,弦的中点M(x0,y0),则两式相减得=2p(x1-x2),∴(y1+y2)(y1-y2)=2p(x1-x2),∴,即k AB=.3.圆锥曲线中常见的最值、范围、证明问题(1)求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算的方便,在建立关系的过程中也可以采用多个变量,只要在最后结果中把多变量归结为单变量即可,同时要特别注意变量的取值范围.(2)圆锥曲线中常见的最值问题及解题方法①两类最值问题:(ⅰ)涉及距离、面积的最值以及与之相关的一些问题;(ⅱ)求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时与之相关的一些问题.②两种常见解法:(ⅰ)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;(ⅱ)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法或导数法解决.(3)圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).解决证明问题时,主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明.常用的证明方法有:①证A、B、C三点共线,可证k AB=k AC或=λ;②证直线MA⊥MB,可证k MA·k MB=-1或=0;③证|AB|=|AC|,可证A点在线段BC的垂直平分线上.关键能力学案突破热点一圆锥曲线中的最值问题【例1】(2020百校联考,理21)已知圆O:x2+y2=r2(r>0),椭圆C:=1(a>b>0)的短半轴长等于圆O的半径,且过C右焦点的直线与圆O相切于点D.(1)求椭圆C的方程;(2)若动直线l与圆O相切,且与椭圆C相交于不同的两点A,B,求原点O到弦AB的垂直平分线距离的最大值.解题心得目标函数法解圆锥曲线有关最值问题的解题模型【对点训练1】(2020陕西渭南高三模拟,21)已知直线l:x-y+1=0与焦点为F的抛物线C:y2=2px(p>0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.热点圆锥曲线中的二范围问题【例2】(2020山东济宁一模,20)已知椭圆C:=1(a>b>0)的离心率为,且椭圆C过点.(1)求椭圆C的标准方程;(2)过椭圆C的右焦点的直线l与椭圆C交于A,B两点,且与圆:x2+y2=2交于E,F两点,求|AB|·|EF|2的取值范围.解题心得范围问题的解题策略解决有关范围问题时,先要恰当地引入变量(如点的坐标、角、斜率等),寻找不等关系,其方法有:(1)利用判别式或几何性质来构造不等式,从而确定所求范围;(2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系或不等关系;(3)利用隐含的不等关系建立不等式,从而求出所求范围;(4)利用已知不等关系构造不等式,从而求出所求范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定所求范围(如本例);(6)利用已知,将条件转化为几个不等关系,从而求出参数的范围.【对点训练2】已知A,B是x轴正半轴上两点(A在B的左侧),且|AB|=a(a>0),过A,B 分别作x轴的垂线,与抛物线y2=2px(p>0)在第一象限分别交于D,C两点.(1)若a=p,点A与抛物线y2=2px的焦点重合,求直线CD的斜率;(2)若O为坐标原点,记△OCD的面积为S1,梯形ABCD的面积为S2,求的取值范围.热点三圆锥曲线中的证明问题【例3】(2020河北张家口模拟,19)已知椭圆E:=1(a>b>0)的焦距为4,且过点.(1)求椭圆E的方程;(2)设A(0,b),B(0,-b),C(a,b),O(0,0),过B点且斜率为k(k>0)的直线l交E于另一点M,交x轴于点Q,直线AM与直线x=a相交于点P.证明:PQ∥OC.解题心得(1)圆锥曲线中的证明问题,主要有两类:①证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;②证明直线与圆锥曲线中的一些数量关系(相等或不等).(2)解决证明问题时,主要根据直线与圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明.【对点训练3】(2020北京海淀一模,20)已知椭圆C:=1(a>b>0)的离心率为,A1(-a,0),A2(a,0),B(0,b),△A1BA2的面积为2.(1)求椭圆C的方程;(2)设M是椭圆C上一点,且不与顶点重合,若直线A1B与直线A2M交于点P,直线A1M 与直线A2B交于点Q.求证:△BPQ为等腰三角形.核心素养微专题(八)解析几何中的最值、范围问题【例1】(2020湖南长沙高三模拟,理16)在平面直角坐标系xOy中,已知点P(3,0)在圆C:x2+y2-2mx-4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围是.核心素养分析本题是解析几何中的最值、范围问题,综合性较强,对核心素养要求较高.先用“数学运算”将圆的一般方程x2+y2-2mx-4y+m2-28=0转化为标准方程(x-m)2+(y-2)2=32,从而确定圆的圆心C(m,2)和半径r=4;其次用“直观想象”和“逻辑推理”分析当S△ABC取得最大值时须满足∠ACB=90°,即△ABC为等腰直角三角形,所以|AB|=r=8,得出|PC|满足的不等式,继而利用“数学运算”求得实数m的取值范围.【跟踪训练1】(2020河北衡水模拟,15)在平面直角坐标系xOy中,设圆M的半径为1,圆心在直线2x-y-4=0上,若圆M上不存在点N,使NO=NA,其中A(0,3),则圆心M横坐标的取值范围是.【例2】(2020河南中原名校高三模拟,14)已知F是抛物线y2=4x的焦点,M是这条抛物线上的一个动点,P(3,1)是一个定点,则|MP|+|MF|的最小值是.核心素养分析解决此题关键是用“直观想象”画出抛物线草图,再用“逻辑推理”结合抛物线定义分析确定点P的位置,使得|MP|+|MF|取得最小值.【跟踪训练2】(2020安徽定远重点中学高三模拟,15)设P是双曲线=1上一点,M,N分别是两圆:(x-5)2+y2=4和(x+5)2+y2=1上的点,则|PM|-|PN|的最大值为.7.4.2圆锥曲线中的最值、范围、证明问题关键能力·学案突破【例1】解(1)如图,设椭圆的右焦点为F,由于直线FD与圆O相切于点D,所以△FOD是以∠ODF为直角的直角三角形.因为切点的坐标为D,所以tan∠DOF=,所以∠DOF=60°.由条件知r2==1,所以圆的半径r=1,b=1.所以在Rt△FOD中,=cos60°,所以|OF|=2.从而a2=b2+c2=5.所以椭圆C的方程为+y2=1.(2)(方法一)利用斜率构建目标函数设点O到弦AB的垂直平分线的距离为d,①若直线l垂直于x轴,则弦AB的垂直平分线为x轴,所以d=0;若直线l垂直于y轴,则l与椭圆C只有一个交点,不符合题意.②若直线l不与坐标轴垂直,设直线l的方程为y=kx+m(k≠0),因为l与圆O相切,所以=1,即|m|=由消去y得(1+5k2)x2+10kmx+5m2-5=0,易验证Δ>0.设A(x1,y1),B(x2,y2),则x1+x2=-,y1+y2=k(x1+x2)+2m=所以AB中点的坐标为,所以弦AB的垂直平分线方程为y-=-x+,即x+ky+=0.所以d=将|m|=代入,得d=,当且仅当|k|=,|m|=时,取等号.综上所述,点O到弦AB的垂直平分线的距离的最大值为(方法二)利用点的坐标构建目标函数设点O到弦AB的垂直平分线距离为d,①若直线l垂直于x轴,则弦AB的垂直平分线为x轴,所以d=0;若直线l垂直于y轴,则l与椭圆C只有一个交点,不符合题意.②若直线l不与坐标轴垂直,设A(x1,y1),B(x2,y2),AB的中点坐标为M(x0,y0),x0≠0,y0≠0,由点A,B在椭圆上,得①-②,得(x1-x2)(x1+x2)+(y1-y2)(y1+y2)=0,即k AB==-=-,直线l的方程为y-y0=k AB(x-x0),化简得x0x+5y0y--5=0.因为直线l与圆O相切,所以1=,即+5,又因为弦AB的垂直平分线方程为y-y0=(x-x0),即5y0x-x0y-4x0y0=0,所以d=,当且仅当=5时,取等号.综上所述,点O到弦AB的垂直平分线的距离的最大值为对点训练1解(1)由消去x,得y2-2py+2p=0,∵直线l:x-y+1=0与抛物线C相切,∴Δ=4p2-8p=0,解得p=2或p=0(舍去).∴抛物线C的方程为y2=4x.(2)由于直线m不平行于x轴,故可设直线m的方程为x=ty+1,由消去x,得y2-4ty-4=0,Δ1=16t2+16>0,设A(x1,y1),B(x2,y2),∴y1+y2=4t,∴x1+x2=4t2+2,∴线段AB的中点M的坐标为(2t2+1,2t).设点A到直线l的距离为d A,点B到直线l的距离为d B,点M到直线l的距离为d,则d A+d B=2d=2=2|t2-t+1|=2,∴当t=时,可使A,B两点到直线l的距离之和最小,距离之和的最小值为【例2】解(1)由已知可得,即c2=,又c2=a2-b2,所以a2=b2,所以椭圆C的方程为=1,将点代入方程,得=1,解得b2=2,则a2=b2=3,所以椭圆C的标准方程为=1.(2)由(1)知椭圆的右焦点为(1,0).①若直线l的斜率不存在,则直线l的方程为x=1,易知A1,,B1,-,E(1,1),F(1,-1),所以|AB|=,|EF|2=4,|AB|·|EF|2=;②若直线l的斜率存在,设直线l的方程为y=k(x-1),设A(x1,y1),B(x2,y2),联立直线l与椭圆方程得可得(2+3k2)x2-6k2x+3k2-6=0,则x1+x2=,x1x2=,所以|AB|=,因为圆心(0,0)到直线l的距离d=,所以|EF|2=42-=,所以|AB|·|EF|2==,因为k2∈[0,+∞),所以|AB|·|EF|2,综上,|AB|·|EF|2的取值范围是对点训练2解(1)由题意知A,则B+a,0,D,p,则C+a,,又a=p,所以k CD=-1.(2)设直线CD的方程为y=kx+b(k≠0),C(x1,y1),D(x2,y2),由得ky2-2py+2pb=0,所以Δ=4p2-8pkb>0,得kb<,又y1+y2=,y1y2=,由y1+y2=>0,y1y2=>0,可知k>0,b>0,因为|CD|=|x1-x2|=a,点O到直线CD的距离d=,所以S1=a ab.又S2=(y1+y2)·|x1-x2|=a=,所以,因为0<kb<,所以0<,即的取值范围为【例3】(1)解由题可知2c=4,即c=2.∴椭圆的左、右焦点分别为(-2,0),(2,0), 由椭圆的定义知2a==4,∴a=2,b2=a2-c2=4,∴椭圆E的方程为=1.(另解:由题可知解得)(2)证明易得A(0,2),B(0,-2),C(2,2),直线l:y=kx-2与椭圆x2+2y2=8联立,得(2k2+1)x2-8kx=0,∴x M=,从而M,Q直线AM的斜率为=-,直线AM的方程为y=-x+2.令x=2,得P2,-+2,∴直线PQ的斜率k PQ=,直线OC的斜率k OC=, ∴k PQ=k OC,显然直线PQ与OC不重合,从而PQ∥OC.对点训练3(1)解由题解得所以椭圆方程为+y2=1.(2)证明设直线A2M的方程为y=k(x-2),直线A1B的方程为y=x+1.由解得点P.由得(4k2+1)x2-16k2x+16k2-4=0,则2x M=所以x M=,y M=即M=-于是直线A1M的方程为y=-(x+2),直线A2B的方程为y=-x+1.由解得点Q于是x P=x Q,所以PQ⊥x轴.设PQ中点为N,则N点的纵坐标为=1.故PQ中点在定直线y=1上.从上边可以看出点B在PQ的垂直平分线上,所以|BP|=|BQ|,所以△BPQ为等腰三角形.核心素养微专题(八)【例1】(3-2,3-2]∪[3+2,3+2)解析由题意得圆的标准方程为(x-m)2+(y-2)2=32,所以圆心坐标为C(m,2),r=4S△ABC=r2sin∠ACB=16sin∠ACB,当∠ACB=90°时,S取得最大值16.此时△ABC为等腰直角三角形,|AB|=r=8,所以点C到直线AB的距离为d=4.由以上可得4≤|PC|<4即16≤(m-3)2+22<32,解得3-2<m≤3-2或3+2m<3+2,所以实数m的取值范围是(3-2,3-2]∪[3+2,3+2).跟踪训练1(-∞,0)解析设N(x,y),由NO=NA,得4(x2+y2)=x2+(y-3)2,化简得x2+(y+1)2=4,表示为以B(0,-1)为圆心,2为半径的圆,由题意得圆B与圆M 无交点,设M(a,2a-4),即a2+(2a-4+1)2>(2+1)2或a2+(2a-4+1)2<(2-1)2,解得圆心M横坐标的取值范围为(-∞,0)【例2】4解析设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|,∴要求|MP|+|MF|的最小值,即求|MP|+|MD|的最小值.当D,M,P三点共线时,|MP|+|MD|最小,为3-(-1)=4,所以|MP|+|MF|的最小值是4.跟踪训练29解析设两圆(x-5)2+y2=4和(x+5)2+y2=1的圆心分别为A,B,则A,B正好为双曲线两焦点,|PM|-|PN|≤|PA|+2-(|PB|-1)=|PA|-|PB|+3=2×3+3=6+3=9,即最大值为9.。
专题4 圆锥曲线中的最值(范围)问题解析几何中的最值(范围)问题,主要是结合直线与椭圆、直线与抛物线的位置关系的进行命题,要求证明、探索、计算线段长度(距离)或图形面积或参数等有关最值问题.从高考命题看,此类问题以主观题形式考查,多步设问,逐步深入考查分析问题解决问题的能力.圆锥曲线中的最值(范围)问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法(在选填题部分已重点讲解),即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、均值不等式方法等进行求解.而解答题部分主要使用代数法。
题型1 线段(距离)类的最值(范围)问题1.(2021·四川成都市·高三三模)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为,其离心率为2.(1)求椭圆C 的方程;(2)若A ,B 是椭圆C 上两点,且2AB =,求线段AB 中点M 到原点O 的最大距离.【答案】(1)2212x y +=;(21. 【分析】(1)根据椭圆的几何性质求出,,a b c 可得椭圆的标准方程;(2)当直线AB 斜率不存在时,0OM =;当直线AB 斜率存在时,设其方程为y kx m =+,联立直线与椭圆,根据弦长公式得到2222122k m k +=+,得到||OM 关于k 的函数关系式,再换元后根据基本不等式可求出结果.【详解】(1)由已知,2a =,所以a =又离心率为c a =,即a =,故1c =,进而1b =,所以椭圆C 的方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,当直线AB 斜率不存在时,由题意可得AB 就是短轴,中点与原点重合,0OM =, 当直线AB 斜率存在时,设其方程为y kx m =+,由2222y kx m x y =+⎧⎨+=⎩,得()222214220k x kmx m +++-=, ()()()22222216421228210k m k m k m ∆=-⨯+-=+->,122421km x x k ∴+=-+,21222221m x x k -=+, 所以212122242()222121k m my y k x x m m k k +=++=-+=++, 222,2121km m M k k -⎛⎫∴ ⎪++⎝⎭,()()2222241||21k m OM k +∴=+,由2||221AB k ===+,化简得2222122k m k +=+, ()()()222222222412141||22212221k k k OM k k k k +++∴=⋅=++++, 令2411k t +=≥,则244||43(1)(3)4t OM t t t t==≤=-++++,当且仅当t =时取等号,||1OM ∴≤,max ||1OM ∴=,当且仅当214k =时取等号.即AB 中点M 到原点O1. 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.(2021·浙江高三期末)如图,已知抛物线21:C x y =在点A 处的切线l 与椭圆222:12x C y 相交,过点A 作l 的垂线交抛物线1C 于另一点B ,直线OB (O 为直角坐标原点)与l 相交于点D ,记()11,A x y 、()22,B x y ,且1>0x .(1)求12x x -的最小值;(2)求DO DB的取值范围.【答案】(1)2;(2)40,17⎛⎫⎪⎝⎭. 【分析】(1)利用导数求出抛物线1C 在点A 处的切线方程,将切线方程与椭圆方程联立,由0∆>求出21x 的取值范围,求出直线AB 的方程,并将直线AB 的方程与抛物线1C 的方程联立,由韦达定理得出12112x x x +=-,再利用基本不等式可求得12x x -的最小值;(2)记点O 、B 到直线l 的距离分别为1d 、2d ,求出1d 、2d ,可得出12DO d DBd =,结合21x 的取值范围可求得DO DB的取值范围. 【详解】(1)对函数2yx 求导得2y x '=,所以抛物线1C 在点A 处的切线方程为()1112y y x x x -=-,即2112y x x x =-,联立21122212y x x x x y ⎧=-⎪⎨+=⎪⎩,得()2234111188220x x x x x +-+-=, 所以()()62411164418220x x x∆=-+->,解得2104x <<,所以直线AB 的方程为2111122y x x x =-++, 联立21121122y x x x x y⎧=-++⎪⎨⎪=⎩,得23111220x x x x x +--=,所以12112x x x +=-,所以12111222x x x x -=+≥=,当且仅当112x =时取等号,所以12x x -的最小值为2; (2)记点O 、B 到直线l 的距离分别为1d 、2d ,所以21d =,211211214124x x x x d ⎫+=+=⎪⎭, 所以()4112222121441414DOd x DB d x x ===⎛⎫++ ⎪⎝⎭,因为2104x <<,所以2114x +>, 所以222440,1714DODBx ⎛⎫=∈ ⎪⎝⎭⎛⎫+ ⎪⎝⎭,所以DO DB 的取值范围为40,17⎛⎫ ⎪⎝⎭. 【点睛】圆锥曲线中的取值范围问题的求解方法(1)函数法:用其他变量作为参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的取值范围. (3)判别式法:建立关于某变量的一元二次方程,利用根的判别式求参数的取值范围. (4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.3.(2021·全国高三专题练习(理))设O 为坐标原点,M 是x 轴上一点,过点M 的直线交抛物线C :24y x =于点A ,B ,且4OA OB ⋅=-.(1)求点M 的坐标;(2)求232BM AM-的最大值.【答案】(1)()2,0;(2)2.【分析】(1)设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭,(),0M m ,由4OA OB ⋅=-得到128y y =-,设直线:AB x ty m =+与抛物线方程联立,由根与系数的关系得到2m =,即可得到点M 的坐标;(2)由题意及弦长公式得到AM ,BM ,利用根与系数的关系得到221114AMBM+=,进而得232BM AM-的表达式,然后构造函数,利用函数的单调性求函数的最大值,即可得到232BM AM-的最大值.【详解】(1)设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,(),0M m , 则222212121212,,44416y y y y OA OB y y y y ⎛⎫⎛⎫⋅=⋅=+=- ⎪ ⎪⎝⎭⎝⎭,解得128y y =-,设直线:AB x ty m =+,联立方程,得2,4,x ty m y x =+⎧⎨=⎩得2440y ty m --=, 由根与系数的关系知,1248m y y -==-,所以2m =,故点M 的坐标为()2,0.(2)由(1)知,124y y t +=,128y y =-.易知1AM y =,2M B =, 所以()()22222212111111t y t y AM BM+=+++()()222122222121616141641y y t t y y t ++===++, 则222321132||3284BM BM BM AM BM BM ⎛⎫-= -⎪-=-- ⎪⎝⎭. 令()2328u f u u =--,2u >,则()3641f u u='-,所以()f u 在()2,4上单调递增,在()4,+∞上单调递减, 所以()()min 42f u f ==,即232BM AM-的最大值是2,当且仅当4BM =时取等号.【点睛】圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:一是几何方法,即利用圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是代数方法,即把要求最值的几何量或代数式表示为某个(些)参数的函数,然后利用函数、不等式的知识等进行求解.4.(2021·山西临汾市·高三二模(理))已知点()21Q ,在椭圆()2222:10x y C a b a b+=>>上,且点Q 到C的两焦点的距离之和为(1)求C 的方程;(2)设圆228:5O x y +=上任意一点P 处的切线l 交C 于点M ,N ,求OM ON ⋅的最小值.【答案】(1)22182x y +=;(2)165. 【分析】(1)由椭圆定义得a ,把已知点的坐标代入方程求得b ,从而得椭圆方程; (2)设直线方程为y kx b =+,1122(,),(,)M x y N x y ,由直线与圆相切得22588b k =+, 直线方程与椭圆方程联立,消元后应用韦达定理代入求得0OM ON ⋅=,得2MON π∠=,斜率不存在时求得,M N 点坐标后也得此结论,然后设(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,代入椭圆方程,然后计算2288OM ON ⋅得最大值,从而可得OM ON ⋅的最小值.【详解】(1)由题意2a =,a =(2,1)Q 在椭圆上,所以24118b+=,b = 椭圆方程为22182x y +=.(2)当直线MN斜率不存在时,直线方程为x =把x =y =M,N , 0OM ON ⋅=,所以2MON π∠=,同理x =2MON π∠=;当直线MN 斜率存在时,设直线方程为y kx b =+,1122(,),(,)M x y N x y ,=225880b k --=,(*) 由22182y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8480k x kbx b +++-=,则12221228414841kb x x k b x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 22121212121212()()(1)()OM ON x x y y x x kx b kx b k x x kb x x b ⋅=+=+++=++++22222222488588(1)414141b kb b k k kb b k k k ---⎛⎫=+⨯+⨯-+= ⎪+++⎝⎭, 由(*)得0OM ON ⋅=,所以2MON π∠=,综上,2MON π∠=,设xOM θ∠=,则2xON πθ∠=±,(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,因为,M N 在椭圆22182x y +=上,所以2222cos sin 182OM OM θθ+=,2228cos 4sin OMθθ=+,同理2228sin 4cos ONθθ=+,2222222288(cos 4sin )(sin 4cos )(13sin )(13cos )OMONθθθθθθ⋅=++=++222299139sin cos 4(2sin cos )4sin 244θθθθθ=++=+=+,2sin 2[0,1]θ∈,所以sin 21θ=时,2288OMON⋅取得最大值254,所以OM ON165=. 【点睛】本题考查求椭圆方程,考查直线与椭圆相交,考查直线相切.解题关键是首先利用设而不求的思想方法结合韦达定理求得2MON π∠=,然后设点的坐标(cos ,sin )M OM OM θθ,cos(),sin 22N ON ON ππθθ⎛⎫±±⎪⎝⎭,易得出OM ON ⋅的最小值.题型2面积类的最值(范围)问题1、(2021江西南昌高三模拟)已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为4,直线1l :by x c=与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 在椭圆上.斜率为1-的直线2l 与线段AB 相交于点P ,与椭圆相交于C 、D 两点.(1)求椭圆的标准方程;(2)求四边形ACBD 面积的取值范围.【解析】(1)由椭圆焦距为4,设()12,0F -,()22,0F ,连结1EF ,设12EF F α∠=, 则b tan c α=,又222a b c =+,得,b csin cos a aαα==, ∴ ()121229012|+|90F F c sin a c e b c a EF EF b c a sin sin a aαα======++-+,解得222a bc c b c =+⇒==,28a =,所以椭圆方程为22184x y +=;(2)设直线2l 方程:+y x m =-,()11,C x y 、()22,D x y ,由22184+x y y x m ⎧+=⎪⎨⎪=-⎩,得2234280x mx m -+-=,所以1221243283x x m m x x ⎧+=⎪⎪⎨-⎪=⎪⎩, 由(1)知直线1l :y x =,代入椭圆得,A B ⎛ ⎝,得3AB =,由直线2l 与线段AB 相交于点P,得m ⎛∈ ⎝ ,12CD x =-===而21l k =-与11l k =,知21l l ⊥,∴ 12ACBD S AB CD =⨯=,由m ⎛∈ ⎝,得232,03m ⎛⎤-∈- ⎥⎝⎦3232,93⎛⎤ ⎥⎝⎦, ∴四边形ACBD 面积的取值范围3232,93⎛⎤⎥⎝⎦.2.(2021·浙江高三模拟)已知:抛物线21:2C y x =,曲线()222:104x C y x +=<,过2C 上一点P 作1C 的两条切线,切点分别为A .(1)若()2,0P -,求两条切线的方程;(2)求PAB △面积的取值范围.【答案】(1)()122y x =±+;(2)(]1,8. 【分析】(1)设所求切线的方程为()2y k x =+,将该直线的方程与抛物线的方程联立,由0∆=可求出k 的值,即可求得所求的两条切线的方程;(2)设()11,A x y 、()22,B x y 、()P m n ,,写出抛物线22y x =在点A 、B 处的切线方程,将点P 的坐标代入两切线方程,可求得直线AB 的方程,将直线AB 的方程与抛物线1C 的方程联立,列出韦达定理,利用三角形的面积公式可得出PAB △面积关于m 的表达式,利用函数思想可求得PAB △面积的取值范围. 【详解】(1)显然切线斜率存在,设切线方程为()2y k x =+,由()222y k x y x ⎧=+⎨=⎩,得2240-+=ky y k ,由204160k k ≠⎧⎨∆=-=⎩,得12k =±, 因此,两条切线的方程为()122y x =±+; (2)设()11,A x y 、()22,B x y 、()P m n ,,先证明出抛物线22y x =在其上一点()00,x y 处的切线方程为00y y x x =+.证明:联立0022y y x x y x=+⎧⎨=⎩,消去x 可得200220y y y x -+=,即220020y y y y -+=,即()200y y -=,解得0y y =,所以,直线00y y x x =+与抛物线22y x =相切于点()00,x y .所以,切线PA 的方程为11yy x x =+,可得11ny m x =+,切线PB 的方程为22yy x x =+,可得22ny m x =+,AB ∴的方程为ny m x =+,P 到AB的距离d =.由22ny m x y x=+⎧⎨=⎩,得2220y ny m -+=, 由韦达定理可得122y y n +=,122y y m =,()P m n ,为曲线2C 上一点,则2214m n +=,所以,2214m n =-且20m -≤<,AB ==220n m ->,()332222121224PABm SAB d n m m ⎛⎫=⋅==-=-- ⎪⎝⎭,20m -≤<,()(]22121451,444m m m --+=-++∈,则(]322121,84PABm S m ⎛⎫--∈⎪⎝⎭= .因此,PAB △面积的取值范围为(]1,8.【点睛】利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.3.(2021·浙江高三其他模拟)如图,已知椭圆2214x y +=的左、右顶点分别为A ,B ,()2,2P ,线段OP(O 为坐标原点)交椭圆于点C ,D 在线段OC 上(不包括端点),连接AD 并延长,交椭圆于另一点E ,连接PE 并延长,交椭圆于另一点F ,连接BF ,DF .记1S ,2S 分别为BCD △和BDF 的面积.(1)求OC 的值;(2)求12S S ⋅的最大值.【答案】(1;(2)25.【分析】(1)先根据点P 的坐标得到直线OP 的方程,并将其与椭圆的方程联立,求出点C 的坐标,再利用两点间的距离公式求OC 的值即可;(2)设出直线PF 的方程,将其与椭圆方程联立,结合根与系数的关系得到AF BD k k =,进而可得BCD △和BDF 的面积的表达式,最后利用基本不等式求最值即可. 【详解】解:(1)因为()2,2P ,所以直线OP 的方程为y x =,将直线OP 的方程与椭圆的方程联立,可得221,4x y y x⎧+=⎪⎨⎪=⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩又由题意得点C位于第一象限,所以C.因此5OC ==. (2)由题意易知直线PF 的斜率一定存在且大于1,故设直线PF 的方程为()22y k x -=-(1k >),即22y kx k =+-,联立方程,得221,422,x y y kx k ⎧+=⎪⎨⎪=+-⎩化简得()()()2221416144830k x k k x k k ++-+-+=,由0∆>得()()()22216141444830k k k k k --+⨯-+>⎡⎤⎣⎦,即830k ->,得38k >,故1k >. 设()11,E x y ,()22,F x y ,则()()1222122161,144483.14k k x x k k k x x k ⎧-+=⎪+⎪⎨-+⎪=⎪+⎩易知()2,0A -,连接AF ,所以直线AE 的斜率112AE y k x =+,直线AF 的斜率222AF y k x =+,所以12122211AE AF x x k k y y +++=+()()()()()()1221122222222222x kx k x kx k kx k kx k ++-+++-=+-+- ()()()()12122212122242222(22)kx x x x k k x x k k x x k +++-=+-++-()()()()()()()()()222222284831622422144483822222214k k k k k k k k k k k k k k k -++-+-+=-++--+-+81648kk-=-2=.①因为点D 在直线y x =上,所以D D x y =,又()2,0B , 所以直线AD 的斜率2D AD D y k x =+,直线BD 的斜率2DBD D y k x =-,所以22112D D AD BD D D x x k k y y +-+=+=.② 又11AE AD k k =,③ 则由①②③可得11AF BDk k =,即AF BD k k =.设(),D m m(0m <<),则2122BDFBDAS S SBAm m ===⋅=. 又C,所以CD m m ⎫==-=-⎪⎭又点B 到直线CD 的距离d ==所以11122BDCS SCD d m m ⎫==⋅=-=-⎪⎭. 因此2122225S S m m ⎡⎤⎫⋅=-≤=⎪⎭⎢⎥⎣⎦,当且仅当m m =-,即5m =时等号成立,所以12S S ⋅的最大值是25. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4.(2021·全国高三其他模拟)已知1A ,2A 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右顶点,B 为椭圆C 的上顶点,点2A 到直线1A B,椭圆C 过点⎝.(1)求椭圆C 的标准方程;(2)设直线l 过点1A ,且与x 轴垂直,P ,Q 为直线l 上关于x 轴对称的两点,直线2A P 与椭圆C 相交于异于2A 的点D ,直线DQ 与x 轴的交点为E ,当2PA Q △与PEQ 的面积之差取得最大值时,求直线2A P 的方程.【答案】(1)22143x y +=;(2)360x -=或360x -=. 【分析】(1)由点到直线的距离得一个,a b 的关系式,已知点的坐标代入又得一个关系式,,两者联立解得,a b ,得椭圆方程;(2)设直线2A P 的方程为2(0)x my m =+≠,依次求得P 点,Q 点,D 点,E 点坐标,然后计算面积之差222PA Q PEQ PA E S S S -=△△△,再结合基本不等式求得最大值.由此可得直线方程.【详解】(1)由题意知2(,0)A a ,1(,0)A a -,(0,)B b ,则直线1A B 的方程为by x b a=+, 即0bx ay ab -+=,所以点2A 到直线1A B的距离d ==2234b a =.① 又椭圆C过点3⎛ ⎝,所以224213a b +=.② 联立①②,解得24a =,23b =,故椭圆C 的标准方程为22143x y +=.(2)由(1)知2(2,0)A ,直线l 的方程为2x =-.由题意知直线2A P 的斜率存在且不为0, 设直线2A P 的方程为2(0)x my m =+≠,联立2,2,x x my =-⎧⎨=+⎩解得2,4,x y m =-⎧⎪⎨=-⎪⎩即42,P m ⎛⎫-- ⎪⎝⎭,42,Q m ⎛⎫- ⎪⎝⎭.联立222(0),1,43x my m x y =+≠⎧⎪⎨+=⎪⎩消去x 整理得()2234120m y my ++=,解得0y =或21234m y m -=+. 由点D 异于点2A 可得2226812,3434m m D m m ⎛⎫-+- ⎪++⎝⎭, 所以直线DQ 的方程为222124684(2)203434m m x y m m m m ⎛⎫--+⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 令0y =,得226432E m x m -+=+,所以22222641223232m m A E m m -+=-=++, 所以2PA Q △与PEQ 的面积之差为222PA Q PEQ PA E S S S -=△△△. (利用点的对称关系,将面积差问题转化为求2PA E S △)因为2222112448||48222232323||||PA Em m S m m m m m -=⨯⋅⋅==≤+++△当且仅当m =时取等号.(在利用基本不等式求最值时,要特别注意“拆、拼、凑"等技巧)故当2PA Q △与PEQ 的面积之差取得最大值时,直线2A P的方程为360x +-=或360x -=. 【点睛】本题考查求椭圆方程,考查直线与椭圆相交问题,解题方法是解析几何的基本方法:设直线2AP 方程为2(0)x my m =+≠,直线与直线相交得交点坐标,直线与椭圆相交得交点坐标,然后求得三角形面积(之差),再结合基本不等式求得最大值,得出结论. 题型3斜率类的最值(范围)问题1.(2021·成都市高三模拟)设椭圆22213x y a +=(a >)的右焦点为F ,右顶点为A .已知113e OF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF HF ⊥,且MOA MAO ∠≤∠,求直线l 的斜率的取值范围. 【解析】(1)设(),0F c ,由113eOF OA FA+=,即()113c c a a a c +=-,2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.(2)设直线l 的斜率为k (0k ≠),则直线l 的方程为()2y k x =-.设()11,B x y ,()22,M x y ,()30,H y .在△MAO 中,MOA MAO MA MO ∠≤∠⇔≤,即()222222222x y x y -+≤+,化简得21x ≥. 由方程组()221432x y y k x ⎧+=⎪⎨⎪=-⎩,消去y ,整理得()2222431616120k x k x k +-+-=.于是2128643k x k -=+, 从而121243ky k =-+.由(1)知()1,0F ,所以()31,FH y =-,2229412,4343k k BF k k ⎛⎫-= ⎪++⎝⎭,由BF HF ⊥,得0BF HF ⋅=,所以2322129404343ky k k k -+=++,解得239412k y k-=, 因此直线MH 的方程为219412k y x k k-=-+.由方程组()2194122k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩,消去y ,解得()222209121k x k +=+.于是()222091121k k +≥+,解得k ≤或k ≥, 所以直线l的斜率的取值范围为6,,4⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭.【点评】由MOA MAO ∠≤∠,可得到不等式21x ≥,此时只要用k 去表示2x ,就能得到有关k 的不等式,这也是k 需要满足的唯一一个不等式,解这个不等式就能求出k 的取值范围.2.(2020·上海高三其他模拟)已知椭圆()2222:10x y C a b a b+=>>长轴的两顶点为A 、B ,左右焦点分别为1F 、2F ,焦距为2c 且2a c =,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为3.(1)求椭圆C 的方程;(2)在双曲线22:143x y T -=上取点Q (异于顶点),直线OQ 与椭圆C 交于点P ,若直线AP 、BP 、AQ 、BQ 的斜率分别为1k 、2k 、3k 、4k .试证明:1234k k k k +++为定值;(3)在椭圆C 外的抛物线K :24y x =上取一点E ,1EF 、2EF 的斜率分别为1'k 、2'k ,求121''k k 的取值范围.【答案】(1)22143x y +=;(2)证明过程见详解;(3)5(,0)(0,)24-⋃+∞. 【分析】(1)本小题先建立方程组2222223a cb a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,再求出2a =,b =1c =,最后求出椭圆C 的方程即可;(2)本小题先得到112132x k k y +=-,再得到234232x k k y +=,接着判断1122x y x y =,最后得到结论即可; (3)本小题先用233(,)4y E y 表示出432123161''16y k k y -=,(2383y >且32y ≠-),再建立函数1()16t f t t =-求导得到()f t 的取值范围,最后求导121''k k 的取值范围. 【详解】(1)因为过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为3,所以223ba=,所以2222223a c b a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得:2a =,b =1c =,所以椭圆C 的方程:22143x y +=; (2)由(1)可知:(2,0)A -、(2,0)B 、1(1,0)F -、2(1,0)F ,设点11(,)P x y ,则2211143x y +=,整理得:2211443y x -=-, 1111111122211111223422423y y x y x y x k k y x x x y +=+===-+---; 设点22(,)P x y ,则2222143x y -=,整理得:2222443y x -=, 2222222342222222223422423y y x y x y xk k y x x x y +=+===+--.又因为OP 与OQ 共线,所以12x x λ=,12y y λ=,所以1122x y x y =, 所以121212341212333()0222x x x x k k k k y y y y +++=-+=-+=,所以1234k k k k +++为定值; (3)设233(,)4y E y ,由2221434x y y x⎧+=⎪⎨⎪=⎩,解得:222383x y ⎧=⎪⎪⎨⎪=⎪⎩, 由E 在椭圆C 外的抛物线K :24y x =上一点,则2383y >, 则3123'14y k y =+,(2383y >且32y ≠-);3223'14y k y =-,(2383y >且32y ≠-), 则23331222433316''161144y y y k k y y y =⋅=--+,(2383y >且32y ≠-), 则432123161''16y k k y -=,(2383y >且32y ≠-), 令23y t =,(83t >且4t ≠),设1()16t f t t =-,(83t >且4t ≠),则211'()016f t t =+>,所以1()16t f t t=-在8(,4)3,(4,)+∞上单调递增, 所以()f t 的取值范围:5(,0)(0,)24-⋃+∞,所以121''k k 的取值范围5(,0)(0,)24-⋃+∞. 【点睛】本题考查求椭圆的标准方程,圆锥曲线相关的定值问题、圆锥曲线相关的参数取值范围问题,是偏难题.3.(2021·广东茂名市·高三月考)已知点N 为圆1C :()22116x y ++=上一动点,圆心1C 关于y 轴的对称点为2C ,点M 、P 分别是线段1C N ,2C N 上的点,且20MP C N ⋅=,222C N C P =.(1)求点M 的轨迹方程;(2)过点()2,0A -且斜率为()0k k >的直线与点M 的轨迹交于A ,G 两点,点H 在点M 的轨迹上,GA HA ⊥,当2AG AH =2k <<.【答案】(1)22143x y +=;(2)证明见解析 【分析】(1)由已知可得214MC MC +=,可判断点M 在以12,C C 为交点的椭圆上,即可求出方程;(2)将直线方程代入椭圆,利用弦长公式可求出AG =,同理可得AH =知可得3246380k k k -+-=,利用导数结合零点存在性定理即可证明. 【详解】(1)222C N C P =,P ∴是2C N 的中点,20MP C N ⋅=,2MP C N ∴⊥,∴点M 在2C N 的垂直平分线上,2||MN MC ∴=,121||42MN MC MC MC +=+=>,∴点M 在以12,C C 为交点的椭圆上,且2,1a c ==,则b =M 的轨迹方程为22143x y +=; (2)可得直线AG 的方程为(2)(0)y k x k =+>, 与椭圆方程联立可得()2222341616120kxk x k +++-=,设()11,G x y ,则2121612(2)34k x k -⋅-=+,可得()21223434k x k-=+,则12234AG k =+=+,由题可得,直线AH 的方程为1(2)y x k =-+,故同理可得AH =由2AG AH =可得2223443k k k=++,即3246380k k k -+-=, 设32()4638f t t t t =-+-,则k 是()f t 的零点,22()121233(21)0f t t t t '=-+=-≥,则()f t 在()0,∞+单调递增,又260,(2)60f f =<=>,因此()f t 在()0,∞+有唯一零点,且零点k在)22k <<.【点睛】本题考查椭圆的轨迹方程,解题的关键是利用椭圆定义得出M 的轨迹为椭圆;考查参数范围的证明,解题的关键是利用弦长公式求出弦长,利用已知得出3246380k k k -+-=,再利用导数证明.4.(2021·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F ,2F ,过点1F 的直线l 与椭圆C 交于M ,N 两点(点M 位于x 轴上方),2MNF ,12MF F △的周长分别为8,6. (1)求椭圆C 的方程;(2)若1||MF m MN =,且2334m ≤<,设直线l 的倾斜角为θ,求sin θ的取值范围. 【答案】(1)22143x y +=;(2)0,3⎛ ⎝⎦. 【分析】(1)根据椭圆的定义可得2MNF ,12MF F △的周长分别为4,22a a c +,结合222a b c =+可得答案.(2)根据题意设出直线l 的方程与椭圆方程联立,写出韦达定理,由1||MF m MN =,得出11MF F N,得出,M N的纵坐标12,y y 的关系,从而可求出答案.【详解】(1)设椭圆C 的半焦距为c ,因为2MNF ,12MF F △的周长分别为8,6,所以根据椭圆的定义得22248226a a c a b c =⎧⎪+=⎨⎪=+⎩,解得21a c b ⎧=⎪=⎨⎪=⎩.所以椭圆C 的方程为22143x y +=.(2)由条件1||MF m MN =,且2334m ≤<,则12MF MF >,所以直线l 的斜率存在. 根据题意,可设直线l 的方程为(1)(0).y k x k =+>.联立22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去x ,得()22234690k y ky k +--=,则()2214410k k ∆=+>,设()11,M x y ,()22,N x y ,则122634k y y k +=+①,2122934k y y k-=+②, 又1||MF m MN =,且2334m ≤<,则11[2,3)1MF m F N m =∈-.设1mmλ=-,[2,3)λ∈,则11MF F N λ=,所以12y y λ③,把③代入①得()226(1)34k y k λ=-+,()126(1)34ky k λλ-=-+,并结合②可得()2212222236934(1)34k k y y k kλλ--==+-+,则22(1)434kλλ-=+,即214234k λλ+-=+, 因为12λλ+-在[2,3)λ∈上单调递增,所以114223λλ≤+-<,即21442343k ≤<+,且0k >,解得02k <≤,即0tan 2θ<≤,所以0sin 3θ<≤. 故sin θ的取值范围是0,3⎛ ⎝⎦.【点睛】本题考查求椭圆方程和直线与椭圆的位置关系,解答本题的关键是由122634ky y k +=+,2122934k y y k-=+,又1||MF m MN =,且2334m ≤<,则11[2,3)1MF m F N m =∈-,得出关系求解,属于中档题.题型4向量类的最值(范围)问题1.(2021·陕西咸阳市·高三三模(理))已知12B B 、分别是椭圆22221(0)x y a b a b+=>>短轴两端点,离心率为12,P 是椭圆C 上异于1B 、2B 的任一点,12PB B △的面积最大值为(1)求椭圆C 的标准方程; (2)过椭圆C 右焦点F 的直线l 交椭圆C 于M N 、两点,O 为坐标原点,求OM ON +的取值范围.【答案】(1)22143x y +=;(2)[]0,2. 【分析】(1)根据题中条件,列出方程组求出,a b ,即可得出椭圆方程;(2)先讨论直线l 的斜率为0的情况,可求出0OM ON +=;再讨论直线的斜率不为0的情况,直线l 的方程为:1x my =+,()11,M x y ,()22,N x y ,联立直线与椭圆方程,利用韦达定理,以及向量模的坐标表示,得到(2OM ON +=.【详解】(1)由题意可得:22212ab c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,解得2a b =⎧⎪⎨=⎪⎩;所以椭圆C 的方程为221.43x y +=(2)当直线l 的斜率为0时,0OM ON +=,0OM ON +=当直线的斜率不为0时,因为()1,0F ,设直线l 的方程为:1x my =+,与椭圆C 交于()11,M x y ,()22,N x y , 由221,431,x y x my ⎧+=⎪⎨⎪=+⎩消去x 得()22:34690m y my ++-=, 所以1221226,349,34m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,()()22236363414410m m m ∆=++=+>,又()()12121212,2,OM ON x x y y my my y y +++=+++=, 所以(OM ON my +===令2110,344t m ⎛⎤=∈ ⎥+⎝⎦,则()()()222222223433449164313434m m t t t m m t ++++===+++, 因为二次函数243y t t =+在10,4t ⎛⎤∈ ⎥⎝⎦上显然单调递增,所以(]2430,1y t t =+∈,因此((]20,2OM ON +=;综上知,[]0,2OM ON +∈.【点睛】求解椭圆中弦长、向量的模长等问题时,一般需要联立直线与椭圆方程,利用韦达定理,结合弦长公式或两点间距离公式、向量模的坐标表示等,表示出所求的量,再结合基本不等式或利用函数单调性等,即可求解.2.(2021·安徽高三月考(理))已知椭圆()2222:10x y Ca b a b+=>>的左焦点为F,过点F 的直线l 与椭圆交于A ,B 两点,当直线l x ⊥轴时,AB =tan AOB ∠=(1)求椭圆C 的方程;(2)设直线l l '⊥,直线l '与直线l 、x 轴、y 轴分别交于点M 、P 、Q ,当点M 为线段AB 中点时,求PM PFPO PQ⋅⋅的取值范围.【答案】(1)2212x y +=;(2)()1,+∞.【分析】(1,2AOB AOF ∠=∠,进而根据几何关系解得1bc ==,a =即可得答案;(2)由题设():1l y k x =+,与椭圆联立方程得2222,2121k k M k k ⎛⎫- ⎪++⎝⎭,进而得直线22212:2121kk l y x k k k ⎛⎫'-=-+ ⎪++⎝⎭,所以22,021k P k ⎛⎫- ⎪+⎝⎭,进而根据几何关系得2PM PF PM ⋅=,2PO PQ PO ⋅=,进而将问题转化为求22PM PO的取值范围问题求解即可.【详解】解:(1)由题意可知(),0F c -,直线l x⊥轴时,22b AB a==22tan tan 1tan AOF AOB AOF ∠∠==-∠tanAOF ∠=, ∵0,2AOF π⎛⎫∠∈⎪⎝⎭,∴2tan 2b AF a AOF FO c∠===,解得:1bc ==,a =C 的方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,依题意直线l 斜率一定存在且不为零,设():1l y k x =+,代入椭圆方程得:()2222214220kx k x k +++-=,则2122421k x x k -+=+,()121222221k y y k x x k +=++=+.故2222,2121k k M k k ⎛⎫- ⎪++⎝⎭, 直线22212:2121kk l y x k k k ⎛⎫'-=-+ ⎪++⎝⎭,令0y =,则22,021k P k ⎛⎫- ⎪+⎝⎭, ∵PMMF ⊥,OQ PO ⊥,∴2PM PF PM ⋅=,2PO PQ PO ⋅=,∴222222222222222221212111121k k k PMk k k PM PF k k k PO PQ POk k ⎛⎫--⎛⎫-+ ⎪ ⎪+++⋅+⎝⎭⎝⎭====+⋅⎛⎫- ⎪+⎝⎭, ∵()20,k ∈+∞,∴()2111,k +∈+∞,∴ ()1,PM PFPO PQ⋅∈+∞⋅. 【点睛】本题考查椭圆的性质求方程,直线与椭圆的位置关系求范围问题,考查运算求解能力,化归转化能力,是中档题.本题第二问解题的关键在于根据PMMF ⊥,OQ PO ⊥得2PM PF PM ⋅=,2PO PQ PO ⋅=,进而将问题转化为22PM PO范围的求解.3.(2021·浙江高三其他模拟)如图,椭圆()2222:10x y C a b a b+=>>的左顶点为A ,离心率为12,长轴长为4,椭圆C 和抛物线()2:20F y px p =>有相同的焦点,直线:0l x y m -+=与椭圆交于M ,N 两点,与抛物线交于P ,Q 两点.(1)求抛物线F 的方程;(2)若点D ,E 满足AD AM AN =+,AE AP AQ =+,求AD AE ⋅的取值范围.【答案】(1)24y x =;(2)144,4877AD AE ⎛⋅∈+⎝⎭. 【分析】(1)根据题意可得2a =,1c =,再根据12p=即可求解. (2)将直线:0l x y m -+=与椭圆方程联立,设()11,M x y ,()22,N x y,利用韦达定理可得864,77m m AD ⎛⎫=- ⎪⎝⎭,再将直线:0l x y m -+=与抛物线方程联立设()33,P x y ,()44,Q x y ,利用韦达定理可得()82,4AE m =-,再由从而可得216963277AD AE m m ⋅=-+,配方即可求解.【详解】(1)因为椭圆C 的离心率为12,长轴长为4,2412a c a =⎧⎪⎨=⎪⎩,,,所以2a =,1c =,因为椭圆C 和抛物线F 有相同的焦点,所以12p=,即2p =,所以抛物线F 的方程为24y x =. (2)由(1)知椭圆22:143x y C +=,由221430x yx y m ⎧+=⎪⎨⎪-+=⎩,,得22784120x mx m ++-=, ()22164474120m m ∆=-⨯⨯->,得27m <,m <<设()11,M x y ,()22,N x y ,则1287mx x +=-,所以()1212627m y y x x m +=++=. 易知()2,0A -,所以()1212864,4,77m m AD AM AN x x y y ⎛⎫=+=+++=-⎪⎝⎭. 由240y x x y m ⎧=⎨-+=⎩,,得()22240x m x m +-+=.()2222440m m ∆=-->,得1m <. 设()33,P x y ,()44,Q x y ,则3442x x m +=-,所以()343424y y x x m +=++=,所以()()34344,82,4AE AP AQ x x y y m =+=+++=-.所以()864,82,477m m AD AE m ⎛⎫⋅=-⋅- ⎪⎝⎭()28616964824327777m m m m m ⎛⎫=-⋅-+⨯=-+ ⎪⎝⎭,1m <<, 易知函数216963277y m m =-+在()m ∈上单调递减,所以144,487AD AE ⎛⋅∈ ⎝⎭. 【点睛】求解圆锥曲线中最值或范围问题的一般方法:一是建立关系,二是求最值或范围,即先由题设条件建立关于所求目标的函数关系式,再对目标函数求最值,如本题中需先将直线方程分别与椭圆、抛物线方程联立,利用根与系数的关系将AD ,AE 用m 表示出来,再结合m 的范围及函数的单调性求AD AE ⋅的取值范围.4.(2021·海南海口市·高三模拟)已知抛物线的顶点是坐标原点O ,焦点F 在x 轴正半轴上,过F 的直线l 与抛物线交于A 、B 两点,且满足3OA OB ⋅=-.(1)求抛物线的方程;(2)在x 轴负半轴上一点(),0M m ,使得AMB ∠是锐角,求m 的取值范围.【答案】(1)24y x =;(2)(),1-∞-.【分析】(1)设抛物线方程()220y px p =>,直线l 的方程2px ty =+,联立方程组结合韦达定理可得12y y 、12x x ,再由平面向量数量积的坐标表示即可得p ,即可得解;(2)由题意结合平面向量数量积的概念可转化条件为0MA MB ⋅>,进而可得22234m m t m-->恒成立,解不等式22304m m m --<即可得解.【详解】(1)设抛物线方程()220y px p =>,直线l 的方程2p x ty =+, 联立消去x 得222p y p ty ⎛⎫=+⎪⎝⎭,即2220y pty p --=,>0∆, 设()11,A x y ,()22,B x y ,则122y y pt +=,212y y p =-,所以()22121212122224p p pt p x x ty ty t y y y y ⎛⎫⎛⎫=++=+++ ⎪⎪⎝⎭⎝⎭()22222244pt p p t p pt =⋅-+⋅+=,所以22212123344p OA OB x x y y p p ⋅=+=-=-=-,解得2p =或2p =-(舍去), 故所求抛物线方程为24y x =;(2)因为AMB ∠是锐角,所以0MA MB ⋅>恒成立,即()()12120x m x m y y --+>, 所以()21212120x x m x x m y y -+++>,由(1)得121=x x ,124y y =-,124y y t +=,()2121242x x t y y p t +=++=+,所以()2214240m t m -++->,而0m <,所以22234m m t m-->对于t R ∀∈恒成立,所以22304m m m --<,又0m <,所以2230m m m ⎧-->⎨<⎩,解得1m <-,所以m 的取值范围为(),1-∞-.【点睛】本题考查了平面向量数量积的应用及直线与抛物线的综合应用,考查了转化化归思想与运算求解能力,属于中档题.题型5坐标类的最值(范围)问题1.(2021·上海静安区·高三二模)已知椭圆2212x y +=的左焦点为F ,O 为坐标原点.(1)求过点F 、O ,并且与抛物线28y x =的准线相切的圆的方程;(2)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 的横坐标的取值范围.【答案】(1)(221924x y ⎛⎫++= ⎪⎝⎭或(221924x y ⎛⎫++= ⎪⎝⎭;(2)1,0.2⎛⎫- ⎪⎝⎭【分析】(1)求得点()1,0F -,可知圆心M 在直线12x =-上,设点1,2Mt ⎛⎫- ⎪⎝⎭,根据已知条件得出关于实数t 的等式,求出t 的值,即可得出所求圆的方程;(2)设直线AB 的方程为()()10y k x k =+≠,设点()11,A x y 、()22,B x y ,将直线AB 的方程与椭圆的方程联立,列出韦达定理,求出线段AB 的垂直平分线方程,可求得点G 的横坐标,利用不等式的基本性质可求得点G 的横坐标的取值范围.【详解】(1)抛物线28y x =的准线为2x =-,椭圆2212x y +=的左焦点为()1,0F -,圆过点F 、O ,∴圆心M 在直线12x =-上.设1,2Mt ⎛⎫- ⎪⎝⎭,则圆的半径为()13222r ⎛⎫=---= ⎪⎝⎭. 由OM r =32=,解得t =于是,所求圆的方程为(221924x y ⎛⎫++= ⎪⎝⎭或(221924x y ⎛⎫++=⎪⎝⎭; (2)设直线AB 的方程为()()10y k x k =+≠,联立()22112y k x x y ⎧=+⎪⎨+=⎪⎩,整理可得()2222124220k x k x k +++-=, 因为直线AB 过椭圆的左焦点F ,所以方程()2222124220kxk x k +++-=有两个不相等的实根.设点()11,A x y 、()22,B x y ,设AB 的中点为()00,N x y ,则2122412k x x k+=-+,202221k x k =-+,()002112k y k x k =+=+.直线AB 的垂直平分线NG 的方程为()001y y x x k-=--, 令0y =,则222002222211212121242G k k k x x ky k k k k =+=-+=-=-+++++. 因为0k ≠,所以10.2G x -<<故点G 的横坐标的取值范围1,02⎛⎫- ⎪⎝⎭. 【点睛】圆锥曲线中的取值范围问题的求解方法(1)函数法:用其他变量作为参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的取值范围. (3)判别式法:建立关于某变量的一元二次方程,利用根的判别式求参数的取值范围. (4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.2.(2021·新疆高三其他模拟(理))已知抛物线()2204y px p =<<的焦点为F ,点P 在抛物线上,点P的纵坐标为6,且10PF =.(1)求抛物线的标准方程;(2)若A ,B 为抛物线上的两个动点(异于P 点)且AP AB ⊥,求点B 纵坐标的取值范围.【答案】(1)24y x =;(2)2y <-或14y ≥.【分析】(1)根据抛物线的焦半径公式求解即可;(2)先根据抛物线的方程及点P 的纵坐标求得()9,6P ,再根据AP AB ⊥得到()2121261660y y y y ++++=,利用判别式0∆≥,得到22y ≤-或214y ≥,最后验证当22y =-时,12y =-,与题意不符,最后得到点B 的纵坐标y 的取值范围. 【详解】解:(1)设(),6p P x ,则36182P x p p==, 由102p pPF x =+=,得18102p p +=,解得2p =或18,∵04p <<,所以2p =.∴24y x =.(2)由(1)得()9,6P ,设()11,A x y ,()22,B x y ,由题意可知:直线AP ,AB 的斜率存在, 设为AP k ,AB k ,且1211212221211216699444AP AB y y y y y y k k y y y x x x ----⋅=⨯=⨯----()()1214416y y y =⨯=-++, 整理得()2121261660y y y y ++++=,由题意知0∆≥,即()()222641660y y ∆=+-+≥∴22212280y y --≥即22y ≤-或214y ≥,又当22y =-时,211440y y ++=,∴12y =-,与题意不符,舍去,综上所述,点B 的纵坐标2y 的取值范围为22y <-或214y ≥.【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.3.(2021·上海金山区·高三一模)已知点P 在抛物线2:4C y x =上,过点P 作圆222:(3)M x y r-+=(0r <≤)的两条切线,与抛物线C 分别交于A 、B 两点,切线PA 、PB 与圆M 分别相切于点E 、F .(1)若点P 到圆心M 的距离与它到抛物线C 的准线的距离相等,求点P 的坐标;(2)若点P 的坐标为(1,2),且r =PE PF ⋅的值;(3)若点P 的坐标为(1,2),设线段AB 中点的纵坐标t ,求t 的取值范围. 【答案】(1)(2,或(2,-;(2)3;(3)[10,6)--.【分析】(1)设出P 点的坐标,根据已知条件列方程组,解方程组求得P 点坐标. (2)先求得||PE 和||PF ,然后结合向量数量积运算求得PE PF ⋅.(2)设出过P 的圆的切线方程,利用圆心到直线的距离等于半径列方程,化简写出根与系数关系,联立切线和抛物线的方程,求得,A B 的纵坐标,由此求得线段AB 中点的纵坐标t 的表达式,进而求得t 的取值范围.【详解】(1)设点P 的坐标为(,)x y ,则241y x x ⎧==+,解得2x y =⎧⎪⎨=⎪⎩2x y =⎧⎪⎨=-⎪⎩,即点P的坐标为(2,或(2,-;(2)当点P 的坐标为(1,2),且r =||PM ==,在直角三角形PME中,||PE ==,且30MPE ∠=︒,同理,||PF =30MPF ∠=︒,从而||||co cos 603s PE PF PE PF EPF ∠=⋅⋅︒==;(3)由题意知切线PA 、PB 的斜率均存在且不为零,设切线方程为2(1)y k x -=-,r =,得222(4)840r k k r -++-=,。
课时跟踪检测(十七) 圆锥曲线中的最值、范围、证明问题(大题练)A 卷——大题保分练1.(2018·长春模拟)已知椭圆C 的两个焦点为F 1(-1,0),F 2(1,0),且经过E ⎝⎛⎭⎫3,32.(1)求椭圆C 的方程;(2)过点F 1的直线l 与椭圆C 交于A ,B 两点(点A 位于x 轴上方),若AF 1―→=λF 1B ―→,且2≤λ<3,求直线l 的斜率k 的取值范围.解:(1)由⎩⎪⎨⎪⎧2a =|EF 1|+|EF 2|,a 2=b 2+c 2,c =1,解得⎩⎪⎨⎪⎧a =2,c =1,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)由题意得直线l 的方程为y =k (x +1)(k >0),联立方程⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,整理得⎝⎛⎭⎫3k 2+4y 2-6k y -9=0,Δ=144k 2+144>0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=6k3+4k 2,y 1y 2=-9k 23+4k 2,又AF 1―→=λF 1B ―→,所以y 1=-λy 2,所以y 1y 2=-λ(1-λ)2(y 1+y 2)2, 则(1-λ)2λ=43+4k 2,λ+1λ-2=43+4k 2, 因为2≤λ<3,所以12≤λ+1λ-2<43,即12≤43+4k 2<43,且k >0,解得0<k ≤52. 故直线l 的斜率k 的取值范围是⎝⎛⎦⎤0,52. 2.(2018·陕西模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1和F 2,由M (-a ,b ),N (a ,b ),F 2和F 1这4个点构成了一个高为3,面积为33的等腰梯形.(1)求椭圆的方程;(2)过点F 1的直线和椭圆交于A ,B 两点,求△F 2AB 面积的最大值. 解:(1)由已知条件,得b =3,且2a +2c2×3=33, ∴a +c =3. 又a 2-c 2=3,∴a =2,c =1,∴椭圆的方程为x 24+y 23=1.(2)显然直线的斜率不能为0,设直线的方程为x =my -1,A (x 1,y 1),B (x 2,y 2). 联立方程⎩⎪⎨⎪⎧x 24+y 23=1,x =my -1,消去x 得,(3m 2+4)y 2-6my -9=0.∵直线过椭圆内的点,∴无论m 为何值,直线和椭圆总相交.∴y 1+y 2=6m3m 2+4,y 1y2=-93m 2+4.∴S △F 2AB =12|F 1F 2||y 1-y 2|=|y 1-y 2|=(y 1+y 2)2-4y 1y 2=12m 2+1(3m 2+4)2=4m 2+1⎝⎛⎭⎫m 2+1+132=41m 2+1+23+19(m 2+1),令t =m 2+1≥1,设f (t )=t +19t ,易知t ∈⎝⎛⎭⎫0,13时,函数f (t )单调递减,t ∈⎝⎛⎭⎫13,+∞时,函数f (t )单调递增,∴当t =m 2+1=1,即m =0时,f (t )取得最小值,f (t )min =109,此时S △F 2AB 取得最大值3.3.(2018·郑州模拟)已知圆C :x 2+y 2+2x -2y +1=0和抛物线E :y 2=2px (p >0),圆心C 到抛物线焦点F 的距离为17.(1)求抛物线E 的方程;(2)不过原点O 的动直线l 交抛物线于A ,B 两点,且满足OA ⊥OB ,设点M 为圆C 上一动点,求当动点M 到直线l 的距离最大时的直线l 的方程.解:(1)x 2+y 2+2x -2y +1=0可化为(x +1)2+(y -1)2=1,则圆心C 的坐标为(-1,1). ∵F ⎝⎛⎭⎫p 2,0,∴|CF |= ⎝⎛⎭⎫p 2+12+(0-1)2=17, 解得p =6.∴抛物线E 的方程为y 2=12x .(2)显然直线l 的斜率非零,设直线l 的方程为x =my +t (t ≠0),A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y 2=12x ,x =my +t ,得y 2-12my -12t =0, Δ=(-12m )2+48t =48(3m 2+t )>0, ∴y 1+y 2=12m ,y 1y 2=-12t ,由OA ⊥OB ,得OA ―→·OB ―→=0,∴x 1x 2+y 1y 2=0, 即(m 2+1)y 1y 2+mt (y 1+y 2)+t 2=0,整理可得t 2-12t =0,∵t ≠0,∴t =12,满足Δ>0,符合题意. ∴直线l 的方程为x =my +12,故直线l 过定点P (12,0).∴当CP ⊥l ,即线段MP 经过圆心C (-1,1)时,动点M 到动直线l 的距离取得最大值, 此时k CP =1-0-1-12=-113,得m =113,此时直线l 的方程为x =113y +12,即13x -y -156=0. 4.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12.(2)设F 为C 的右焦点,P 为C 上一点,且, 证明: .证明:(1)设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1, y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,B 卷——深化提能练1.(2018·胶州模拟)已知椭圆Ω:x 2a 2+y 2b 2=1(a >b >0且a ,b 2均为整数)过点⎝⎛⎭⎫2,62,且右顶点到直线l :x =4的距离为2.(1)求椭圆Ω的方程;(2)过椭圆的右焦点F 作两条互相垂直的直线l 1,l 2,l 1与椭圆Ω交于点A ,B ,l 2与椭圆Ω交于点C ,D .求四边形ACBD 面积的最小值.解:(1)由题意,得2a 2+32b 2=1,且|4-a |=2,若a =2,则b 2=3;若a =6,则b 2=2717(舍去),所以椭圆Ω的方程为x 24+y 23=1.(2)由(1)知,点F 的坐标为(1,0).当l 1,l 2中有一条直线的斜率不存在时,可得|AB |=4,|CD |=3或者|AB |=3,|CD |=4,此时四边形ACBD 的面积S =12×4×3=6.当l 1,l 2的斜率均存在时,设直线l 1的斜率为k ,则k ≠0,且直线l 2的斜率为-1k .直线l 1:y =k (x -1),l 2:y =-1k (x -1).联立⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0.由直线l 1过椭圆内的点,知Δ>0恒成立,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=1+k 2·⎝⎛⎭⎫8k 23+4k 22-4×4k 2-123+4k 2=12(k 2+1)3+4k 2.以-1k 代替k ,得|CD |=12(k 2+1)4+3k 2.所以四边形ACBD 的面积S =12|AB |·|CD |=72(k 2+1)2(3+4k 2)(4+3k 2)≥72(k 2+1)2⎣⎡⎦⎤(3+4k 2)+(4+3k 2)22=72(k 2+1)2⎣⎡⎦⎤7(k 2+1)22=28849, 当且仅当k 2=1,即k =±1时等号成立.由于28849<6,所以四边形ACBD 面积的最小值为28849.2.设椭圆C :x 2a 2+y 2b 2=1(a >b >0),定义椭圆C 的“相关圆”方程为x 2+y 2=a 2b 2a 2+b 2.若抛物线y 2=4x 的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和其两个焦点构成直角三角形.(1)求椭圆C 的方程和“相关圆”E 的方程;(2)过“相关圆”E 上任意一点P 作“相关圆”E 的切线l 与椭圆C 交于A ,B 两点,O 为坐标原点.证明:∠AOB 为定值.解:(1)因为抛物线y 2=4x 的焦点(1,0)与椭圆C 的一个焦点重合,所以c =1. 又椭圆C 短轴的一个端点和其两个焦点构成直角三角形,所以b =c =1, 故椭圆C 的方程为x 22+y 2=1,“相关圆”E 的方程为x 2+y 2=23.(2)证明:当直线l 的斜率不存在时,不妨设直线AB 的方程为x =63,A ⎝⎛⎭⎫63,63,B⎝⎛⎭⎫63,-63,则∠AOB =π2.当直线l 的斜率存在时,设其方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得x 2+2(kx +m )2=2,即(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=8(2k 2-m 2+1)>0,即2k 2-m 2+1>0,⎩⎪⎨⎪⎧x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k2.因为直线l 与“相关圆”E 相切, 所以|m |1+k2=m 21+k 2=23, 即3m 2=2+2k 2, 所以x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)(2m 2-2)1+2k 2-4k 2m 21+2k 2+m 2=3m 2-2k 2-21+2k 2=0,所以OA ―→⊥OB ―→,所以∠AOB =π2.综上,∠AOB =π2,为定值.3.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b ≥1)的离心率为22,其右焦点到直线2ax +by -2=0的距离为23.(1)求椭圆C 1的方程;(2)过点P ⎝⎛⎭⎫0,-13的直线l 交椭圆C 1于A ,B 两点.证明:以AB 为直径的圆恒过定点. 解:(1)由题意,e =c a =22,e 2=a 2-b 2a 2=12,a 2=2b 2.所以a =2b ,c =b . 又|2ac -2|4a 2+b2=23,a >b ≥1,所以b =1,a 2=2, 故椭圆C 1的方程为x 22+y 2=1.(2)证明:当AB ⊥x 轴时,以AB 为直径的圆的方程为x 2+y 2=1. 当AB ⊥y 轴时,以AB 为直径的圆的方程为x 2+⎝⎛⎭⎫y +132=169, 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+⎝⎛⎭⎫y +132=169,可得⎩⎪⎨⎪⎧x =0,y =1,由此可知,若以AB 为直径的圆恒过定点,则该定点必为Q (0,1). 下证Q (0,1)符合题意.当AB 不垂直于坐标轴时,设直线AB 方程为y =kx -13,A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧x 22+y 2=1,y =kx -13,得(1+2k 2)x 2-43kx -169=0,由根与系数的关系得,x 1+x 2=4k3(1+2k 2),x 1x 2=-169(1+2k 2),∴QA ―→·QB ―→=(x 1,y 1-1)·(x 2,y 2-1) =x 1x 2+(y 1-1)(y 2-1) =x 1x 2+⎝⎛⎭⎫kx 1-43⎝⎛⎭⎫kx 2-43 =(1+k 2)x 1x 2-43k (x 1+x 2)+169=(1+k 2)-169(1+2k 2)-43k ·4k 3(1+2k 2)+169=-16-16k 2-16k 2+16(1+2k 2)9(1+2k 2)=0,故QA ―→⊥QB ―→,即Q (0,1)在以AB 为直径的圆上. 综上,以AB 为直径的圆恒过定点(0,1).4.(2018·沈阳模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx 与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程; (2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值; (3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线PA 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解:(1)由题意得c =3,根据2a +2c =16,得a =5.结合a 2=b 2+c 2,解得a 2=25,b 2=16.所以椭圆的方程为x 225+y 216=1.(2)由⎩⎨⎧x 2a 2+y 2b 2=1,y =24x ,得⎝⎛⎭⎫b 2+18a 2x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2). 所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+18a2,由AB ,F 1F 2互相平分且共圆,易知,AF 2⊥BF 2, 因为F 2A ―→=(x 1-3,y 1),F 2B ―→=(x 2-3,y 2), 所以F 2A ―→·F 2B ―→=(x 1-3)(x 2-3)+y 1y 2 =⎝⎛⎭⎫1+18x 1x 2+9=0. 即x 1x 2=-8,所以有-a 2b 2b 2+18a2=-8,结合b 2+9=a 2,解得a 2=12, 所以离心率e =32. (3)由(2)的结论知,椭圆方程为x 212+y 23=1,由题可知A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1, 所以k 1k 2=y 20-y 21x 20-x 21,又y 20-y 21x 20-x 21=3⎝⎛⎭⎫1-x 2012-3⎝⎛⎭⎫1-x 2112x 20-x 21=-14,即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14.即直线PB 的斜率k 2∈⎝⎛⎭⎫18,14.。