居民消费水平统计预测
- 格式:pptx
- 大小:232.44 KB
- 文档页数:9
城镇居民消费支出与收入的预测模型(一)摘要]本文根据2000年~2006年十堰市城镇居民消费性支出与可支配收入基本数据,应用灰色预测模型对未来几年十堰市居民可支配收入进行了预测,应用线性回归模型对居民消费支出与可支配收入之间的数量关系的基本规律进行研究,并对其消费走势进行了预测分析,为制定新一轮的经济政策提供了决策依据。
关键词]可支配收入消费性支出灰色模型线性回归近年来,我国经济快速发展,十堰市的经济也取得了长足的进步,随着居民可支配收入的增加,居民的消费支出也随着增加。
目前,消费已成为制约经济发展的瓶颈,分析城镇居民消费支出与收入之间数量关系的基本规律,了解城镇居民消费支出与收入的情况及特点,掌握城镇居民消费支出与收入的变化趋势,采用适当方法,对未来几年城镇居民的消费支出与收入进行预测,帮助有关部门和经营者制定经济政策进而实施宏观调控等,对刺激经济持续、健康发展具有重要意义。
本文通过对十堰市城镇居民年可支配收入和年消费性支出的建模分析,讨论了其相互关系、发展规模和未来发展趋势等,为制定新一轮的经济政策提供了决策依据。
一、收入水平的预测1.居民的经济收入的高低直接决定、影响着消费水平。
收入水平的准确与否直接影响着消费规模的预测,这里对收入水平的预测采用数学模型中的灰色预测模型。
灰色模型(GreyModel)简称GM模型,是灰色系统理论的基本模型,也是灰色控制理论的基础。
灰色系统理论建模的主要任务是根据社会、经济、技术等系统的行为特征数据,找出因素本身或因素之间的关系,从而了解系统的动态行为和发展趋势。
2.预测模型GM(1,1)设,做1—AGO,得,建立白化形式的微分方程设,按最小二乘法得到,其中易求得,微分方程的解为3.模型的建立。
以2000年~2006年十堰市城镇居民人均收入情况为观测值,建立GM(1,1)预测模型。
数据来源于《十堰统计年鉴(2007)》,见表1。
令表1提供的人均可支配收入的数据为X(0)(i)(i=1,2∧,7,得到相应的累加生成序列:构造累加矩阵常数项在Mathematica4.0中求解得得所以建立预测模型:即(1)4.模型的检验(1)残差检验。
经济预测与决策题目姓名所在学院专业班级学号指导教师日期年月日指导教师评阅意见学生姓名专业班级学号(论文)题目指导教师教师职称论文评语评定成绩:指导教师签名:年月日我国居民消费价格指数(CPI)的回归分析与预测07级经济学1班李栋指导教师米娟摘要:目前,我国居民消费价格指数成为公众关注的热点名词,也直接影响着国民经济的稳定发展与人民生活水平的改善。
从理论上分析居民消费价格指数的影响因素,建立一个经济模型,对了解和掌握居民消费价格指数的变化具有重要的现实意义。
本文采用线性回归分析方法,力图对居民消费价格指数的变化进行分析。
关键词:消费价格指数回归分析经济预测1.引言居民消费价格指数(CPI)是反映与居民生活有关的产品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。
CPI虽然是一个滞后指标,但它往往是市场经济活动与政府货币政策的一个重要参考指标。
如果CPI的增幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗,因此,该指数过高的升幅往往不被市场欢迎。
现阶段,随着经济全球化的大趋势和中国的进一步融入,我国的经济稳定发展越来越受到国内、国际的关注,CPI稳定、就业充分及GDP增长已经成为我国最重要的社会经济目标。
尤其在面对国内经济在市场宏观的调节下,消费水平、利率、商品价格潜移默化的影响着百姓的生活,因此,对CPI的分析预测已经显得越发重要。
2.影响因素分析和数据的搜集整理2.1有关影响因素的定性分析对居民消费价格指数(CPI)构成影响的因素有很多,如宏观经济发展水平、中长期经济发展战略和当前的经济政策,具体到国民经济运行的指标中来,有以下几个方面:(1)居民消费水平指数。
居民消费水平是指居民在物质产品和劳务的消费过程中,对满足人们生存、发展和享受需要方面所达到的程度。
通过消费的物质产品和劳务的数量和质量反映出来。
居民消费水平与居民消费价格指数的关系十分密切和直接,收入的增长,消费水平的提高,自然会引起社会总需求的增长,进而导致消费价格指数的增长。
广西科技大学《统计预测和决策》大作业论文名称广西居民消费水平的预测院别理学院专业统计学班级统计112班学号 ************姓名贺永强任课教师张涛二○一四年五月二日摘要:我国经济快速发展的今天,居民消费越来越主导,特别是近几年经济的快速发展,极大地刺激了居民消费水平。
随着广西经济的快速发展,广西的居民消费水平也发生了巨大的变化。
本文就是研究广西居民消费水平,通过搜集的数据,运用统计预测与决策的知识,对广西居民消费水平做一个简单的预测以及对几种预测方法效果做一个比较。
关键字:居民消费水平、趋势外推法、灰色预测法、回归预测法、广西生产总值引言:首先,什么是居民消费水平?居民消费水平是指居民在物质产品和劳务的消费过程中,对满足人们生存、发展和享受需要方面所达到的程度。
居民消费在经济体系中占主导地位。
任何经济体系、任何社会体系都离不开居民消费。
其次,对于本文中所用的三种预测方法的概念,在这里做一个简单介绍:趋势外推法是根据过去和现在的发展趋势推断未来的一类方法的总称,是事物发展渐进过程的一种统计预测方法。
它的主要优点是可以揭示事物未来的发展,并定量得估计其功能特性;灰色预测法是一种对含有不确定因素的系统进行预测的方法。
灰色预测是对既含有已知信息又含不确定信息的系统进行预测,就是对在一定范围内变化的、与时间有关的灰色过程进行预测。
回归预测法是指根据预测相关性原则,找出影响预测目标的各因素,并用数学方法找出这些因素与预测目标之间的函数关系的近似表达,再利用样本数据对其模型估计参数及对模型进行误差检验,一旦模型确定,就可利用模型,根据因素的变化值进行预测。
最后,居民的消费水平在很大程度上受整体经济的影响。
国内生产总值是用于衡量一国总收入的一种整体经济指标,也是影响居民消费水平的一个是主要因素。
居民收入稳定,GDP 高,居民消费的支出较多,消费水平较高;反之,居民收入低,GDP也低,用于消费支出较少,消费水平随之下降。
我国居民的消费水平时间序列分析及预测作者:刘敏来源:《商场现代化》2014年第21期摘要:本文采用时间序列分析及预测的方法对我国居民的消费水平的发展趋势进行分析预测。
通过EViews7.0建立时间序列模型,选择合适模型进行拟合,并作出预测。
利用二次型模型和指数型模型,用最小二乘法进行参数估计。
利用拟合优度大小和拟合图相结合,选出最优模型及预测值。
关键词:消费水平;时间序列;二次型模型;指数型模型一、引言居民消费水平是指居民在物质产品和劳务的消费过程中,对满足人们生存、发展和享受需要方面所达到的程度。
通过消费的物质产品和劳务的数量和质量反映出来。
现在物价上涨,我国的消费水平和消费能力提高,对我国的经济发展有一定的推动作用。
所谓时间序列是按照时间的顺序排列的统计数据。
对时间序列进行观察,研究,找出一定的规律,预测将来的趋势。
在日常生活,生产中,时间序列随处可见,时间序列分析的应用领域很广泛。
本文将运用于经济领域。
二、样本与数据处理本文选用1993年-2012年的居民的消费水平年度数据作为样本。
(数据来源:中国统计年鉴2012)根据EViews7.0得到时序图,知样本总体呈现出不断上升的趋势。
进一步做单位根检验可得:P值为1,P值大于0.05,故不能拒绝原假设,即存在单位根,该序列不平稳。
由于序列不平稳,所以对样本数据进行差分处理。
经过一阶差分后的单位根检验结果中,P值为0.4349,P值大于0.05,故接受原假设,即存在单位根,该序列不平稳。
经过二阶差分后的单位根检验结果中,P值为0.01,P值小于0.05,故拒绝原假设,即不存在单位根,该序列平稳。
三、模型的选择1. 二次型模型的建立由于原序列经过二阶差分得到平稳序列可知,此序列可能为二次型序列,所以对其进行二次型模型处理。
(1)确定二次型模型由EViews7.0图对原序列的二次型拟合图由图1可得到二次型模型,但也需要对其残差自相关等分析,而后对残差进行模型拟合。
居民消费价格指数的统计分析与预测摘要:本文简要介绍了居民消费价格指数的相关理论知识,并进一步从统计学的角度对居民消费价格指数依次做出了居民消费价格指数的总体分析、结构分析、影响因素分析以及动态预测分析,本文旨在通过更加深入的居民消费价格统计学研究帮助人们更加的了解居民消费价格指数。
关键词:居民消费价格指数;统计分析;理论知识;预测一、引言近几年,随着我国经济的不断发展,我国居民的物质消费水平也越来越高,居民消费价格指数也越来越得到人们的重视。
居民价格消费指数是反应人们消费水平状况的重要指标,注重对居民的消费价格指数的研究可以增加政府对我国居民消费状况的了解,对我国政府的政策制定、经济宏观调控等都有重要的参考价值。
二、居民消费价格指数的理论知识居民消费价格指数英文全称为consumer price index,缩写为cpi,它是度量消费商品及服务项目价格水平随着时间变动的相对数,反映居民购买的商品及服务项目价格水平的变动趋势和变动程度。
居民消费价格指数在整个国民经济价格体系中占有重要的地位,对于我国经济宏观调控具有正要的指导作用。
另外,cpi的计算采用的是是固定权数按加权算术平均指数公式计算,cpi=(一组固定商品按当期价格计算的价值/一组固定商品按基期价格计算的价值)×100%。
同时,居民消费价格指数还与经济通货膨胀有关,加深对居民消费价格指数的研究可以一定程度上抑制经济通货膨胀。
有学者认为,当居民价格指数>3%就表示本地区已经发生了通货膨胀。
三、居民消费价格指数的统计分析下面我们以我国今年来的居民消费价格指数为例从总体、结构、影响因素、以及动态预测四个方面进行深入分析。
1.居民消费价格指数的总体分析近几年,我国居民消费价格指数一直处于飞速上涨的状态,据国家统计局发布的数据显示,单2012年12月份全国居民消费价格指数同比上涨2.5%,涨幅比上月扩大0.5个百分点。
下图是节选我国2008年—2012年我国统计局统计的cpi的增长率:总体分析,我国居民消费价格指数上涨有以下三个明显的特征:(1)我国物价涨幅逐步的扩大;我国近几年居民消费价格指数的运行轨迹一般都呈现前低后高的态势。
《居民消费的定量研究——方法与应用》篇一一、引言随着经济持续发展和人民生活水平的提高,居民消费已经成为驱动经济持续增长的重要因素之一。
居民消费行为的变化、特点以及规律对于制定和实施宏观和微观政策具有重要的参考价值。
然而,要深入理解居民消费行为,需要借助定量的研究方法。
本文旨在探讨居民消费的定量研究方法及其应用,以期为相关研究提供参考。
二、居民消费的定量研究方法(一)描述性统计分析描述性统计分析是居民消费定量研究的基础方法。
通过收集和整理大量数据,描述消费者的人口特征、消费习惯、消费结构等方面的信息。
利用统计图表和指标等工具,揭示消费者消费行为的规律和特点。
(二)回归分析回归分析是探究变量之间关系的重要方法。
在居民消费研究中,回归分析可以用于研究各种因素对居民消费的影响程度,如收入、价格、政策等。
通过建立回归模型,分析这些因素与居民消费之间的数量关系,揭示其内在规律。
(三)时间序列分析时间序列分析是通过研究某一变量在不同时间点的数据变化,揭示其变化规律和趋势的方法。
在居民消费研究中,时间序列分析可以用于研究居民消费随时间的变化情况,如季节性变化、长期趋势等。
通过建立时间序列模型,预测未来居民消费的变化趋势。
(四)面板数据分析面板数据分析是结合时间序列和横截面数据的方法,可以同时考虑个体差异和时间变化对居民消费的影响。
通过面板数据模型,可以更准确地估计各种因素对居民消费的影响程度,揭示不同个体之间的差异和共同点。
三、居民消费的定量研究应用(一)政策制定与评估定量研究方法可以用于政策制定和评估。
通过收集和分析相关数据,了解居民消费行为的规律和特点,为政策制定提供科学依据。
同时,通过建立政策模拟模型,评估政策对居民消费的影响程度,为政策调整提供参考。
(二)市场分析与预测定量研究方法可以用于市场分析和预测。
通过分析消费者的人口特征、消费习惯、消费结构等信息,了解市场需求和趋势。
同时,通过建立预测模型,预测未来市场变化和消费者行为变化,为企业制定营销策略提供参考。
西南交通大学本科毕业论文居民消费价格指数的分析与预测年级:2007级学号:20075275姓名:专业:统计学指导老师:2011年 6 月毕业设计(论文)任务书班级 07统计姓名学号 20075275发题日期:2011 年 1 月 12 日完成日期: 5 月 24 日题目居民消费价格指数的分析与预测1、本论文的目的、意义在2009年过后,我国CPI指数扶摇直上,通货膨胀率也在同时不断上涨,中国面临着较大的通货膨胀压力,民众生活成本不断加重,如何跑赢CPI已经成为了白领阶层的热门话题,本文将从统计学的观点出发,用时间序列模型对CPI指数进行分析与预测,对未来经济水平的走势有一个了解,对国家经济建设有一个宏观的意识。
2、学生应完成的任务首先对居民消费价格指数以及时间序列ARIMA模型的概念和相关理论有一定深入的了解,明白本文的写作目的以及意义。
然后通过互联网收集2000年1月至2011年4月的居民消费价格指数历史数据。
对数据进行预处理,包括:直观性的图形分析和描述性统计分析,这样能够对样本有一个整体的认识,方便后期建立模型时的对数据的操作处理。
在预处理阶段对样本整体的走势作出一个分析,比如居民消费价格指数在2000年1月至2011年4月期间是如何波动的,又是什么原因造成这些波动,这些波动能够带来什么样的影响等。
将预处理之后的数据输入EViews软件,进行ARIMA模型的建模准备工作,如:平稳性分析,零均值处理等。
利用处理过之后的数据建立出几个相对拟合程度较高的ARIMA模型,并且利用软件对预测模型的分析结果来选择一个拟合程度较高的模型作为本研究的居民消费价格指数预测模型。
在确定预测模型之后,通过阅读大量的文献与预测得出的结果相结合,对2011年的居民消费价格指数的短期走势进行分析,并在分析之后给出合理性的政策建议,达到本文的写作目的:对国家的宏观经济有一个较为客观的判断与认识。
3、论文各部分内容及时间分配:(共 14 周)第一部分选题、熟悉相关概念与理论 ( 1周) 第二部分论文的内容安排,绪论部分的写作 (2 周) 第三部分数据的处理以及模型的建立,预测部分(4 周) 第四部分短期走势的分析与预测(3周) 第五部分结论、致谢的写作以及格式的修改(2周) 评阅及答辩(2 周)备注指导教师:年月日审批人:年月日西南交通大学本科毕业设计(论文) 第Ⅳ页摘要从2007年至今,中国居民消费价格指数经历了一次空前的大起大落,受多方面因素的影响,居民消费价格指数在2008年2月创下了108.5%的历史最高涨幅;在2008年下半年和2009年又迅速的跌落,并且在2009年7月降至98.2%,创下了10年来的最低记录。
用回归分析法对我区城镇居民生活消费水平预测一.题目:用回归法对我区城镇居民生活消费水平预测;二.内容摘要:引出写作的目的,总结我区过去的发展成果,以及对未来的预测;三:正文:(一)对我区现在城镇居民的生活状况进行分析;(二)指标的选取与数据的收集;(1)选区我去城镇居民生活消费水平做被解释变量;(2)选其他的三个标量做被解释变量;(三)建立多元回归模型;(1)借助统计软件,估计出模型的参数;(2)对所建立模型进行多重共线性,异方差,自相关等计量经济学意义的检验;(3)对模型进行经济意义和统计意义的检验;(四)回归预测:通过所建模型的检验得出最终模型,进行预测四:结论:由预测结果可以得出,未来几年我区城镇居民消费水平将持续增加。
用回归分析法对我区城镇居民生活消费水平预测内容摘要:随着改革开放的发展,国家逐步实施了一系列政策来促使我国屹立在世界之林。
发展东南沿海地区,振兴东北老工业基地,实施西部大开发战略,中部地区崛起等一系列措施。
都强有力的推动了我国经济的发展,特别是西部大开发战略的实施,不仅是走中国特色社会主义的实践证明,更是缩小东西部贫富差距的方针。
由“先富带后富,共奔富裕路”作为前提指导,是我国成功实施西部大开发的关键。
从改革开放到目前内蒙古地区也经历了重要的变更,从一些经济指标中就可以看出我区的发展历程。
本文通过对城镇居民消费水平的研究,来说明以下两个问题:一是我区近十几年的经济变化情况,通过一些指数比较可以看出这十几年内蒙古城镇居民生活水平的变化情况;二是用回归分析法预测我区城镇居民未来消费水平的情况,通过寻找一些影响城镇居民消费水平的相关变量建立回归模型,来预测我区未来城镇居民的消费能力。
关键词:城镇居民消费水平人均可支配收入消费价格指数一.城镇居民生活消费水平的状况在改革开放的大环境下,我区经历了翻天覆地的变化,无论在教育,居民生活水平,城镇居民就业水平,还是居民可支配都有了空前的改变。
居民消费价格指数分析及预测居民消费价格指数是反映一个地区经济生活状况的重要指标,研究分析某一地区的指数变化趋势有着重要的现实意义。
本文通过建立模型,对西安市近些年居民消费价格指数数据进行了分析。
实证分析的结果表明,3,1,3模型能够较好地拟合数据,预测的准确度比较高,可以为市场的短期预测与经济政策的制定提供一定的参考依据。
指数;模型;预测一、引言居民消费价格指数是用来衡量一个地区通货膨胀率的重要指标。
通俗的讲,就是该地区市场上一组有代表性的消费品及服务项目的价格水平在一段时间内增长的百分比。
一般认为在2~3属于可接受范围内,如果该指标高于3则认为该地区存在通货膨胀的风险。
[1]由于该指标的重要性,国内学者对于它的研究分析有很高的热度。
刘颖等用季节调整方法对我国时间序列进行分析。
[2]雷鹏飞运用季节性模型对我国序列进行了有效地分析。
[3]郭玉等运用6构建了模型对我国的进行分析和预测。
[4]我国地理幅员辽阔,每个地区经济社会状况有所差异,一个地区的居民消费价格指数更能代表这一地区的经济生活情况,对于该地区的老百姓更是密切相关。
因此,对一个地区指数的分析和预测,可以准确掌握该地区老百姓的生活状况和未来的经济发展形势,对各级政府开展工作具有重要的指导意义。
本文通过建立模型,对西安市近些年指数的月度数据进行了分析与预测,为经济政策的制定提供了一定的参考依据。
二、模型在对传统的时间序列研究分析中,模型是其中一个重要方法,它是由自回归模型模型与移动平均模型模型为基础混合构成的。
但是模型含有一个假设条件就是该时间序列是平稳的,然而对于大多数的经济和金融时间序列,受到趋势、季节等一些随机因素的影响,会呈现出非平稳的特点。
根据这一现象,在本文中使用由博克斯-詹金斯提出的通过将时间序列进行差分变换从而达到平稳的模型,[5]来对时间序列进行建模。
该模型的表达式如下其中,ω是经过阶差分后得到的变量,即;δ为自回归系数;ɛ为移动平均系数;为自回归项数;为移动平均项数。