质谱分析1
- 格式:ppt
- 大小:930.00 KB
- 文档页数:69
质谱分析的原理质谱分析是一种广泛应用于化学、生物、环境等领域的分析技术,它通过测定化合物的分子质量和结构,来揭示样品中化合物的成分和结构信息。
质谱分析的原理主要包括样品的离子化、质谱仪的质谱扫描和质谱图的解析三个方面。
首先,样品的离子化是质谱分析的第一步。
在质谱分析中,样品通常需要先进行离子化处理,将其转化为带电离子。
这通常通过电离源来实现,电离源可以是电子轰击电离、化学电离或者光解电离等方式。
离子化后的样品离子会被加速器加速,形成一束离子流,然后进入质谱仪进行下一步的分析。
其次,质谱仪的质谱扫描是质谱分析的核心步骤。
质谱扫描是指质谱仪对进入的离子流进行分析,测定其质荷比。
质谱仪通常包括质子化区、分析区和检测器。
在质子化区,离子流会被进一步加速和聚焦,然后进入分析区。
在分析区,离子流会受到磁场和电场的作用,不同质荷比的离子会受到不同的力,从而形成质谱图。
最后,质谱图会被送入检测器进行检测和记录。
最后,质谱图的解析是质谱分析的最终步骤。
质谱图是质谱分析的结果,它通过记录离子流的质荷比和强度,来反映样品中不同化合物的质谱特征。
质谱图的解析需要借助计算机和质谱数据库等工具,通过比对已知化合物的质谱数据,来识别出样品中的化合物成分和结构信息。
总的来说,质谱分析的原理包括样品的离子化、质谱仪的质谱扫描和质谱图的解析三个方面。
通过这些步骤,质谱分析可以准确、快速地揭示样品中的化合物成分和结构信息,为化学、生物、环境等领域的研究和应用提供重要的分析手段。
质谱分析原理质谱分析是一种用来确定化合物分子结构和组成的重要方法。
它通过测量分子或原子离子的质量和相对丰度,从而得到样品的质谱图,进而推断出化合物的结构和组成。
质谱分析在化学、生物、药学、环境科学等领域都有着广泛的应用。
质谱分析的基本原理是将样品中的化合物转化为气态离子,然后通过质谱仪进行分析。
首先,样品中的化合物被加热或者化学反应,产生气态离子。
然后,这些离子被加速器加速,并进入质谱仪的质子飞行管。
在飞行管中,离子按照其质量-电荷比被分离并加速,最终到达检测器。
检测器会记录下不同质量-电荷比的离子的相对丰度,形成质谱图。
质谱图是质谱分析的结果,它是质谱仪输出的一个图形,横轴表示质荷比,纵轴表示相对丰度。
通过观察质谱图,可以得到样品中的化合物的分子量、分子结构、碳氢比等信息。
根据质谱图的特征峰,可以推断出样品中的化合物的种类和含量。
质谱分析的原理基于离子的质量-电荷比。
不同的化合物由于其分子结构和组成不同,其离子的质量-电荷比也不同。
因此,质谱分析可以通过测量离子的质量-电荷比来区分不同的化合物。
通过比对标准物质的质谱图,可以确定未知物质的组成和结构。
质谱分析的原理还包括离子化方法、质谱仪的结构和工作原理等方面。
离子化方法包括电子轰击离子化、化学离子化、电喷雾离子化等。
不同的离子化方法适用于不同类型的样品。
质谱仪的结构包括离子源、质子飞行管、检测器等部分,每个部分都有着特定的功能。
质谱仪的工作原理是基于离子在电场中运动的原理,通过加速和分离离子来得到质谱图。
总的来说,质谱分析原理是基于离子的质量-电荷比来确定化合物的结构和组成。
通过测量离子的质量-电荷比,得到质谱图,从而推断出样品中的化合物的信息。
质谱分析在化学、生物、药学等领域有着广泛的应用,是一种非常重要的分析方法。
第四章:质谱法第一节: 概述1.1 发展历史1.1886年,E. Goldstein在低压放电实验中观察到正电荷粒子.2. 1898年,W. Wen发现正电荷粒子束在磁场中发生偏转.3.现代质谱学之父: J. J. Thomson(获1906年诺贝尔物理奖).4.1922年, F.W.Aston[英]因发明了质谱仪等成就获诺贝尔化学奖. 1942年, 第一台商品质谱仪.5.50年代起,有机质谱研究(有机物离子裂解机理, 运用质谱推断有机分子结构)6.各种离子源质谱, 联机技术的研究及其在生物大分子研究中的应用(CI, FD, FAB, ESI-MS等)1.2 特点:1.灵敏度高(几微克甚至更少的样品, 检出极限可达10-14克)2.是唯一可以确定分子式的方法.3.分析速度快(几秒)4.可同色谱联用.第二节: 基本原理2.1基本原理质谱是唯一可以确定分子式的方法。
而分子式对推测结构是至关重要的。
质谱法的灵敏度远远超过其它方法,测试样品的用量在不断降低,而且其分析速度快,还可同具有分离功能的色谱联用。
具有一定压力的气态有机分子,在离子源中通过一定能量(70ev)的电子轰击或离子分子反应等离子化方式,使样品分子失去一个电子产生正离子, 继而还可裂解为一系列的碎片离子,然后根据这些离子的质荷比(m/z e)的不同,用磁场或磁场与电场等电磁方法将这些正离子进行分离和鉴定。
由此可见质谱最简单形式的三项基本功能是:(1)气化挥发度范围很广的化合物;(2)使气态分子变为离子(除了在气化过程中不产生中性分子而直接产生离子的化合物);(3)根据质荷比(m/z e)将它们分开,并进行检测、记录。
由于多电荷离子产生的比例比单电荷离子要小得多,通常取z等于1,e为常数(1个电子的电荷),因而就表征了离子的质量。
这样,质谱就成为了产生并称量离子的装置。
由于各化合物所形成的离子的质量以及各种离子的相对强度都是各化合物所特有的,故可从质谱图形中确定分子量及其结构。