10 事件的独立性 (I) 独立性的概念与性质
- 格式:pdf
- 大小:415.83 KB
- 文档页数:15
知识点概率与统计中的事件独立性知识点:概率与统计中的事件独立性事件独立性是概率与统计中的一个重要概念,指的是两个或多个事件之间的发生与否互不影响、相互独立的性质。
在实际问题中,对事件独立性的判断和运用是非常常见的。
一、事件独立性的定义和性质在概率与统计中,如果两个事件A和B满足以下条件,即当事件A 发生与否并不影响事件B的概率时,称事件A与B是独立事件。
具体而言,事件A与B的独立性可表述为:P(A∩B) = P(A) × P(B)其中,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A∩B)表示事件A与事件B同时发生的概率。
根据事件独立性的定义,可以得出以下性质:1. 事件A与自身是独立的,即P(A∩A) = P(A) × P(A),即事件A发生与否不影响事件A本身的概率。
2. 如果事件A与事件B独立,那么事件A的补事件与事件B也是独立的,即P(A'∩B) = P(A') × P(B)。
3. 如果事件A与事件B独立,那么事件A与事件B的补事件也独立,即P(A∩B') = P(A) × P(B')。
二、事件独立性的判断在实际问题中,如何判断两个事件是否独立是一个重要的问题。
通常可以通过以下两种方式进行判断。
1. 通过已知概率判断:如果已知事件A和事件B的概率,可以通过计算P(A∩B)和P(A) × P(B)来判断两者是否相等。
如果相等,则事件A与事件B是独立的;如果不相等,则事件A与事件B不是独立的。
2. 通过条件概率判断:根据条件概率的定义,如果已知事件A和事件B的条件概率P(A|B)和P(B|A),可以通过比较P(A|B)和P(A)以及P(B|A)和P(B)的大小关系来判断事件A与事件B的独立性。
如果条件概率与边际概率相等,则事件A与事件B是独立的;如果条件概率与边际概率不相等,则事件A与事件B不是独立的。
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第53讲事件的独立性、条件概率和全概率公式(精讲)题型目录一览①事件的相互独立性②条件概率③全概率公式④贝叶斯公式一、条件概率1.定义:一般地,设A ,B 为两个事件,且()0P A >,称()()()|P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率.注:(1)条件概率|()P B A 中“|”后面就是条件;(2)若()0P A =,表示条件A 不可能发生,此时用条件概率公式计算|()P B A 就没有意义了,所以条件概率计算必须在()0P A >的情况下进行.2.性质(1)条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即1|0()P B A ≤≤.(2)必然事件的条件概率为1,不可能事件的条件概率为0.(3)如果B 与C 互斥,则(||()(|))P B C A P B A P C A =+ .注:已知A 发生,在此条件下B 发生,相当于AB 发生,要求|()P B A ,相当于把A 看作新的基本事件空间计算AB 发生的概率,即()()()()()()()()|()n AB n AB n P AB P B A n A n A P A n Ω===Ω.二、相互独立与条件概率的关系1.相互独立事件的概念及性质(1)相互独立事件的概念对于两个事件A ,B ,如果)(|)(P B A P B =,则意味着事件A 的发生不影响事件B 发生的概率.设()0P A >,一、知识点梳理根据条件概率的计算公式,()()()()|P AB P B P B A P A ==,从而()()()P AB P A P B =.由此我们可得:设A ,B 为两个事件,若()()()P AB P A P B =,则称事件A 与事件B 相互独立.(2)概率的乘法公式由条件概率的定义,对于任意两个事件A 与B ,若()0P A >,则()|)()(P AB P A P B A =.我们称上式为概率的乘法公式.(3)相互独立事件的性质如果事件A ,B 互相独立,那么A 与B ,A 与B ,A 与B 也都相互独立.(4)两个事件的相互独立性的推广两个事件的相互独立性可以推广到(2)n n n >∈*N ,个事件的相互独立性,即若事件1A ,2A ,…,n A 相互独立,则这n 个事件同时发生的概率1212()()()()n n P A A A P A A P A = .2.事件的独立性(1)事件A 与B 相互独立的充要条件是()()()P AB P A P B =⋅.(2)当()0P B >时,A 与B 独立的充要条件是()()|P A B P A =.(3)如果()0P A >,A 与B 独立,则()()()()()()()|P AB P A P B P B A P B P A P A ⋅===成立.三、全概率公式1.全概率公式(1)|()()()()(|)P B P A P B A P A P B A =+;(2)定理1若样本空间Ω中的事件1A ,2A ,…,n A 满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()0i P A >,12i n = ,,,.则对Ω中的任意事件B ,都有12n B BA BA BA =+++ ,且11()()()()|nni i i i i P B P BA P A P B A ====∑∑.2.贝叶斯公式(1)一般地,当0()1P A <<且()0P B >时,有()()()()()()()()()()||||P A P B A P A P B A P A B P B P A P B A P A P B A ==+(2)定理2若样本空间Ω中的事件12n A A A ,,,满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()01i P A <<,12i n = ,,,.则对Ω中的任意概率非零的事件B ,都有12n B BA BA BA =+++ ,且1()()()()()()()()|||j j j j j niii P A P B A P A P B A P A B P B P A P B A ===∑注:贝叶斯公式体现了|()P A B ,()P A ,()P B ,|()P B A ,|()P B A ,()P AB 之间的关系,即()()()|P AB P A B P B =,()()()()()||P AB P A B P B P B A P A ==,|()()()()(|)P B P A P B A P A P B A =+.题型一事件的相互独立性1.判断事件是否相互独立的方法(1)定义法:事件(2)由事件本身的性质直接判定两个事件发生是否相互影响.二、题型分类精讲A.332B.【答案】D【题型训练】一、单选题,从乙口袋内摸出一个白球的概率是6【分析】根据题意,求得事件甲、乙、丙、丁的概率,结合相互独立事件的概念及判定方法,逐项判定,不相互独立,所以本序号说法不正确;二、多选题不能同时发生,但能同时不发生,所以不是对立事件,所以三、填空题四、解答题.一题多解是由多种途径获得同一数学问题的最终结论,一题多解不但达到了解题的目标要求,而且让情.某市举行了一场射击表演赛,规定如下:表演赛由甲、乙两位选手进行,每次只能有一位选手射击,题型二条件概率1.判断所求概率为条件概率的主要依据是题目中的知事件的发生影响了所求事件的概率,也认为是条件概率问题.运用条件概率的关键是求出【题型训练】一、单选题1.核酸检测是目前确认新型冠状病毒感染最可靠的依据.经大量病例调查发现,试剂盒的质量、抽取标本的部位和取得的标本数量,对检测结果的准确性有一定影响.已知国外某地新冠病毒感染率为d二、多选题、表示事件错误;三、填空题个红球,从中任意取出一球,已知它不是白题型三全概率公式全概率公式复杂的概率计算分解为一些较为容易的情况分别进行考虑.【题型训练】一、单选题小时的学生中任意调查一名学生,则(二、多选题,所以表示买到的口罩分别为甲品牌、乙品牌、其他品牌,,对;三、填空题记任选一人去桂林旅游的事件为B ,则123()0.4,()()0.3P A P A P A ===,123(|)0.1,(|)0.2,(|)0.15P B A P B A P B A ===,由全概率公式得112233()(|)()(|)()(5|)30.15014P P A P B A P A P B A P A P B B A =⨯⨯++==++⨯.故答案为:0.145四、解答题附:()2P K k≥0.150.100.05k 2.072 2.706 3.841 (2)将甲乙生产的产品各自进行包装,每来自甲生产的概率为3,来自乙生产的概率为(1)假设四人实力旗鼓相当,即各比赛每人的胜率均为①A获得季军的概率;②D成为亚军的概率;,其余三人实力旗鼓相当,求题型四贝叶斯公式1.利用贝叶斯公式求概率的步骤第一步:利用全概率公式计算【题型训练】一、单选题。
§10.5 事件的相互独立性与条件概率、全概率公式第十章 计数原理、概率、随机变量及其分布2024年高考数学一轮复习课件(新高考版)考试要求1.了解两个事件相互独立的含义.2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.相互独立事件(1)概念:对任意两个事件A 与B ,如果P (AB )=__________成立,则称事件A 与事件B 相互独立,简称为独立.P (A )·P (B)B2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=______为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式①利用古典概型:P(B|A)=_______;P(A)P(B|A)②概率的乘法公式:P(AB)=___________.3.全概率公式一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=______________.常用结论1.如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P(A n).2.贝叶斯公式:设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(2)若事件A ,B 相互独立,则P (B |A )=P (B ).( )(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A ,“第2枚正面朝上”为事件B ,则A ,B 相互独立.( )(4)若事件A 1与A 2是对立事件,则对任意的事件B ⊆Ω,都有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2).( )√×√√1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为则谜题没被破解出的概率为√设“甲独立地破解出谜题”为事件A,“乙独立地破解出谜题”为事件B,2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是√当第一次抽到次品后,还剩余2件次品,5件合格品,由题意得,居民甲第二天去A 食堂用餐的概率P =0.5×0.6+0.5×0.5=0.55.3.智能化的社区食堂悄然出现,某社区有智能食堂A ,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A 食堂,那么第二天去A 食堂的概率为0.6;如果第一天去B 食堂,那么第二天去A 食堂的概率为0.5,则居民甲第二天去A 食堂用餐的概率为_____.0.55第二部分例1 (1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则√A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.(2)(2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为______;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为 _____.0.50.1记两人又打了X个球后结束比赛,设双方10∶10平后的第k个球甲获胜为事件A k(k=1,2,3…),=0.5×0.4+0.5×0.6=0.5.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练1 小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列火车正点到达的概率;由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)这三列火车恰好有一列火车正点到达的概率;恰好有一列火车正点到达的概率为=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(3)这三列火车至少有一列火车正点到达的概率.三列火车至少有一列火车正点到达的概率为=1-0.2×0.3×0.1=0.994.例2 (1)(2022·哈尔滨模拟)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为√设事件A为“从七巧板中取出两块,取出的是三角形”,事件B为“两块板恰好是全等三角形”,(2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为√记事件A:这人一次性饮酒4.8两未诱发这种疾病,事件B:这人一次性饮酒7.2两未诱发这种疾病,则事件B|A:这人一次性饮酒4.8两未诱发这种疾病,继续饮酒2.4两不诱发这种疾病,则B⊆A,AB=A∩B=B,P(A)=1-0.04=0.96,P(B)=1-0.16=0.84,思维升华求条件概率的常用方法(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.跟踪训练2 (1)(2023·六盘山模拟)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为√设事件A=“第1次抽到代数题”,事件B=“第2次抽到几何题”,由题意知,第一次击中与否对第二次没有影响,②在仅击中一次的条件下,第二次击中的概率是_____.例3 (1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为√设事件A表示“小胡答对”,事件B表示“小胡选到有思路的题”.则小胡从这8道题目中随机抽取1道做对的概率(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为√A.0.48B.0.49C.0.52D.0.51设事件A=“发送的信号为0”,事件B=“接收的信号为1”,思维升华利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(A i)P(B|A i).(3)代入全概率公式计算.跟踪训练3 (1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为√A.0.78B.0.8C.0.82D.0.84设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.(2)(2022·郑州模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=_____,P(B)=_____.第三部分A.事件A与B互斥B.事件A与B对立√C.事件A与B相互独立D.事件A与B既互斥又相互独立∴P(AB)=P(A)P(B)≠0,∴事件A与B相互独立,事件A与B不互斥也不对立.4个都不能正常照明的概率为(1-0.8)4=0.001 6,只有1个能正常照明的概率为4×0.8×(1-0.8)3=0.025 6,所以至少有两个能正常照明的概率是1-0.001 6-0.025 6=0.972 8.2.(2023·开封模拟)某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是A.0.819 2B.0.972 8C.0.974 4D.0.998 4√3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为√A.0.8B.0.625C.0.5D.0.1设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,4.(2022·青岛模拟)甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为√A.0.36B.0.352C.0.288D.0.648由题意可得甲最终获胜有两种情况:一是前两局甲获胜,概率为0.6×0.6=0.36,二是前两局甲一胜一负,第三局甲胜,概率为×0.6×0.4×0.6=0.288,这两种情况互斥,∴甲最终获胜的概率P=0.36+0.288=0.648.记事件A 为“该考生答对题目”,事件B 1为“该考生知道正确答案”,事件B 2为“该考生不知道正确答案”,则P (A )=P (A |B 1)·P (B 1)+P (A |B 2)·P (B 2)=1×0.5+0.25×0.5=0.625.5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为A.0.625B.0.75C.0.5D.0.25√6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”; B表示事件“医生乙派往①村庄”; C表示事件“医生乙派往②村庄”,则A.事件A与B相互独立B.事件A与C相互独立√。
事件的独立与互斥一、事件的独立性及其定义事件的独立性指的是一个事件的发生与另一个事件的发生互不影响。
具体而言,当两个事件A和B满足P(A∩B) = P(A) × P(B)时,称事件A 与事件B是独立的。
其中,P(A)代表了事件A发生的概率,P(A∩B)代表了事件A和事件B同时发生的概率,P(B)代表了事件B发生的概率。
二、事件的互斥性及其定义事件的互斥性表示两个事件A和B之间的关系是互不相容的,即事件A的发生和事件B的发生是互斥的。
简而言之,当事件A和事件B满足P(A∩B) = 0时,称事件A与事件B是互斥的。
三、独立事件与互斥事件的区别独立事件和互斥事件都属于概率论中的重要概念,但它们之间存在明显的差异。
首先,独立事件在某一次试验中,事件A的发生与事件B的发生没有任何关联性,彼此之间不会相互影响。
而互斥事件则表示事件A和事件B之间是相互排斥的,即两者不能同时发生。
在概率计算方面,独立事件的概率计算比较简单,只需要将事件A和事件B的概率相乘即可。
例如,某抛硬币实验中,事件A为出现正面的概率,事件B为出现反面的概率,假设它们是独立事件,那么P(A) × P(B)就是同时出现正面和反面的概率。
而互斥事件的概率计算则需要考虑两个事件之间不可能同时发生的性质。
例如,某个班级里有数学课和语文课两个科目,学生在一节课中只能选择其中一个科目参与,那么数学课和语文课就是互斥事件。
四、事件的独立与互斥的应用场景1. 投掷骰子:假设有两个骰子,事件A表示第一个骰子投掷的结果为3,事件B表示第二个骰子投掷的结果为4。
由于两个骰子之间没有任何关联,因此事件A和事件B是独立事件。
2. 生日问题:在一群人中,事件A表示至少有两人的生日相同,事件B表示其中一个人的生日是在某一特定日期。
由于每个人的生日都是独立发生的,因此事件A与事件B是独立事件。
3. 球箱问题:假设有一个盒子里有4个红球和3个蓝球,事件A表示从中抽出的球是红球,事件B表示从中抽出的球是蓝球。