数形结合与不等式
- 格式:doc
- 大小:1.09 MB
- 文档页数:7
数形结合思想与初中一元一次不等式求解教学
数形结合思想是数学教学中的一种教学方法,它通过将数学概念与图形进行结合,使
学生能够通过对图形的观察、分析和推理,深入理解数学概念,提高数学思维能力和解决
问题的能力。
在初中一元一次不等式求解的教学中,数形结合思想也可以发挥重要作用。
可以通过绘制数值的线段图或数轴图来将不等式问题可视化。
对于不等式x-2>3,可
以在数轴上找出满足条件的x的取值范围,并用阴影区域表示。
这样,学生可以通过观察
图形直观地理解不等式的含义,提高对不等式问题的认识和理解。
可以通过绘制几何图形来解决一元一次不等式问题。
对于求解不等式2x+3<9,可以将不等式化为2x<6,然后绘制2x=6的直线和y=9的直线,通过观察两者的交点来确定x的取值范围。
这样,学生可以通过几何图形的观察和推理,解决不等式问题,提高解决问题的
能力和思维能力。
数形结合思想还可以通过实际问题的分析和图形的绘制来提高学生的解决问题的能力。
通过绘制不等式2x+3>0的线段图,可以找出满足条件的x的取值范围,并根据实际问题的要求确定具体的解。
这样,学生不仅可以将数学知识应用到实际问题中,还可以通过图形
的分析和推理解决问题,提高解决问题的能力和思维能力。
从数形结合角度解绝对值不等式文︳吴远觉绝对值不等式的常见解法有定义法、平方法、零点分区法,要点在于去掉绝对值。
如果运用绝对值的几何意义,或者运用绝对值函数图像,从数形结合角度来解绝对值不等式,则显得直观、简便。
下面笔者结合实例加以说明。
例1(2017年全国卷Ⅲ)已知函数f(x)= |x+1|-|x-2|,求不等式f(x)≥1的解集。
解析:|x+1|-|x-2|表示x与-1的距离和x与2的距离之差,f(x)≥1表示这个差不小于1。
结合数轴可知,x需位于1或者1的右边(如图1),故不等式的解集为{x|x≥1}。
图1当然也可以通过零点分区讨论求解,还可以作出函数f(x)与y=1的图像,从图像上发现f(x)的解是{x|x≥1}。
例2(2009年辽宁卷)设函数f(x)=|x-1|+|x-a|。
(1)若a=-1,解不等式f(x)≥3;(2)如果xf(x)≥2恒成立,求a的取值范围。
解析:(1)a=-1时,f(x)=|x-1|+|x+1|表示x到-1的距离和到1的距离之和。
如图2,当x位于-1和1中间时,f(x)=2<3,显然不成立,故x需位于-1左侧或者1的右侧。
由线段长可知,x∈(-∞,-1.5]∪[1.5,+∞)。
图2(2)xf(x)≥2恒成立表示f(x)的最小值大于等于2。
而f(x)最小时x位于1和a的中间,故a应该在1的左边或者右边最少相距2的位置,故a∈(-∞,-1]∪[3,+∞)。
本题常规做法需要对a与1进行比较,分三种情况讨论,显得繁琐。
数形结合让题目变得简单直观,方便快捷。
例3设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”。
已知f(x)是定义在上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为上的“2015型增函数”,则实数a的取值范围是()A.(-∞,20154) B.(20154,+∞)C.(-∞,20156) D.(20156,+∞)解析:本题的常规方法是由奇函数的性质可得f(x)的解析式:f(x)=|x-a|-2a,x>0,0,x=0,-|x-a|+2a,x<0。
绝对值不等式数形结合法
绝对值不等式是数学中常见的一种不等式形式,解决这类不等式时可以使用数形结合法。
该方法可以帮助我们通过图形的几何性质来找到不等式的解集。
以下是使用中文进行说明的绝对值不等式数形结合法:
1. 首先,我们来回顾一下绝对值的定义。
对于任意实数x,绝对值|x|表示x到0的距离,即|x|=x(当x≥0时),|x|=-x(当x<0时)。
2. 在解决绝对值不等式时,我们可以将其表示为一个图形问题。
我们可以将不等式|x|<a(a为正实数)表示为以原点O为中心,半径为a的开区间(-a,a)上的点构成的图形。
3. 同样地,对于不等式|x|>b(b为正实数),我们可以将其表示为以原点O为中心,半径为b的开区间(-∞, -b)∪(b,∞)之外的点构成的图形。
4. 对于不等式|x|≥c(c为正实数),我们可以将其表示为以原点O为中心,半径为c的闭区间[-c, c]上的点构成的图形。
5. 解决绝对值不等式的关键是确定图形的解集。
我们可以根据题目给出的不等式关系来确定图形的部分或全部区域。
6. 最后,我们根据图形的区域表示来确定解集。
如果要求解不等式的解集,我们需要找出表示该区域的数值,即满足不等式的实数值。
通过数形结合法,我们可以将抽象的绝对值不等式问题转化为具体的图形问题,从而更直观地理解和解决这类不等式。
数形结合思想是解答高中数学问题常用的一种数学思想.在解答不等式问题时,灵活运用数形结合思想,根据不等式的几何意义画出几何图形,通过图形和数量关系之间的转化,可以使解题的过程变得更加简单,有利于提升解题的效率.一、求参数的取值范围在运用数形结合思想解答含参不等式问题时,可先根据不等式的结构特征,将参数与变量分离,使参数在不等式的一侧;再将不等式另一侧的式子构造成函数,判断出函数的单调性,画出函数的图象,或根据另一侧式子的几何意义画出几何图形,即可通过研究图形的变化趋势,确定不等式另一侧式子的最值,进而求得参数的取值范围.例1.已知集合A ={}|()x ,y m 2≤()x -22+y 2≤m 2,x ,y ∈R ,B ={}|()x ,y 2m ≤x +y ≤2m +1,x ,y ∈R ,若A ⋂B ≠∅,则实数m 的取值范围为_____.解:由A ⋂B ≠∅可知A ≠∅,故m 2≤m 2,可得m ≤0或m ≥12,①当m ≤0时,集合A 表示以()2,0为圆心、以||m 为半径的圆,集合B 表示两平行线y =2m 和y =2m +1之间的区域,而点()2,0到直线y =2m 的距离d 1=||2-2m 2=2-2m >-m ,点()2,0到直线到y =2m +1的距离d 2=||2-2m -12=-2m >-m ,可知集合A 与集合B 无交集,所以不等式无解.②当m ≥12时,集合A 表示以()2,0为圆心、和||m 为半径的圆环,如图1所示.图1则圆心A 到直线y =2m 的距离d 1=||2-2m 2=2-2m ≤m ,解得12≤m ≤2+2,故实数m 的取值范围为éëêùûú12,2+2.解答本题,需将集合A 中的元素看作以()2,0为圆心,||m 为半径的圆环上的点,集合B 中的元素看作两平行线y =2m 和y =2m +1之间的点,通过研究圆与直线之间的位置关系,建立满足题意的关系式,进而求得参数的取值范围.运用数形结合思想解答此类问题,要仔细挖掘代数式的几何意义,并画出相应的几何图形,借助几何图形来分析问题.例2.已知f ()x =x ||x ,若对任意x ∈éëêùûút -2,1t ,不等式f ()x +t ≥4f ()x 恒成立,则实数t 的取值范围为_____.解:由题意可知f ()x =x ||x =ìíîx 2,x ≥0,-x 2,x <0,由图2可知f ()x 在R 上单调递增.图2因为4f ()x =4x ||x =2x ||2x =f ()2x ,所以f ()x +t ≥4f ()x ⇔f ()x +t ≥f ()2x ,即x +t ≥2x ⇔t ≥x 在x ∈éëêùûút -2,1t 上恒成立.图3解题宝典39由图3可知,ìíîïïïït ≥1t,t -2≤1t ,①当t >0时,ìíîïïïït ≥1t,t -2≤1t ,⇔ìíît 2-1≥0,t 2-2t -1≤0,解得1≤t ≤1+2,②当t <0时,ìíîïïïït ≥1t,t -2≤1t ,⇔ìíît 2-1≤0,t 2-2t -1≥0,解得-1≤t ≤1-2,综上可知,实数t 的取值范围为[]-1,1-2⋃[]1,1+2.解答本题,需先根据函数f ()x =x ||x 的解析式画出图象,以根据其图象和单调性去掉f ()x +t ≥4f ()x 的符号“f ”,将不等式转化为常规不等式;然后借助数轴来讨论满足不等式的t 的取值范围.在解不等式时,要学会将问题转化为函数图象、数轴上的点的集合的问题,运用数形结合思想来解题,这样能有效地提升解题的效率.二、求不等式的解集含参不等式问题往往较为复杂,运用数形结合思想来辅助解题,能有效地提升解题的效率.在解题时,要先将不等式变形,构造出合适的函数模型.可构造一个函数模型,将不等式化为f ()x >0、f ()x <0的形式;也可以构造两个函数模型,将不等式化为f ()x >g ()x 、f ()x <g ()x 的形式.再画出函数的图象,研究函数图象与x 轴、图象之间的位置关系,找到使不等式成立的情形,从而建立新不等式.通过解新不等式,求得不等式的解集.例3.解关于x 的不等式:a 2-2x 2>x +a .解:设y 1=x +a ,y 2=a 2-2x 2,则y 1=x +a 表示的是一条直线,y 2=a 2-2x 2表示的是半个椭圆,如图4所示.图4由a 2-2x 2=x +a ,可得x =0或x =-2a 3,移动直线,由图4可知,当-2a3<x <0时,直线始终在椭圆的下方,故不等式的解集为{}|x -2a3<x <0.先将不等式两侧的式子分别构造成函数y 1=x +a ,y 2=a 2-2x 2,并画出两个函数的图象;然后移动直线的位置,即可发现要使不等式恒成立,需使直线始终在椭圆的下方;再求得两个函数的交点,就能发现当-2a3<x <0时,直线始终在椭圆的下方.运用数形结合思想解不等式,关键要根据题意找出临界的情形,并求出相应的值.例4.已知f ()x 是R 上的偶函数,且在[)0,+∞上单调递减,若f ()a =0()a >0,则不等式xf ()x <0的解集为_____.解:由题意可画出f ()x 的图象,如图5所示.图5由xf ()x <0,可知x 与f ()x 异号.由图5可知,当x ∈()-a ,0⋃()a ,+∞时,x 与f ()x 异号,故不等式的解集为{}|x -a <x <0或x >a .若采用常规方法解答本题,则需进行分类讨论,解题的过程较为复杂.我们运用数形结合思想,根据函数的解析式画出图象,讨论满足不等式的情形,即可确定x 的取值范围.运用数形结合思想解不等式,需通过研究图象,找出满足题意的一段曲线,并求出与之对应的x 的取值范围.运用数形结合思想,将不等式问题转化为几何图形问题或函数图象问题,即可通过研究图形或图象的位置关系,快速获解.这样不仅能使题目中的条件变得直观,还能使解题的思路更加明朗,有助于提升解题的效率.(作者单位:新疆巴楚县第一中学)解题宝典40。
数形结合与不等式
在不等式的题目中有一些题目专门考查同学们的数形结合能力,而且有些题目我们必须得用数形结合才能解,这些题目都有一些比较明显的特征,所以我们给大家展示出这些题目的特点,然后告诉大家如何用数形结合的方法进行求解。
应用数形结合的典型问题有三大类: 一,解不等式,二.已知不等式组求参数的范围. 三. 求参数的取值范围使不等式(能、恰、恒)成立.
一.解不等式
这一类题目的特征就是不等式两边的表达式不能转化成我们所熟悉的形式,它一般是结合了指数和对数的形式,然后与一般的一次或二次函数比较大小,这时候我们只能用数形结合的方法进行求解。
同学们可能觉得直观的作出函数图形并得不出准确的解,但是这类题一般都是以选择题的形式出现,所以我们可以判断出解的大致范围就可以找出正确答案了。
思路是这样的:
第一步:确定我们要做的是哪些函数的图像,然后写出这些函数表达式。
既然是比较两个表达式的大小,我们就把不等式左边写成y=f(x),右边写成y=g(x)的形式
第二步:做出()f x 和()g x 的函数图像
第三步:根据不等式的条件判断满足不等式的区域,这个区域就是
不等式的解集,我们要求的就是()f x 的图像在()g x 的上方时 x 的取值范围
例1设函数f (x )=1221,0, 0
x x x x -⎧-≤⎪
⎨⎪>⎩,若f (x 0)>1,则x 0的取值范围是
( )
(A) (-1,1) (B) (-1,+∞)
(C)(-∞,-2)∪(0,+∞) (D) (-∞,-1)∪(1,+∞)
解:画出分段函数f (x )=1221,0
, 0
x x x x -⎧-≤⎪
⎨⎪>⎩及
直线y =1的图象,如图(图1),可知当x 0>1或x 0<-1时,有f (x 0)>1,而选(D).
例2使log 2(-x )<x +1成立的x 的取值范围是_______.
解:在同一坐标系作出y =log 2(-x )及y =x +1,由图象(图2)知-1<x <0,故填(-1,0).
例3不等
式
x 的解集是 .
解:在同一坐标系中,作出y
=y =x
的图象,由图(如图3)知2<x ≤4,故应填(2,4].
例4 解不等式|x 2
-3x |>4.
解:在直角坐标系中作出y =|x 2
-3x |与y =4图象,如图(如图4)
A .(-∞,0]
B .(-∞,1]
C .[-2,1]
D .[-2,0]
可知,原不等式的解集是 {x |x <-1或x >4}.
二.已知不等式组求参数的范围.
第二类题目有一个很明显的特征,那就是给出一个不等式组,根据不等式组我们可以求出x,y 的取值范围,在这个区域内让你求一个表达式的最值或范围
图2
图3
这类题目的思路是这样的:
第一步:由给定的不等式条件求出x,y 所在的区域
第二步:把要求的表达式转化成y=f(x)的形式,并把这个所求的量看成是一个参数
第三步:在这个区域内作出f(x)的图像 第四步:求出这个参数的最值
例5:若x, y 满足条件021x x y x y ≥⎧⎪
≥⎨⎪-≤⎩
,则32Z x y =+的最大值是多少?
第一步:在根据已知的条件0x ≥,我们知道x,y 的范围是在y 轴的右侧,
根据x y ≥ 我们可知x,y 应该在直线y x =的下方,再由第三个条件21x y -≤知道x,y 应该在直线
21y x =-的上方,由这三个已知条件我们可以求出
x,y 的区域,如图所示的阴影部分:
第二步:我们把要求的表达式:32Z x y =+转化成y=f(x)的形
式,即: 3122y x Z =-+,这时候1
2
Z 就是直线在y 轴
上的2倍截距,Z 最大也就是直线的截距最大。
第三步:在阴影部分内作出函数31
22
y x Z =-+的图像
第四步:当直线31
22
y x Z =-+过直线y x =与直线21y x =-的交
点A(1,1)时截距最大,最大值为2.5,所以Zmax=5。
例6:实系数一元二次方程x 2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:
(1)点(a,b)对应的区域的面积;
(2)的取值范围;
(3)(a-1)2+(b-2)2的值域.
思路精析:列出a,b满足的条件→画出点(a,b)对应的区域→求面积
→根据的几何意义求范围→根据(a-1)2+(b-2)2的几何意义求值域.解析:方程x2+ax+2b=0的两根在区间(0,1)和(1,2)上的几何意义分别是:函数y=f(x)= x2+ax+2b与x轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,由此可得不等式组
由,解得A(-3,1).由,解得C(-1,0).∴在如图所示的aOb坐标平面内,满足条件的点(a,b)对应的平面区域为△ABC(不包括边界).
(1)△ABC的面积为(h为A到Oa轴的距离).
(2)几何意义是点(a,b)和点D(1,2)边线的斜率.
由图可知
(3)∵(a-1)2+(b-2)2表示的区域内的点(a,b)与定点(1,2)之间距离的平方,
注:如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有:
(1)连线的斜率;
(2)之间的距离;
(3)ax+by对应直线的斜率
只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.
三.求参数的取值范围使不等式(能、恰、恒)成立.
已知函数f(x)=若|f(x)|≥ax,则a的取值范围是()
A.(-∞,0] B.(-∞,1] C.[-2,1]D.[-2,0]
解析函数y=|f(x)|的图象如图.①当a=0时,|f(x)|≥ax显然成立.
②当a>0时,只需在x>0时,ln(x+1)≥ax成立.比较对数函数与一次函数y=ax的增长速度.
显然不存在a>0使ln(x+1)≥ax在x>0上恒成立.
③当a<0时,只需在x<0时,x2-2x≥ax成立.即a≥x-2成立,∴a≥-2.
综上所述:-2≤a≤0.故选D.
例8. 已知x y x y y ,满足2220+-=,欲使不等式x y c ++≥0恒成立,求实数c 的取值范围。
分析:欲使x y c ++≥0恒成立, 即 -≤+c x y 恒成立, 故 -≤+c x y ()min 。
于
是
问
题
转
化
为
求
x y y x y 22202+-=+上一点,使有最小值问题。
由图可
知,当直线l x y x y y x y 122020平行于且与圆相切于下方时,取最小值+=+-=+
12-
例7.已知函数f (x )=x 2+2x+1,若存在实数t ,当x ∈[1,m ]时,f (x+t )≤x 恒成立,则实数m 的最大值是( )
解: f (x )=(x+1)2,令y=x , 依题意,则在区间[1,m ] 上f (x+t )的图象在直线y=x
下方.
,
由图形可知,当f (x+t )= (x –2)2时,实数m 的值最大, 解方称(x –2)2=x ,得x=1,4 . 即m 的最大值4,故选C .
图2
故-≤-≥-
c c
1221
,从而。
例9:设函数f(x)=e x–e–x
(Ⅰ)求证:f(x)的导数f'(x)≥2;
(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围Ⅱ):利用导数研究f(x)的性状,
∵f'(x)= e x+e–x>0,∴函数f(x)当x≥0时单调递增,又∵函数f'(x)当x≥0时也单调递增,
∴函数f(x)是下凸
作出函数f(x)的图象,令y=ax,其图
象是过原点的直线,若对所有x≥0都有f(x)≥ax,则直线y=ax在f(x)的图象的下方
∴只要直线y=ax在f(x)在原点处的
切线下方即可.∵f(x)在原点处的切线的斜率f'(0)=2,∴a≤2.
Y=ax f(x)=e x–e–x。