BD压型钢板组合楼板计算程序
- 格式:xls
- 大小:266.00 KB
- 文档页数:1
压型钢板楼板计算(根据CECS 273:2010)钢筋直径d=mm 钢筋间距@=mm 每延米钢筋面积As=mm2hs=mm Cs=mm bl,min=mm bt=mm 展开宽度Ls=mm 单位质量m=kg/m2(查询厂家资料)贯性矩Is=cm4/m 正抵抗矩Ws1=cm3/m 负抵抗矩Ws2=cm3/m 强边方向(顺肋)长度Lx=mm 弱边方向长度Ly=mm 计算宽度b=mm (本程序按波距Cs取)计算宽度b内组合楼板换算腹板宽度:bmin=b/cs*bl,min=mm 计算宽度(钢板+混凝土)横截面面积A=mm2计算宽度b钢筋砼自重Qgck1=KN/M 计算宽度b钢板自重Qgsk=KN/M 计算长度L0=mm Mck1=1/8*(Qgck1)*L0^2=KN.M Msk=1/8*(Qgsk)*L0^2=KN.M 3、施工阶段验算:施工阶段结构重要性系数γ0=Wae=(Ws1,Ws2)min=mm3施工活载Qq=Kpa 计算宽度b活载Qqk=KN/M承载力极限状态荷载组合设计值:11810007523014.914034.534.52308830500.040.750.979350.65259000.0330502.083641387000880.461Mqk=1/8*(Qqk)*L0^2=KN.M M=1.2Msk+1.4Mck1+1.4Mqk=KN.M 压型钢板受弯承载力验算:σs=γ0*M/Wae=Mpa >fa=Mpa 压型钢板受弯承载力Mu=fa*Wae/γ0=:KN.M 挠度:Qk=Qgck1+Qgsk+Qqk=KN/M 有效截面Iae=Is*b/1000=mm4Wmax=5*Qk*L0^4/384/Ea/Iae=mm >[W]=Mpa <[W]=Mpa 4、使用阶段验算:活载Qq=Kpa 计算宽度b活载Qqk=KN/M 装饰面层Qgk2=Kpa 计算宽度b装饰面层Qgc2=KN/M 4.1 受弯承载力计算:Mck2=1/8*(Qgc2)*L0^2=KN.M Mqk=1/8*(Qqk)*L0^2=KN.M 活载控制时:M1=1.2(Msk+Mck1+Mck2)+1.4Mqk=KN.M 恒载控制时:M2=1.35(Msk+Mck1+Mck2)+0.98Mqk=KN.M 承载力极限状态荷载组合设计值:M=(M1,M2)Max=KN.M 计算宽度b钢筋面积Ass=mm2计算宽度b压型钢板面积Aa=Ls/2*t=mm2(当不考虑钢板时,此处自动判别为0)β1=εcu=(Rc<=C50时)相对界限受压区高度ξb=β1/(1+fa/Ea/εcu)组合楼板有效高度h0=mm (暂时近似按h0=hc+hs/2)混凝土受压区高度x=(Aafa+Assfy)/fc/b=mm <hc=mm <ξbh0mm 实取x=mm Mc=fc*b*x*(h0-x/2)=KN.M >M=KN.M 抗弯能力满足要求4.2 受剪承载力计算:Vck1=(Qgck1)*L0/2=KN Vck2=(Qgck2)*L0/2=KN Vsk=(Qgsk)*L0/2=KN Vqk=(Qqk)*L0/2=KN 活载控制时:V1=1.2(Vsk+Vck1+Vck2)+1.4Vqk=KN 恒载控制时:V2=1.35(Vsk+Vck1+Vck2)+0.98Vqk=KN 承载力极限状态荷载组合设计值:V=(V1,V2)Max=KN0.53 1.021.11.851.8132200019.416.9209.9205.00.80.0033 1.1420.00.970.350.400.460.531.52.182.142.1832 3.730.6172.20.6880.00.615117.5496002.02.860.050.702.802.860.530.99328 2.2板净跨Ln=mm 剪跨a=mm (均布时按Ln/4)剪切粘结系数m=Mpa (查询资料)剪切粘结系数k=(查询资料)m*Aa*h0/1.25/a+k*ft*b*h0=KN >V=KN 0.7*ft*bmin*h0=KN >V=KN 抗剪能力满足要求240019.99 2.9 6.993.21600213.25-0.00169.19 2.9。
压型钢板组合楼板计算1.确定楼板布置和尺寸:根据建筑设计要求,确定楼板的布置和尺寸。
楼板的布置应满足结构强度、刚度和振动要求,尺寸应满足使用功能和建筑节约的要求。
2.根据楼板负荷和跨径计算楼板厚度:根据楼板所承受的荷载和跨度,计算楼板的合理厚度。
压型钢板组合楼板通常采用现浇混凝土楼板,其厚度应满足混凝土挤压所需的最小厚度,并考虑楼板的弯曲和剪切等荷载。
3.计算楼板的自重:根据楼板的几何尺寸和单位体积重量,计算楼板的自重。
楼板在计算自重时应考虑到横向压型钢板的重量和混凝土的重量。
4.计算楼板的荷载:根据楼板的使用要求和建筑规范,计算楼板的荷载。
楼板的荷载包括永久荷载和活荷载,如人员、设备和家具等。
计算荷载时应考虑楼板的几何特性和荷载分布。
5.计算楼板的弯曲和剪切:根据楼板在荷载作用下的弯曲和剪切,计算楼板的截面形态和受力状态。
压型钢板组合楼板的弯曲和剪切计算可以采用经典板梁理论和托伦拜恩定理等计算方法。
6.设计楼板的钢筋:根据楼板的受力状态和构造要求,设计楼板的钢筋。
对于压型钢板组合楼板,楼板的钢筋主要包括横向钢筋和纵向钢筋。
横向钢筋应布设在压型钢板的腹板和翼缘上,纵向钢筋应布设在楼板的靠近支承端。
7.检查楼板的振动和变形:根据楼板的荷载和构造要求,检查楼板的振动和变形。
楼板的振动应满足人员舒适性的要求,变形应满足建筑的使用功能和结构的安全性。
综上所述,压型钢板组合楼板的计算是一个复杂而繁琐的过程,需要考虑多个因素和条件。
准确的计算可以确保楼板结构满足使用要求和安全要求。
在实际工程中,应根据具体情况和建筑规范进行计算和设计,并进行必要的验算和调整,以确保楼板结构的安全可靠性。
压型钢板混凝土组合楼承板计算实例计算压型钢板混凝土组合楼承板所需进行的工程计算包括弯曲强度、剪切强度和承载力的计算。
首先,我们来计算该组合楼承板的弯曲强度。
根据材料力学理论,楼承板在负荷作用下会产生弯曲变形,其弯曲强度与截面的几何尺寸和材料力学性质有关。
弯曲强度的计算可以采用梁的弯曲方程:M=σy×S其中,M是弯矩,σy是混凝土的抗弯截面应力,S是承力截面的静矩。
在计算时,需要确定混凝土和压型钢板的性能参数,并根据结构要求确定截面尺寸。
接下来,我们来计算压型钢板混凝土组合楼承板的剪切强度。
当楼承板受到剪力作用时,会产生剪切破坏。
剪切强度的计算可以采用梁的剪切方程:V=τ×A其中,V是剪力,τ是承力截面的剪切应力,A是承力截面的有效面积。
在计算时,需要确定混凝土和压型钢板的性能参数,并根据结构要求确定截面尺寸。
最后,我们来计算压型钢板混凝土组合楼承板的承载力。
承载力是指组合楼承板能够承受的最大荷载。
承载力的计算需要考虑弯曲变形和剪切破坏两种破坏形式。
根据材料力学理论和结构力学原理,可以采用截面法计算承载力。
计算时需要确定承力截面的截面面积、弯矩、剪力等参数,并参考相应的承载力计算方法。
需要注意的是,在实际工程中,还需要考虑荷载组合、温度、振动等因素对压型钢板混凝土组合楼承板的影响,并进行相应的工程设计和验证。
以上就是压型钢板混凝土组合楼承板计算的一个实例。
在实际工程中,为了确保结构的安全和可靠,需结合实际情况进行详细的计算和分析,并在设计中满足相关的规范和标准要求。
压型钢板组合楼板计算与构造设计方法
一、计算方法:
1.构造计算:
楼板面积计算:根据楼层平面图,计算楼板的面积。
板材数量计算:根据楼板面积和单个板材的面积,计算需要的板材数量。
板材间距计算:根据楼板的跨度和板材的受力性能,计算板材的间距。
横向板材数量计算:根据楼板的跨度和板材的受力性能,计算横向板
材的数量。
2.受力计算:
弯曲受力计算:根据楼板的跨度和受力情况,计算板材的弯曲受力和
弯矩。
剪力计算:根据楼板的跨度和受力情况,计算板材的剪力和剪力强度。
挠度计算:根据楼板的跨度和受力情况,计算板材的挠度和挠度限值。
二、构造方法:
1.板材的安装:首先将压型钢板依次布置在楼板的预留槽中,确保板
材的位置准确。
然后使用机械设备将板材压入槽中,并通过螺栓或焊接等
方式将板材固定。
2.混凝土灌浆:在板材安装完成后,将混凝土预先浇筑到板材顶部,然后使用振动器进行振动,保证混凝土的密实性和平整度。
待混凝土凝固后,可进行下一步操作。
3.连接件的安装:在混凝土灌浆完全凝固后,安装楼板的连接件,如横向连接件和纵向连接件。
连接件的安装应符合设计要求,并采用螺栓或焊接等方式进行固定。
总结:
压型钢板组合楼板的计算与构造是一项复杂而重要的工程,需要合理的计算方法和精确的施工操作。
在计算过程中,应考虑楼板的受力情况和构造要求;在构造过程中,应按照设计要求进行板材安装、混凝土灌浆和连接件的安装。
通过科学的计算和合理的构造方法,可以确保压型钢板组合楼板的结构安全和施工质量,为建筑工程提供可靠的支撑。
压型钢板混凝土组合楼承板计算实例具体工程参数如下:-建筑高度:20米-楼板跨度:8米-楼板长度:20米-楼板厚度:200毫米-压型钢板规格:钢板型号为C型钢100*50*20*2.5-混凝土等级:C30-楼板自重:4.5kN/m²-活载标准值:2.0kN/m²根据实际情况,可以进行以下计算步骤:1.计算自重荷载楼板自重荷载可以通过面积乘以单位面积荷载来计算,即:自重荷载=楼板面积*楼板厚度*混凝土密度=20*8*0.2*25=800kN2.计算活载活载由活动人员、设备和家具等造成,根据标准值计算活载荷载,即:活载荷载=楼板面积*活载标准值=20*8*2=320kN3.计算总荷载总荷载等于自重荷载加上活载荷载,即:总荷载=自重荷载+活载荷载=800+320=1120kN4.计算正常使用状态下的楼板承载力设计值根据规范计算压型钢板的弯曲承载力和承载力设计值,计算式如下:弯曲承载力=(0.15*a*b^2+6*a*t*b)/λ弯曲承载力设计值=弯曲承载力*η其中:a = 100mm,b = 50mm,t = 2.5mmλ为系数,取1.0,表示通过保护层考虑了建筑物的防火要求η为系数,取1.0,表示未考虑疲劳损伤和喷射阻力效应代入计算可得:弯曲承载力=(0.15*100*50^2+6*100*2.5*50)/1.05.判断楼板厚度是否满足承载力要求根据承载力设计值和总荷载计算楼板的宽度,即:楼板宽度=总荷载/承载力设计值= 0.028m 或 28mm由于楼板的宽度小于压型钢板的宽度,因此需要根据实际计算得出更大的楼板宽度。
6.重新计算楼板的宽度假设偏心距为e,则楼板宽度为:楼板宽度=总荷载/承载力设计值+2*e根据规范,偏心距e应小于压型钢板的高度,取e=25mm代入计算可得:=0.028+0.05= 0.078m 或 78mm由于楼板的宽度仍然小于压型钢板的宽度,因此需要再次重新计算楼板宽度,直至宽度满足要求。
压型钢板混凝土组合楼承板计算实例压型钢板混凝土组合楼承板是一种常用于建筑结构中的板式材料,由压型钢板和混凝土构成。
压型钢板作为面板提供了强度和刚度,而混凝土则增加了板的承载能力和稳定性。
下面将通过一个计算实例来说明如何进行压型钢板混凝土组合楼承板的设计和计算。
实例:我们需要设计一种压型钢板混凝土组合楼承板,用于一个三层建筑的楼板。
楼板的跨度为6m,楼板的设计荷载如下:-楼板自重:2.5kN/m²-活荷载:2.0kN/m²-分布荷载:1.0kN/m²首先,我们需要计算楼板的荷载。
楼板的设计荷载为活荷载和分布荷载的总和,即设计荷载=活荷载+分布荷载=2.0kN/m²+1.0kN/m²=3.0kN/m²。
接下来,我们需要根据楼板的跨度和荷载来确定楼板的尺寸和截面形状。
根据经验公式,我们可以选择一种合适的楼板截面形状,例如矩形截面或T形截面。
在本例中,我们选择使用T形截面的压型钢板混凝土组合楼承板。
然后,我们需要计算楼板的受力情况。
楼板在跨度方向上主要受到弯矩和剪力的作用。
根据结构力学理论,我们可以计算得到楼板的弯矩和剪力分布。
在本例中,我们可以使用楼板弯矩和剪力图来计算。
接着,我们根据楼板受力情况来确定楼板的截面尺寸。
根据压型钢板混凝土组合楼承板的设计原则,楼板的钢板面板和混凝土厚度需要满足弯矩和剪力的要求。
我们可以使用弯矩和剪力公式来计算得到合适的截面尺寸。
最后,我们还需要对楼板进行校核,确保楼板满足设计要求。
校核的内容包括楼板强度、刚度、振动等方面的要求。
根据校核结果,我们可以对楼板进行必要的调整和优化。
总结:压型钢板混凝土组合楼承板的设计和计算主要涉及荷载计算、截面形状选择、弯矩和剪力计算、截面尺寸确定和楼板校核等方面。
通过合理的设计和计算,可以确保楼板的承载能力和稳定性,满足建筑结构的要求。
压型钢板混凝土组合楼承板计算实例计算书:压型钢板混凝土楼承组合板工程资料:本工程采用压型钢板组合楼板,跨度为4米,压型钢板型号为YX76-305-915,钢号为Q345,板厚度为1.5毫米,每米宽度的截面面积为2049平方毫米/米(重量为0.15千牛/平方米),截面惯性矩为200.45乘以10的4次方平方毫米/米。
顺肋两跨连续板,压型钢板上浇筑89毫米厚的C35混凝土。
1.1荷载计算:取1米作为计算单元,施工荷载标准值为1千牛/米,设计值为1.4千牛/米;混凝土和压型钢板自重标准值为3.325千牛/米,设计值为4.0千牛/米。
施工阶段总荷载为4.325千牛/米。
1.2内力计算:跨中最大正弯矩为6.05千牛·米,支座处最大负弯矩为10.8千牛·米,最大剪力为13.5千牛。
1.3压型钢板承载力计算:压型钢板受压翼缘的计算宽度为75毫米,经计算得到承载力设计值为10.988千牛·米/米,满足施工阶段的要求。
1.4压型钢板跨中挠度计算:计算得到挠度为13.97毫米,小于22.22毫米,满足施工阶段的使用要求。
正常使用极限计算假设波宽为305mm,混凝土弹性模量Ec为3.15×104N/mm2,钢板弹性模量E为2.06×105N/mm2,计算α值为6.54.1.荷载标准组合效应下挠度计算根据图2.5换算截面,混凝土截面宽度为305mm,根据公式b=305/α,肋宽为46.64mm,形心轴距离钢板底部的距离为23.32mm。
根据公式计算板的挠度,得到y=90.8mm。
在一个波宽范围内,组合板换算截面的惯性矩为1982.1×104mm4,每米板宽的惯性矩为6498.7×104mm4.根据公式计算荷载标准组合效应下楼层板的挠度为0.56mm,小于要求的11.11mm,因此满足要求。
2.荷载准永久组合效应下挠度计算荷载值为qk=gk+0.4×pk=3.615kN/m+0.4×2kN/m=4.415kN/m。
压型钢板混凝土组合楼板厚度计算压型钢板混凝土组合楼板是一种常用的楼板结构,由压型钢板和混凝土组成。
它具有较高的强度和刚度,能够承受较大的荷载,并具有良好的抗震性能。
在设计压型钢板混凝土组合楼板时,需要合理计算楼板的厚度,以满足设计要求。
需要确定楼板所能承受的荷载。
根据设计规范和要求,确定楼板的设计活荷载和附加活荷载。
设计活荷载包括楼板自重、人员活动荷载、家具设备荷载等。
附加活荷载包括风荷载、雪荷载等。
根据具体情况,计算出楼板的设计活荷载和附加活荷载。
需要确定楼板的跨度。
楼板的跨度是指楼板支座之间的水平距离。
根据建筑结构的布置和功能要求,确定楼板的跨度。
楼板的跨度越大,楼板的厚度需要越大。
然后,需要确定楼板的荷载系数。
荷载系数是根据楼板的荷载特点和设计要求确定的。
荷载系数包括活荷载系数和附加活荷载系数。
根据设计规范和要求,计算出楼板的活荷载系数和附加活荷载系数。
接下来,需要确定楼板的受力性能。
楼板在使用过程中,需要承受来自上部结构和自身荷载的力。
根据设计要求,确定楼板的受力性能,包括楼板的弯曲承载力、剪切承载力和挠度限值等。
根据受力性能要求,计算出楼板的截面特性参数。
根据楼板的跨度、荷载系数和受力性能要求,计算出楼板的厚度。
楼板的厚度需要满足弯曲承载力、剪切承载力和挠度限值的要求。
根据设计规范和公式,计算出楼板的厚度。
在计算楼板厚度时,需要注意以下几点。
首先,楼板的厚度应满足结构安全和使用性能要求。
其次,楼板的厚度应尽量减小,以降低材料消耗和减轻自重。
最后,楼板的厚度应考虑施工工艺和可行性,以便实际施工操作。
压型钢板混凝土组合楼板厚度的计算是一个复杂的过程,需要考虑多个因素和要求。
通过合理计算楼板的厚度,可以确保楼板结构的安全可靠,满足设计要求。
同时,也可以减少材料消耗和施工成本,提高工程经济效益。
在实际设计和施工中,应根据具体情况和要求,进行详细计算和分析,确保楼板的厚度满足设计要求。
压型钢板混凝土组合楼承板计算实例压型钢板混凝土组合楼承板是一种由压型钢板和混凝土组合构成的楼板结构。
它采用了压型钢板的优点,如高强度、轻质、经济等,同时又能够充分利用混凝土的抗压性能,具有较好的整体性能。
以下是一个压型钢板混凝土组合楼承板计算实例,以便更好地了解和理解该结构的材料相关计算。
1.材料选择:在计算压型钢板混凝土组合楼承板时,需要选择合适的压型钢板和混凝土材料。
压型钢板可以选择常用的U型钢、H型钢、Z型钢等,混凝土可以选择普通混凝土或高性能混凝土。
2.弯矩计算:首先需要计算楼板中心的最大弯矩,根据楼板的荷载情况(如活荷载、死荷载等)和楼板支座的位置,采用力学分析的方法计算得到楼板中心的最大弯矩。
3.材料参数:根据选择的压型钢板和混凝土材料,获取相应的力学参数,如钢材的弹性模量、屈服强度,混凝土的弹性模量、抗压强度等。
这些参数可以通过相关标准和材料测试得到。
4.压型钢板计算:根据楼板中心的最大弯矩和压型钢板的几何特性,计算出压型钢板的截面形状和尺寸,如板的高度、宽度、翼板的尺寸等。
同时,根据压型钢板的强度和稳定性要求,计算出压型钢板的承载力和稳定性安全系数。
5.混凝土计算:根据楼板中心的最大弯矩和混凝土的抗压强度,计算出混凝土的承载能力。
同时,根据混凝土的弹性模量和楼板的各种几何尺寸,计算出混凝土的挠度。
根据挠度的要求,可以调整混凝土的截面尺寸和混凝土强度等。
6.楼承板整体计算:将压型钢板和混凝土的计算结果进行整合,计算得到整个压型钢板混凝土组合楼承板的受力状态和承载能力。
根据承载能力的要求,可以调整楼板的厚度和钢板的数量等。
7.施工技术要求:根据楼承板的计算结果,制定相应的施工技术要求,如钢板的切割和焊接要求,混凝土的浇筑和养护要求等。
同时,还需要制定相应的验收标准和检测方法,确保楼承板的质量和安全。
以上是一个压型钢板混凝土组合楼承板计算实例。
通过对不同材料的力学参数和结构计算的综合应用,可以得到一个符合要求的楼承板结构,并保证其质量和安全。
压型钢板组合楼板1.定义组合楼板由压型钢板、混凝土板通过抗剪连接措施共同作用形成。
2.组合楼板的优点1)压型钢板可作为浇灌混凝土的模板,节省了大量木模板及支撑;2)压型钢板非常轻便,堆放、运输及安装都非常方便;3)使用阶段,压型钢板可代替受拉钢筋,减少钢筋的制作与安装工作。
4)刚度较大,省去许多受拉区混凝土,节省混凝土用量,减轻结构自重;5)有利于各种管线的布置、装修方便;6)与木模板相比,施工时减小了火灾发生的可能性;7)压型钢板也可以起到支撑钢梁侧向稳定的作用。
3.组合楼板的发展二十世纪30-50年代早在三十年代,人们就认识到压型钢板与混凝土楼板组合结构具有省时、节力、经济效益好的优点,到50年代,第一代压型钢板在市场上出现。
二十世纪60年代-70年代六十年代前后,欧美、日本等国多层和高层建筑的大量兴起,开始使用压型钢板作为楼板的永久性模板和施工平台,随后人们很自然的想到在压型钢板表面做些凹凸不平的齿槽,使它和混凝土粘结成一个整体共同受力,此时压型钢板可以代替或节省楼板的受力钢筋,其优越性很大。
二十世纪80年代-现在组合板的试验和理论有了新进展,特别是在高层建筑中,广泛地采用了压型钢板组合楼板。
日本、美国、欧洲一些国家相应的制定了相关规程。
我国对组合楼板的研究和应用是在20世纪80年代以后,与国外相比起步较晚,主要是由于当时我国钢材产量较低,薄卷材尤为紧缺,成型的压型钢板和连接件等配套技术未得到开发。
近年来由于新技术的引进,组合楼板技术在我国已较为成熟。
4 常用的压型钢板的截面形式给出了几种实际工程中采用的压型钢板,通过图片使学生对压型钢板有感性的认识,图中所示设置凹槽的压型钢板,设置凹槽后可明显提高钢板和混凝土板的组合作用。
2.1.1 常用压型钢板截面形式§2.2 组合楼板的材料及受力特性分析组合板:由压型钢板和混凝土板两部分组成;压型钢板按其在组合板中的作用可以分为三类:(一)以压型钢板作为组合板的主要承重构件,混凝土只是作为楼板的面层以形成平整的表面及起到分布荷载的作用;(二)压型钢板作为浇筑混凝土的永久性模板,并作为施工时的操作平台;(三)考虑组合作用的压型钢板组合楼板,这种结构构件在工程中最为广泛应用。
《钢-混组合楼面设计》计算书===============================计算软件: MRH钢结构设计系列软件计算时间:2013-04-29 09:59:42=============================== 一、荷载计算:混凝土板厚为:67mm(平均取92.154mm);压型钢板槽宽为:152mm;压型钢板肋宽为:168mm;压型钢板肋距为:315mm;压型钢板板高为:53mm;压型钢板板厚为:1.0mm。
(一)施工阶段恒载:G1=1.2×(混凝土平均板厚×25+压型钢板自重)=2.892kN/m2活载:Q1=1.4×施工活荷载=2.100kN/m2(二)使用阶段恒载:G2=1.2×(混凝土平均板厚×25+压型钢板自重+装修恒载)=4.092kN/m2活载:Q2=1.4×使用活荷载=2.800kN/m2二、压型钢板验算(施工阶段):钢板截面抵抗矩为:28.760cm3/m钢板截面惯性矩为:79.075cm4/m弯矩设计值为:M'=(G1+Q1)×L2/8=3.446kN·m/m。
(一)受压翼缘的计算宽度Bef=168mm;(板翼缘宽厚比b/t小于最大容许值250,因此取全截面进行计算)(二)抗弯强度M=Ws×fsy=钢板截面抵抗矩×钢板屈服强度=5.896>3.446kN·m/m(三)挠度计算δ=(5/384)×(Ps×L4/Es×Is)=9.532<MAX(20mm,L/200)=20.000mm三、压型钢板验算(使用阶段):跨数为一,非组合楼面可按密肋楼盖进行计算,取其一肋按T形简支梁计算,中间跨弯矩M4系数为1/16,支座剪力系数为0.5。
(1)跨中弯矩M4=(G2+Q2)×L×L/16=1.499kN·m需要一级钢筋面积为:76.863mm2需要二级钢筋面积为:53.804mm2(2)剪力设计值V=2.55kN剪力设计值V≤0.7×Ft×b×h0=118.31kN,且梁高小于等于150mm。
压型钢板组合楼板计算
计算压型钢板组合楼板的首要任务是确定钢板和混凝土的受力状态。
钢板的受力主要包括承受楼板荷载和承受横向剪力两部分。
楼板荷载由建
筑设计师根据楼板用途和使用要求计算得出。
横向剪力是指楼板在受力过
程中产生的纵向剪力,它是由荷载和地震力引起的,通过将楼板分为若干
梁和板单元,然后根据力学原理计算每个单元的受力状况,最终得出楼板
整体的横向剪力。
根据钢板的受力状态,可以计算出钢板的抗弯承载力。
压型钢板组合
楼板的截面形状一般为矩形或梯形,根据其截面形状和受力情况可以采用
弯矩法进行计算。
将楼板分为若干截面,根据力学原理和材料力学性能计
算每个截面的抗弯承载力,最终得出楼板整体的抗弯承载力。
钢板和混凝土的结合性能也是压型钢板组合楼板计算的重要考虑因素。
钢板和混凝土之间需要有一定的粘结力,才能保证楼板的整体受力性能。
计算时需要考虑混凝土的粘结强度、钢板的抗滑强度等参数,以及受到环
境湿度、温度等因素的影响。
除了受力计算,还需要对压型钢板组合楼板的其他方面进行设计。
例如,需要根据不同楼层的使用要求确定板厚、横梁间距、板边齿槽的尺寸
等参数。
此外,还需要进行楼板的连接设计,确保楼板之间的连接牢固可靠。
在楼板施工过程中,还需要进行现场监测和质量验收,以确保楼板符
合设计要求。
总之,压型钢板组合楼板的计算涉及到多个方面,包括受力计算、材
料性能计算、结合性能计算等。
在进行计算时,需要充分考虑各种因素,
确保楼板结构的安全可靠。
压型钢板混凝土楼承组合板计算书工程资料:该工程楼层平台采用压型钢板组合楼板,计算跨度l= 4m,剖面构造如图1所示。
压型钢板的型号为YX76-305-915,钢号Q345,板厚度t = 1.5mm,每米宽度的截面面积A = 2049mm2 /m(重量0.15 kN/m2),截面惯性矩I = 200.45x104mm4 /m。
顺肋两跨连续板,压型钢板上浇S筑89mm厚C35混凝土。
图1组合楼板剖面1施工阶段压型钢板混凝土组合板计算1.1荷载计算取b = 1.0m作为计算单元(1)施工荷载施工荷载标准值P k = 1.0 x 1.0 = WkN / m施工荷载设计值P = 1.4 x 1.0 = 1.4kN / m(2)混凝土和压型钢板自重混凝土取平均厚度为127mm混凝土和压型钢板自重标准值g = (0.127m x 25kN / m 3 + 0.15kN / m 2) x 1.0mk = 3.325kN / m混凝土和压型钢板自重设计值g = 1.2 x 3.325kN / m = 4.0kN / m(3)施工阶段总荷载Q k = P*+g kk = 1.0kN / m + 3.325kN / m=4.325kN / m1.2内力计算跨中最大正弯矩为M + = 0.07( p + g)l2 = 0.07 x (1.4 + 4.0) x 4.02 kN - mmaX= 6.05kN - m支座处最大负弯矩为M - = 0.125( p + g )l 2 = 0.125 x (1.4 + 4.0) x 4.02 kN - mmaX= 10.8kN - m故M = M - | = 10.8kN - m支座处最大剪力V = 0.625( p + g )l = 0.625 x (1.4 + 4.0) x 4.0kN maX= 13.5kN 1.3压型钢板承载力计算压型钢板受压翼缘的计算宽度betb = 50 x t = 50 x 1.5mm = 75mm < 105mm ,按有效截面计算几何特征。
压型钢板混凝土组合楼板厚度计算1.荷载计算:首先需要了解楼板的设计荷载,包括活荷载和恒荷载。
活荷载是指楼板在使用过程中所承受的临时荷载,例如人员和家具的负荷;恒荷载是指楼板在使用过程中始终存在的常驻荷载,例如楼板自重和建筑物各部分的附加重量。
根据楼板的设计荷载,可以计算出楼板的最大弯矩和剪力。
2.弯矩和剪力计算:楼板的厚度与弯矩和剪力有关。
弯矩是由外力作用在楼板上产生的弯曲效应,而剪力是由外力作用在楼板上产生的剪切效应。
通过计算楼板的最大弯矩和剪力,可以确定楼板的厚度。
3.钢板截面形状和尺寸:压型钢板的截面形状和尺寸对楼板的承载能力起到了重要的影响。
常见的压型钢板形状有H型、U型和C型等。
不同形状的钢板对楼板的承载能力有一定的影响,因此需要选择合适的压型钢板截面形状和尺寸。
4.混凝土强度:混凝土的强度是楼板设计中一个重要的参数,决定了混凝土的抗弯承载能力和抗剪承载能力。
设计时需根据楼板的使用要求和结构设计标准,选择合适的混凝土等级。
基于以上考虑因素,可以采用以下步骤进行压型钢板混凝土组合楼板的厚度计算:1.根据设计荷载计算楼板的最大弯矩和剪力。
可以采用传统的等效弯矩法或者更精确的有限元分析方法进行计算。
2.选择合适的压型钢板截面形状和尺寸。
根据楼板的设计荷载和最大弯矩,参考压型钢板的承载力表,选择适当的压型钢板形状和尺寸。
3.根据选定的压型钢板截面形状和尺寸,计算楼板的厚度。
可以采用经验公式或者有限元分析进行计算。
根据混凝土的强度和楼板的设计荷载,确保楼板的抗弯和抗剪能力满足结构设计要求。
4.进行楼板的验算和优化设计。
根据设计要求,对计算出的楼板厚度进行验算,如果不满足要求,可以进行适当的优化设计。
总之,压型钢板混凝土组合楼板厚度计算是一个综合考虑荷载、弯矩、剪力、钢板形状和尺寸等因素的过程。
在设计中需要合理选择材料和采用合适的计算方法,确保楼板的承载能力和抗震性能达到要求。
压型钢楼板的计算压型钢楼板是一种常用于建筑结构中的楼板材料,它由冷弯成型的钢材制成,具有强度高、刚度好、重量轻、耐腐蚀等优点。
在楼板设计中,需要进行一系列的计算来确定楼板的尺寸和材料的选择,本文将介绍压型钢楼板计算的一般步骤和注意事项。
1.楼板尺寸计算在进行楼板尺寸计算时,需要确定楼板的跨度、荷载和支座的类型等参数。
根据跨度和荷载,可以计算出楼板的最大弯矩和剪力。
然后,根据楼板弯矩和剪力的性能要求,选择适当的压型钢楼板型号和截面尺寸。
根据楼板的截面尺寸,可以计算出楼板的惯性矩、截面积和重量等参数。
2.楼板抗弯强度计算楼板在使用过程中会承受弯曲荷载,因此需要保证楼板的抗弯强度。
根据楼板截面的几何特征,可以计算出楼板的截面模量和截面形心位置,然后根据这些数据,可以计算出楼板的抗弯强度。
3.楼板刚度计算楼板的刚度是指单位宽度楼板在受到单位宽度弯曲力矩作用下的变形量。
刚度是计算楼板挠度的重要参数,可以通过计算楼板的刚度系数和荷载作用下的挠度来确定楼板的刚度。
4.楼板承载力计算楼板在使用过程中还需要承载来自上层结构和自重的荷载。
通过计算楼板的承载能力,可以确定楼板的最大承载力,以及进行楼板布置和支承结构的设计。
5.楼板振动计算楼板在使用过程中还需要满足一定的振动要求,为了确保楼板在使用中不会产生不适的振动,需要进行楼板振动计算。
楼板的振动计算包括自由振动和强迫振动两部分,需要根据楼板截面、材料和支承方式等参数进行计算。
在进行压型钢楼板计算时,还需要注意以下几点:1.确定楼板的荷载组合。
楼板在使用过程中可能被同时施加多个荷载,需要根据设计规范确定荷载的组合方式。
2.考虑楼板的边缘条件。
楼板在边缘受到支座或边缘梁的约束,需要根据实际情况考虑边缘约束对楼板受力性能的影响。
3.选择合适的楼板材料。
压型钢楼板有多种材料可选,如冷弯薄壁型钢、中面板和大横梁等,需要根据楼板使用的要求选择合适的材料。
4.进行楼板的稳定性计算。
PROJECT:
SUBJECT:
DATE:
钢承板屈服强度(fy k ):
钢承板屈服强度(fy k ):
2钢承板型号:
惯性矩(I):
952900mm 4/m 正弯矩断面系数(Sp):
18870mm 3/m 负弯矩断面系数(Sn):16230mm 3/m
设计载重(线荷载):(依照美国钢承板协会SDI出版的设计规范)
Wd(钢承板自重):0.12x1.20.15
N/mm Wc(湿混凝土重): 3.60x1.2 4.32
N/mm W1(楼板自重:Wc+Wd): 3.72x1.2 4.47
N/mm W2(均布施工载重):1x1.4 1.4
N/mm P(施工集中载重):2250x1.43150
N 钢承板弹性截面抵抗矩:
+Mmax=0.9fySp =0.9×413.00×18870=
7013979N ·mm -Mmax=0.9fySn =0.9×413.00×16230=
6032691N ·mm 由钢承板跨中最大正向弯矩:+M=0.20PL+0.094W1LL
7013979=0.20×3150×L+0.094×4.4688×L×L
解方程, 得
L(+max)=3405mm
由钢承板支座最大负向弯矩:
w1+w2
-M=0.117(W1+W2)LL
6032691=0.117×(4.4688+1.4)×L×L
解方程, 得
L(-max)=2964mm 分别求解由挠度控制状况的两个方程
由△=0.00677W1L*L*L*L/EI < L/200
△=0.00677×3.724×L×L×L×L/EI < L/200
得L(max1)=3411mm
由△=0.00677W1L*L*L*L/EI < 20
△=0.00677×3.724×L×L×L×L/EI < 20
得L(max2)=3391mm
取最小值Lmin=Min(L(+max),L(-max),L(max1),L(max2))
由以上应力及应变分析,得最大允许无支撑净跨距为:2964mm 当梁间距L=3000mm,梁上翼板宽b =200mm
则净跨距L n=2800mm,跨中下垂挠度: △=0.0068(Wc+Wd)L4/EI
△=0.0068×3.72×2800×2800×2800×2800/(210000×952900)
=7.78mm <2cm或<2800/200=14.00符合要求
结论:对于3.0m 梁间距,施工阶段跨中无需临时支撑。
允许下垂挠度小于20mm 允许下垂挠度 小于L/200,。