当前位置:文档之家› 3-电冰箱系统设计

3-电冰箱系统设计

3-电冰箱系统设计
3-电冰箱系统设计

3 冰箱制冷系统设计

冰箱制冷系统的设计基本思路和顺序是:先根据要求确定箱体尺寸,然后根据箱体尺寸确定热负荷,根据热负荷和其他发热元件可以确定冰箱的基本能耗,并依次确定压缩机,同时可以确定蒸发器和冷凝器两大主要传热设备,最后才是确定节流元件和制冷剂充注量。当然,计算设计不可能是很准确的,最后还需要通过试验和不断的调试来使系统运行达到最优化。

保温层设计

3.1.1 保温层设计方法

冰箱保温层厚度是设计的重点,关键是产品的成本与性能,而保温层的设计需要考虑的因素包括:

①不同的市场和不同的能耗要求;

②产品的不同风格和设计特点;

.

③市场对发泡料的限制条件;

④产品成本的综合对比选择;

⑤产品的市场要求:全球性、区域性、特殊客户;

⑥产品的未来发展考虑。

冰箱保温层厚度是设计的重点,在设计中总会与不同部门发生冲突,当然要求的厚度越薄越好,这样成本低,容积大,但由于技术的能力有限制的,在能耗达到一定的水平时,厚度也不是可以薄到想要的程度,因此在厚度的设计方面存在选择是否合理的问题。

目前冰箱箱体都采用硬质聚氨脂整体发泡作绝热层,其绝热性能好,适于流水线大批量生产,发泡后的箱体内外壳被粘接成刚性整体,结构坚固,内外壳厚度可以适当降低,无须对箱体做防潮处理,年久也不会吸湿而使热导率增大。

电冰箱绝大多数为立式结构。箱体结构的发展过程,大致分为四个阶段:5 0年代以前主要是厚壁箱体(厚度为60~65mm);60年代是薄壁箱体(厚度30~3 5mm);70年代是薄壁双温双门;80年代以后世界上趋于采用中等壁厚箱体(厚度为40~45mm),并以箱背式冷凝器的三门三温或双门双温自然对流冷却(即直冷

式)冰箱为主。随着良好隔热性能的隔热材料的应用,箱体壁厚的减薄,箱体重

量进一步减轻并增大了冰箱的内容积。

立式冰箱箱体,首先根据内容积确定宽深比例,一般选为正方形或矩形,其比例不超过1:,双侧门柜式箱体的宽深比为1:左右。总体高度以放置稳定和箱内储放食品方便为原则。表6—7给出了电冰箱内容积与外形尺寸范围。

表6-7 电冰箱内容积和外形尺寸范围

设计箱体的绝热层时,可预先参照国内外冰箱的有关资料设定其厚度,如表3-1所示为某冰箱的绝热层厚度。

表3-1 冰箱的绝热层厚度

冷冻室顶层厚度冷冻室顶层厚度冷冻室背面厚度冷冻室门体厚度"

冷冻室底面厚度0.1m0.072m0.072m0.053m0.05m

冷藏室顶层厚度冷藏室侧面厚度"

冷藏室背面厚度

冷藏室门体厚度冷藏室底面厚度0.05m0.053m0.053m0.053m0.05m

但采用了其他冰箱的厚度时,需要对厚度进行校核计算,校核的依据就是不能出现凝露。

校核计算首先是要计算出箱体表面温度。如果箱体外表面温度t

w

低于露点温

度,则会在箱表面上发生凝露现象,因此箱体表面温度t

w

必须高于露点温度t

d

,最低限度tw>0.2℃+td。

在达到稳定传热状态后的表面温度t

w

可以由下式计算:

)(210

1t t a k

t t w --

= (3-1)(改a 1 式中:

t w —箱体外表面温度,单位为℃; t l —箱外空气温度,单位为℃; t 2—箱内空气温度,单位为℃;

>

a 1 —箱外空气对箱体外表面的表面传热系数,单位为W/; k —传热系数,单位力W/.

按照国家标准的规定,电冰箱在进行凝露试验时,规定亚温带型(SN)、温带型(N)和亚热带型(ST)、热带型(T)冰箱的露点温度分别为19℃±0.5℃和27℃±0.5℃。

在箱体表面温度高于露点温度的前提下,计算箱体的漏热量Q 1,并用下式校验绝热层的厚度

1

21)

(A Q t t w w -=λδ

式中:

t wl —箱外壁温度,单位为℃; t w2—箱内壁温度,单位为℃;

λ—热导率,单位为W/,各种绝热层热导率可见 ; A-传热面积,单位为m 2。

校验计算所得的厚度在设定厚度的基础上,进行修正,反复计算,直到合理为止。

3.1.2 保温层设计案例 某冰箱设计要求:

(1) 使用环境条件:冰箱周围环境温度ta=32℃,相对湿度φ=75%。 (2) (

(3)箱内温度,采用标准温度,冷藏室温度5℃,冷冻室温度-18℃。

(4)箱内容积总168L,冷藏室100L,冷冻室68L,人们的生活习惯是经常用冷藏箱而少用冷冻箱,因此将冷冻箱设置在下层。

(5)冰箱制冷方式为直冷,节流元件为毛细管,其他配件根据需要自行配置。设计:

1、箱体保温层采用硬质聚氨酯泡沫。

2、箱体尺寸参考其他相似尺寸的冰箱确定,相关尺寸和结构如图所示(图中

尺寸单位:cm)。

3、首先校核这种尺寸选择是否满足凝露条件

箱体外表面凝露校核分冷冻室和冷藏室进行。

(1)冷冻室凝露校核

冷冻室绝热层厚度最薄处在压缩机室处和门侧,由于压缩机散热导致压缩机室内温度高于环境温度一般不会出现凝露,因此,凝露校核计算时选取厚度最小的门侧。

凝露校核计算公式为3-1,因此,首先要确定相关参数:环境温度t1为32 C ,箱内空气温度t2为-18℃。

另外,对于相关传热系数的规定:当室内风速为~0.15m /s 时,α1可取~(m2·K);箱内空气为自然对流(直冷式)时,α2可取~(m2·K);双门双温问冷式电冰箱,由于箱内风速较大,其α2可取l7~23W /(m2·K)。这里选取室内α

2

= W/(m2·K),隔热层绝热系数 W/(m ·K),室外对流换热系数α1取11W/(m2·K),

2

11

1

1

αλδα++=

K = W/(m2·K)

则外表面温度

8.30)1832(11

26.032)(2111=+?-=--

=t t a k t t w ℃ )

高于国家标准的规定的凝露温度。 (2)冷藏室凝露校核

冷藏室最薄的地方仍然是门侧,因此,计算方法同冷冻室,可计算出外表面

温度为)532(11

26

.032)(2111-?-=--

=t t a k t t w =31.4℃ 同样高于国家标准规定的凝露温度。

一般情况下,如果箱体尺寸参考了市场上产品的尺寸,则一般不存在凝露问题,但最好进行一下凝露校核。

冰箱热负荷计算

在产品的设计中,计算冰箱的热负荷实际上很重要,它可以从产品的开发前期已经知道产品的性能状态,产品的制冷系统匹配、以及产品出现问题后能找到问题的分析点:

①知道产品的未来的性能状态;

②知道产品在不同环境中的性能状态;

③事先可以初步知道产品的能耗水平以及改进后的状态;

④可以找到产品设计中的缺点、找到改进的方向;

⑤可以用最低成本设计产品;

⑥缩短产品的开发时间,提高产品开发的命中率。

3.2.1电冰箱的热负荷计算

电冰箱热负荷在冰箱设计中是一个重要参数,它与冰箱的箱体结构、冰箱的内容积,箱体绝热层的厚度和绝热材料的优劣等因素有关。

|

热负荷包括:箱体漏热量Q1、开门漏热量Q2、贮物热量Q3和其它热量Q4。即

Q=Q

+Q2+Q3+Q4 (6—4)

1

1、箱体漏热量Q1

箱体漏热量包括,通过箱体隔热层的漏热量Qa,通过箱门和门封条的漏热量Qb,通过箱体结构形成热桥的漏热量Qc。即

Q1=Qa+Qb+Qc (6—5)

(1)箱体隔热层的漏热量Qa,由于箱体外壳钢板很薄,而其热导率λ值很大,所以热阻很小,可忽略不计。内壳多用ABS或HIPS塑料板真空成形,最薄的四周部位只有1.0mm。塑料热阻较大,可将其厚度一起计入隔热层,因此箱体的传热可视为单层平壁的传热过程。即

=KA(t1-t2) (6.6)

Q

a

式中A…-箱体外表面,单位为m2。

传热系数K(单位为W /(m 2·K))为

2

111

1

αλδα++=

K

式中α1——箱外空气对箱体外表面的表面传热系数,单位为W /(m2·K); α2——内箱壁表面对箱内空气的表面传热系数,单位为W /(m2·K); δ——隔热层厚度,单位为m ;

λ——隔热材料的热导率,单位为W /(m ·K)。

在进行箱体隔热层捕热量计算时,要注意到冷冻室和冷藏室的隔热层厚度是不一样的,应采用分段计算相加后的Q a 值。另外,采用壁板盘管式冷凝器的电冰箱,箱体后壁面的表面温度近似取为冷凝温度t k ,也需另外计算该部分漏热量。 (2)通过箱门与门封条进入的漏热量Qb

由于Qb 值很难用计算法计算,一般根据经验数据给出,可取Qb 为Qa 的15%值。

(3)箱体结构部件的漏热量Qc

箱体内外壳体之间支撑方法不同,Qc 值也不同,因此同样也不易通过公式计算。一般可取Qc 值为Qa 值的3%左右。目前采用聚氨酯发泡成型隔热结构的箱体,无支撑架形成的冷桥,因此Qc 值可不计算。 2、其它热量Q 。

这里所说的其他热量,是指箱内照明灯、各种加热器、冷却风扇电机的散发热量,可将其电耗功率折算热量计入。另外,还要考虑开门时漏入的热量,因此,在电冰箱箱体热负荷计算时,为了安全起见一般还增加10~15%的余度,即以~的热负荷进行设计。

3.2.2 冰箱热负荷计算案例

案例一:继续前一节的BCD168L 冰箱的设计,计算箱体热负荷。

%

对于冰箱热负荷计算,有的公司将计算分成制冷和不制冷两个阶段分别计

算,这也是有道理的。制冷时,压缩机运转,压缩机室温度高于不制冷时,如果

冷凝器是背挂式,则箱体背部的外表温度也不同于环境温度,因此,分开计算可以更精确计算。但本书作者经过实验研究表明,这种分开计算提高了设计工作量,对于实际的设计却没有多大的意义,因此,一般不分开计算。

另外,借助于计算软件可以获得高效准确的计算结果,最简单的就是借助Ms Office的Excel电子表格软件进行设计计算,可以获得快速准确的计算结果,并且适用于不同规格的冰箱设计计算。

下面分步骤进行热负荷计算。

1、冷冻室热负荷QF计算

(1)箱体漏热量Q1F

一般的冰箱不需要考虑冷桥漏热,因此冷冻室箱体漏热量只包括箱体隔热层漏热量Qa和通过箱门与门封条漏热量Qb两部分。

1)箱体隔热层漏热量Qa 箱体隔热层漏热量按式(6—6)计算,计算时箱外空气对箱体外表面的表面传热系数α

取11W/(m2·K),箱内壁表面对箱内空气

1

取/(m2·K),隔热层材料的热导率λ取 2W/(m·K)。各传的表面传热系数α

2

热表面的传热量计算见表6-18。

表6-18

-

顶面侧面背面门体底面

冷冻室负荷计算

面积A/m2:

传热系数[

传热温差/℃

$

传热量Q/W

将上表中各表面的传热量相加即得箱体隔热层漏热量Qa=。

2)通过箱门与门封条漏热量Qb

"

Qb==×=

冷冻室箱体漏热量为

Q1F=Qa+Qb=+=

考虑到其他漏热,加上15%的余量,因此,冷冻室的热负荷QF=×=。

2、冷藏室热负荷QR计算

冷藏室热负荷同冷冻室。

(1)冷藏室箱体漏热量Q1R

1)箱体隔热层漏热量Qa

冷藏室各传热表面的传热计算如表7所示。

表7

冷藏室负荷计算顶面侧面背面门体底面!

面积A/m2

传热系数*

传热温差/℃【

传热量Q/W

将上表中各表面的传热量相加即得冷藏室箱体隔热层漏热量Qa=。

2)通过箱门与门封条漏热量Qb

Qb==×=

冷藏室箱体漏热量为

Q1R=Qa+Qb=+=11W

考虑到其他漏热,加上15%的余量,因此,冷藏室的热负荷QR=11×=。

电冰箱的总负荷为

Q=QF+QR=+=。

{

案例二:双层玻璃门的传热计算

很多冷柜或者冰箱采用的是双层玻璃门,其传热示意图如图1所示。

图1 双层玻璃门传热示意图

图1中的符号名称如下:

T i ——柜内温度,[K];

T o ——环境温度,[K];

T ig ,T g3——柜内侧玻璃表面温度,[K]; T og ,T g2——柜外侧玻璃表面温度,[K]; ε——辐射黑度; d g ——玻璃厚度,[m ; d a ——玻璃夹层厚度,[m]; λg ——玻璃导热系数,[w/m ?k]; λa ——玻璃间气体导热系数,[w/m ?k]。

玻璃门的综合传热系数K 计算式[1]

a

n

j j i

R K ααα1

1

1

1

1

+

+

+=

∑= w/m ?k (1)

柜内侧传热系数i α [1]为:

)

)(11

1(]

100100[67.544

4

i ig i

i ig ic i T T T T --+??? ??-???? ???+=εεαα w/m ?k (2)

式中:ic α——柜内侧对流换热系数,[w/m 2?k];

)

)(11

1(]

100100[67.544

4

i ig i

i ig T T T T --+??? ??-???? ???εε——辐射换热系数,[w/m 2?k]。

柜外侧传热系数o α 为:

)

)(11

1(]100100[67.514

4

og o o

og o oc o T T T T --+????

??-??? ???+

=εεαα w/m 2?k (3) …

式中:oc α——柜外侧对流换热系数,[w/m 2?k]; 玻璃热阻R 为:

∑====n

j gj

gj

n j j d R R 1

1

λ [w/m 2?k] (4)

玻璃间气体若纯导热,则传热系数a α为:

)

)(111(]100100[67.5323

24

34

2g g g g a

a a T T T T d --+????

??-???? ???+

=εελα w/m 2?k (5) 若玻璃间气体厚度较厚,则需要考虑层间对流换热问题,则传热系数a α为[1]

)

)(11

1(]

100100[67.5323

24

34

2g g g g ac a T T T T --+???? ??-???? ???+=εεαα w/m 2?k (6) 式中: ac α——层内气体对流换热系数,[w/m 2?k];

'

在进行计算时,可先假定玻璃表面温度T og ,T ig ,算出o α,i α,a α及K 值,再根据下式进行校核计算:

)(i o o

o og T T K

T T --

=α [K] (7)

)(i o i

i ig T T K

T T -+

=α [K] (8)

如果用式(7)和(8)计算的T og ,T ig 值与开始假定值不符,则重新进行假定计算,直到两者热流量相等。

冰箱制冷系统热力参数确定和压缩机确定、耗电量计算

3.3.1 冰箱制冷系统热力参数确定

很多设计参考书都会对冰箱制冷系统进行热力计算,但笔者认为这种计算是浪费时间且无意义的,因为通过热力计算所得到的单位质量制冷量、单位绝热功等等指标一方面与实际差距太大(因为这种热力计算往往是理论计算),另一方面在缺乏制冷剂流量的情况下这些指标参数很难转化为对于设备选型有用的参数(制冷剂流量不等于制冷剂充注量,当然,如果能测定制冷剂流量则另当别论)。但是,确定制冷系统的热力参数是有意义的,在冰箱样机试制和性能测试时,判断设计的好坏,主要的判断依据就是实测参数对设定参数的吻合度。下面简单介绍制冷循环的常规热力参数。

1、制冷循环的常规热力参数

我国国家标准局发布的“电冰箱用全封闭压缩机”国家标准GB9098-88中有关确定压缩机制冷量的试验条件如表所示。

一般冰箱制冷循环热力参数的设计规定也与表所列相同。

(1)冷凝温度t

k

冷凝温度一般取决于冷却介质的温度以及冷凝器中冷却介质与制冷剂的传热温差,传热温差与冷凝器的冷却方式和结构型式有关。电冰箱大多采用空气自然对流冷却方式,制冷剂的冷凝温度等于外界空气温度(即环境温度)加上冷凝传热温差。冷凝传热温差靠一般取10~20 ℃,冷凝器的传热性能好,可适当取小的数值,例如采用风速为2~3m/s的风冷却时,传热温差△K值可取8~12℃。

(2)蒸发温度t

蒸发温度一般取决于被冷却物体的温度以及蒸发器中制冷剂与被冷却物体的传热温差。电冰箱的蒸发温度等于箱内温度减去传热温差,一般传热温差以取5~10℃,如采用风冷却式(间冷式)时传热温差可取5℃,箱内温度一般参照

星级要求选取。

(3)回气温度t

G

回气温度(即过热温度)取决于蒸气离开蒸发器时的状态和回气管的长度。电冰箱采用全封闭压缩机,一般以进入壳体的状态为吸气状态,可根据压缩机标定的工况选取,该值越低对压缩机运行越有利。一般回气温度要小于或等于环境温度,即进入压缩机前的回气管温用手摸一般有凉的感觉,或者有微微凝露,但不应该有结霜,制冷剂进入压缩机后,由于电机加热吸入气缸前过热蒸气温度达60℃左右。

(4)过冷温度t

s

过冷温度取决于液体制冷剂在回气管中进行热交换的程度。冷凝后的制冷剂在冷凝器末端已达到环境温度值,再与回气管进行热交换得到冷却。一般过冷温度等于环境温度减去过冷度,过冷度可取15-32℃。

综合上述,可以确定出冰箱制冷系统的设计工况,某温带型冰箱(制冷剂为R600a)工况如表所示(80改60)。

将这些参数在压-焓图上进行标示,如图所示。

此压-焓图中所示状态点是理想状态的工况点,与实际运行可能不是很吻合,但具有一定的参考价值。

3.3.2 压缩机的选择

1、压缩机选型原则

'

电冰箱压缩机均采用全封闭式压缩机。对于冰箱厂,一般无制造冰箱压缩机的能力,只能在进行电冰箱设计时,直接根据设计任务书所提出的制冷量的大小从已有产品中选择压缩机。

压缩机选型时,主要的参考资料是各种压缩机的全性能曲线。全性能曲线如图6-1 8所示。图中t0为蒸发温度,tk为冷凝温度。作图时,过冷温度和吸气温度由制造厂决定,压缩机制造厂提供每种型号压缩机的全性能曲线。

用全性能曲线选择压缩机的方法如下:①通过制冷系统的热力计算,求出在计算工况tk、t0时的制冷量;②参照各种压缩机的全性能曲线,选择压缩机。所选用的压缩机应满足计算工况下的制冷量,并应有高的制冷系数,同时要顾及产品的质量,价格和安装尺寸。

2、压缩机选型案例

继续前一节BCD-168冰箱的设计,为该冰箱选择合适的压缩机。

前面已经计算得出BCD-168冰箱的热负荷为,这种制冷量的压缩机选择性很大,可以选择COP在以上的高效压缩机,但价格相对较高,也可以选择COP和价格都相对较低的压缩机。本书选择黄石东贝R600a冰箱压缩机,该厂出产的压缩机参数表如表所示。压缩机的选择首先要确定压缩机的开机时间比,并根据开机时间比折算制冷量,最后依照制冷量和COP选择合适的压缩机。

,

(1)开机时间比η确定

开机时间比指的是压缩机的开机时间占总的冰箱制冷时间的比率,也称运行系数,一般压缩机在32℃环境下合适的开机时间比是30~35%,在38%环境温度下开机时间比一般在45~50%左右。

(2)压缩机选取

本案例在32℃环境温度下选择开机时间比为35%,则压缩机在35%的开机时间内要完成的制冷量,所以压缩机的额定制冷量Q:

Q==101W

即应该按照101W的制冷量选择压缩机。根据表,在101W制冷量范围的有S65CY、SU60CY、SZ60CY几种型号,其COP分别为、、,本文选择COP为的SU60CY 压缩机,其制冷量100W。

3.3.3 冰箱耗电量预算

选定压缩机以后,即可以根据压缩机的耗电量预算冰箱的耗电量。

压缩机功率W计算公式如下:

5.626

.1100

===

COP Q W W 压缩机耗电量P 计算:

9.2135.05.62=?=?=ηW P W=即压缩机耗电量为度/天。

直冷冰箱蒸发器的设计

3.4.1 蒸发器设计的基本原则和方法

在前面章节曾介绍过冰箱常用的蒸发器包括:铝复合板式蒸发器(目前常用的是吹胀工艺形成的复合板式蒸发器,简称吹胀式蒸发器)、管板式蒸发器、丝管式蒸发器和翅片盘管式蒸发器。其中翅片盘管式主要用在间冷式冰箱,其余的较多用在直冷式冰箱。翅片盘管式蒸发器的计算可参考空调器换热器的计算方法,这里主要介绍自然对流空冷器的计算方法。

对于自然对流式空冷器,管外侧即使考虑辐射后其总表面传热系数仍远小于管内制冷剂沸腾时的表面传热系数。因此传热的主要热阻仍在空气侧,除翅片式自然对流空冷器外,蒸发器的传热系数基本上等于管外侧的总表面传热系数。目前还没有见到针对电冰箱用蒸发器的国家标准或行业标准,已有的标准如—87《家用制冷器具电冰箱(冷藏箱)》,GB8059, 2--87《家用制冷器具电冰箱(冷藏冷冻箱)》及GB8059. 3-87《家用制冷器具冷冻箱》及轻工部标准SG215 -84等均是对整台冰箱制订的,对于间冷式冰箱中的强制对流翅片管蒸发器,其计算方法与空调器用蒸发器大致相同,而直冷式电冰箱的蒸发器看似简单,但是精确计算却难度较大,涉及非稳态、三维、复杂形状封闭空腔、有离散冷源、蒸发器外侧对流与辐射耦合、蒸发器内、外侧换热的耦音、箱内食品种类与堆放方式等复杂因素,为此国内、外一些著名的公司对蒸发器的设计均与冰箱整机性能一起用计算机进行大规模动态数值计算。

对冰箱用蒸发器作手算时,下列热工参数可供参考:

1) 室内环境温度32℃,空气有轻微流动(在自然对流作用下引起的微风,风速为~0.15m/s)时,空气与冰箱外壁间的表面传热系数(包括辐射影响)约在~之间,一般可取为,如果空气有其它扰动源使风速稍增大,则传热系数可增大到。

2)在直冷式冰箱(冷藏室内有贮物时),由于自然对流引起箱内空气的流动很微弱,风速约为~0.12m/s,箱内空气与冰箱内壁间的传热系数约在~之间,一般可取。

3)在间冷式冷箱内,由于风机使箱内空气作强制对流,风速约为~l.0m/s,箱内空气与冰箱内壁间的表面传热系数约在17~23W/之间,一般可取20W/。

4)对于一般电冰箱采用的板管式与铝复合吹涨式蒸发器,蒸发器外表面与箱内空气间的表面传热系数在~14W/。

5)对于间冷式冰箱中采用的强制对流翅片管式蒸发器,其外表面与空气间的传热系数在18~35W/之间。

6)在计算箱体的漏热时,冰箱内、外侧表面传热热阻占总热阻比较小,主要热阻集中在绝热层,即使在绝热层厚度最薄处,二侧表面传热所占的热阻也不超过30%,而在绝热层最厚处(冷冻机背部)只占10%以下。

7)总体而言,冷冻室的表面传热系数大于冷藏室的表面传热系数,门及底部的传热系数较其他部位要小。

3.4.2 管板式和吹胀式蒸发器的设计方法

冰箱中常见的管板式和吹胀式蒸发器,可以看作是一种复杂的翅片式换热器,其肋化系数仍可定义为蒸发器外表面积与管内表面积之比。一般电冰箱的管板式蒸发器,其肋化系数在3. 5~4,5之间,而吹胀式蒸发器的肋化系数在~6.O 之同。为了精确计算蒸发器外表面的自然对流换热和辐射换热,必须首先计算出外表面(翅片表面)的温度分布,而翅片表面的温度分布又与局部表面传热系数相耦台,因此,迄今为止尚无通用的计算方法,对特定几何结构和几何参数的蒸发器能用大规模数值计算的方法进行计算,这不仅计算工作量大,而且由于计算对象本身的复杂性,不得不引入许多简化假设,使计算精度受限。因此这是一种正在发展的极有前途的设计方法。对于工程设计,目前主要仍依赖经验数据,一般家用冰箱采用的管板式与吹胀式蒸发器其表面传热系数a o 在11~14W/(m 2.K)之间(未结霜状态)。

对于家用冰箱的管板式蒸发器和吹胀式蒸发器可以用下列方法估算所需传热面积。

传热面积A (单位为m 2)为:

]

)100

()100[(5.67)(4040

T

T t t k Q A a o a -+-=

ε

^

智能冰箱方案设计

智能冰箱方案设计 从目前趋势来看,家电智能化已经成为必然,而作为一天中与我们接触最多的冰箱产品要想达到更人性化的使用效果,势必会进一步智能化。但其在智能化的进程中,也并非所有功能一股脑加进其中就可以,在此期间还需要根据用户的痛点、需求进一步筛选,不让智能冰箱的功能成为仅仅是过一次的“尝鲜”功能。面对这样的现状,一些厂商已经开始对智能冰箱3.0时代进行布局,打破以往功能单一、使用不便的痛点,让冰箱的智能功能走入我们的生活。相比以往智能冰箱产品,在智能方面有所提升,我们也希望能在未来看到更具智能化、高端化、人性化的冰箱产品。 目录 1.智能冰箱主要种类 2.智能冰箱和普通冰箱的区别 3.怎么延长智能冰箱的使用寿命

1.智能冰箱主要种类 按内冷却可分为:冷气强制循环式、冷气自然对流式;按用途可分为:冷藏箱、冷藏冷冻箱、冷冻箱;按外形可分为:单门电冰箱、双门电冰箱、三门电冰箱、四门电冰箱;按放置可分为:立式电冰箱、卧式电冰箱、台式电冰箱;按制冷风方式可分为:气体压缩式电冰箱、气体吸收式电冰箱、半导体式电冰箱。尽享舌尖美味,可让用户通过手机或电脑,随时随地了解冰箱里食物的数量、保鲜保质信息,可为用户提供健康食谱和营养禁忌,可提醒用户定时补充食品等。降低冰箱能耗,能够根据环境温度进行自动调节温度,并有多种调节模式,根据需求随时调节。

2.智能冰箱和普通冰箱的区别 智能冰箱和传统冰箱实际上并没有太多的区别,既没有住着个超级人工智能,也不会变形,更没有什么次元空间储藏。目前大多数智能冰箱都是在冰箱的门体上增加了一块触摸屏,让用户能够直接在冰箱的屏幕上调整冰箱的温度、工作状态;可以让用户手动记录冰箱内储存食物的时间、种类和到期时间;有些冰箱还能够根据储存的食物向用户推荐合适的菜谱;能够联网使用一些娱乐功能,比如播放音乐、播放视频或收听各种电台;有的冰箱还有网购模块,想购买什么东西可以直接在冰箱上下单。还有一些智能冰箱在门体上没有这些功能,但用户可以下载一个手机App与冰箱进行连接,在手机App上能够完成上面那些功能中的全部或大部分。

冰箱制冷系统设计说明书word版本

冰箱制冷系统设计说 明书

冰箱制冷系统设计说明书1.冰箱设计步骤

图1 BCD-348W/H电冰箱制冷系统图 2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小内容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸

2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国内外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w 。如果箱体外表面温度t w 低于露点温度t d ,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d +0.2 )(i o o o W t t a K t t -- = (1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN 、温带N 气候条件下,露点温度为19±0.5℃ 亚热带ST 、热带T 气候条件下,露点温度为27±0.5℃ t o t i

在t w > t d 的前提下,计算箱体的漏热量Q 1,并用下面的公式校验绝热层的厚度 1 21) (Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱内壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。内胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; i o a a K 111 ++= λδ

_80_C低温冰柜的系统设计

-80 C 低温冰柜的系统设计 卞荷洁 谷波 (上海交通大学 制冷与低温工程研究所 上海 200030) 摘 要 进行了-80 C 的低温冷柜的设计计算,该低温冰柜采用自然复叠制冷循环,采用R22/R14混合工质。文中涉及了蒸发器、冷凝器、冷凝蒸发器、中间换热器、毛细管和压缩机的设计计算。这种自然复叠式低温冷柜结构简单,在低温医学等方面有较好的应用。 主题词 自然复叠 低温冰柜 系统设计 1 引言 自然复叠制冷系统是一种采用多元混合工质的制冷系统,通过单台压缩机,自然分离,多次复叠的方法,在高低沸点组分间实现复叠,实现要求的制取低温的目的。对自然复叠制冷的研究最早开始于1959年,当时前苏联气体研究所的A.P.Klimeemko 教授采用碳氢化合物作制冷剂,用该系统液化天然气。接下来,1959年Smith 和Kennedy 也论述了此种系统,他们采用R12和R115制冷剂的混合物,并在传统复叠冷凝前加了制冷分馏冷凝器。1965年,Fuderer 应用与Podbielniak 类似的原理获得了美国专利。到了20世纪80年代,由于国际社会对能源、环保的重视,随着对混合工质研究的深入,各国科学工作者展开了对自然复叠制冷系统的研究,美国RE VCO 公司利用自然复叠循环的原理研制出-150 C 的低温冰箱。由于自然复叠制冷系统具有比较大的工作温区,无论是在普冷领域还是在低温电子、低温医学中的血液、器官保存、食品的冷冻干燥、气体液化等低温领域,都具有比较大的实用价值。我国的一些科研单位、大学和医院陆续进口了这种低温冰箱。随着我国制冷工业的不断发展,目前已有企业开始研发该种制冷系统,因而现在对该系统的研究和应用意义较大。2 系统的基本构成 自然复叠制冷是在传统制冷系统的基础上,增加了气液分离器、中间换热器和冷凝蒸发器,从而区别于传统制冷系统,可以通过单台压缩机,完成不同沸点组分的分离复叠。它的简单系统循环过程如下: 当制冷从压缩机A 排出后,经过干燥过滤器,进入冷凝器B,通过换热器G 1。由于制冷剂的二元组分的沸点不同,在冷凝器B 和换热器G 1中制冷剂中的大部分高沸点组分被冷 2003年第2期低 温 工 程 No 2 2003总第132期 C RYOGENICS Sum No 132 本文于2003年1月6日收到。卞荷洁,女,24岁,硕士生。

制冷系统部件的设计与选型1

第四章系统部件的设计与选型 该制冷系统试验装置部件包括压缩机、冷凝器、节流机构、低温箱体(含蒸发器)、节流元件、冷凝-蒸发器等主要设备,还有回热器、气液分离器、干燥过滤器等辅助设备。本章主要介绍这些设备的设计及选型(或制作)等内容。 §4.1 压缩机的选型计算[53] 压缩机是制冷系统中最主要部件,是实现蒸气压缩式制冷循环必不可少的部件,起着压缩及输送气体的作用。目前,在中、小型空调和冷柜机组中,容积式制冷压缩机为主要机种。随着制造和设计技术的进步,开启式压缩机在小冷量范围内已由半封闭式、全封闭式压缩机所代替。全封闭活塞式制冷压缩机的设计、制造相当成熟,在中小型制冷系统中广泛采用。该类压缩机的优点为:电机的工作性能较可靠,噪音低,使用方便[53-54]。 自上个世纪七十年代能源危机后,为得到较高的能量利用率,出现了一些新型的容积式压缩机,如:旋转活塞式、滑片式、涡旋式制冷压缩机。据本次设计蒸发温度较低的特点,将经验成熟的活塞式压缩机作为选型对象,按照制冷循环热力计算所求压缩机理论输气量进行选配,同时也应考虑压缩机结构性能上的要求。 活塞式制冷压缩机的制冷量与压缩机的工作容积、转速、吸气压力、排气压力、吸气温度等因素密切相关。各种型号压缩机的制冷量和蒸发温度、冷凝温度的关系曲线(性能曲线)一般由制造厂提供。应用这些曲线图,可确定在不同工况下压缩机的制冷量、功率消耗、能效比等数值。若无性能曲线作为参考,可按压缩机产品样本所提供的输气量选型。 §4.1.1压缩机吸气和排气状态参数 吸气状态参数: t 1= -20℃,P 1 =1.5bar,h 1 =391kJ/kg,s 1 =1.875kJ/kg v 1 =0.2092m3/kg,制冷剂状态为过热气体。排气状态参数: t 2=114℃,P 2 =18bar,h 2 =473.7kJ/kg,s 2 =1.875kJ/kg v 2 =0.019888m3/kg,制冷剂状态为过热气体。§4.1.2压缩机的热力计算 (1)压比

智能冰箱系统设计与研究项目中期报告

智能冰箱系统设计与研究项目中期报告 《智能冰箱系统设计与研究》这个课题从立项到现在已有近两个月了。在这段 时间里,我们从实际出发,有计划有步骤,扎扎实实地推进这项工作,做到在 实践中去研究,在研究中去实践,在研究实践中去总结。 一、研调研情况与资料收集情况 项目组根据设计的需要查阅了大量资料,现总结如下: (一)冰箱行业现状 1.市场 进入21世纪以来,中国已经成为世界上最大的冰箱生产和供应国之一。 中国的电冰箱企业除了不能自主设计和制造压缩机外,其他方面的自主设计和 生产能力均已具备。截至2006年底,中国冰箱年销售量达到了3079万台,与 上年同期相比增速达到19.56%,增速提升了8个百分点。 总体规模稳步上升 (1)国内销售量创5年新高 据赛诺市场研究公司监测,从2002年起至2004年,中国冰箱国内销量 增长率一直呈上升趋势,其中2004年国内销量比2003年增加了22.06%,国内销量增长率达到历史最高水平。2005年由于国内冰箱业资本市场发生一些重大事件影响了行业的正常发展,导致国内销量比2004年小幅下降了2.7%。2006 年中国冰箱国内销量增长速度开始恢复,并创下1427万台的新高,比2005年 增长了13.6个百分点,增长率也达到5年来的最高水平。 从2006年的国内销量情况可以看出,中国冰箱国内销量开始从以前的急速上升过渡到稳步上升的阶段。此外,自2005年冰箱出口量首次突破内销量以来,2006年中国冰箱的出口量继续突飞猛进,13.63%的内销增速仅为外销增速的一半,而根据海关统计数据,我国外销的冰箱产品也逐步向中高端转移,LG、西门子等国际品牌将对开门冰箱的基地设在国内,就是看中了国内良好的 出口环境和配套资源。从产品外销的增速来看,虽然2006年出口产品的国内销量增速比上一年度下降了3个百分点,但是增长的绝对值达到318万台,说 明其实国内企业冰箱出口的增速并未放缓,只是由于出口量基数越来越大,导 致增速看起来下降。 (2)销售额增幅高达23%
2002年-2006年,除2003年的零售额增长率为4.25%之外,其他各年度冰箱市场的零售总额增长均在7%左右。2006年由于平均零售价格的上升,致使冰箱零售总额出现更大幅度的增长,在冰箱零售总量仅上升了13.63%的情况下,冰箱市场零售总额同比增长了23%,达到了350亿元。自此标志着2006年国内冰箱市场进入一个销售额爆发时期,国内销量稳步增长,同时由于单价的上升,市场零售总额实现大幅度攀升,给厂商带来了更多的转型机遇。品牌竞争已经 从单纯的价格战模式提升到以产品差异化及品牌差异化为核心的价值战上来。(3)价格呈现不降反升 正如以上所提及到的,2006年中国冰箱市场零售价格出现了较大幅度的上涨,这一现象源于原材料涨价、市场供应短缺、产品升级等因素。根据赛诺 的监测数据显示,2006年中国冰箱市场平均零售价格达到2450元/台,比2005年增长了8.26%,创下历史最高水平。而在2002年-2004年期间,冰箱市场的 平均零售价格以3.1%-4.4%的速度下降,到2004年产品平均零售价格达到最低

冷柜制冷系统设计分析

1、制冷系统原理介绍 一般制冷机的制冷原理压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流阀节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入压缩机的入口,从而完成制冷循环。压缩制冷系统循环见下图1-1。 单级蒸汽压缩制冷系统,是由制冷压缩机、冷凝器、蒸发器和节流阀四个基本部件组成。它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。 液体制冷剂在蒸发器中吸收被冷却的物体热量之后,汽化成低温低压的蒸汽、被压缩机吸入、压缩成高压高温的蒸汽后排入冷凝器、在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体、经节流阀节流为低压低温的制冷剂、再次进入

蒸发器吸热汽化,达到循环制冷的目的。这样,制冷剂在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。 在制冷系统中,蒸发器、冷凝器、压缩机和节流阀是制冷系统中必不可少的四大件,这当中蒸发器是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。压缩机是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器中吸收的热量连同压缩机功所转化的热量一起传递给冷却介质带走。节流阀对制冷剂起节流降压作用、同时控制和调节流入蒸发器中制冷剂液体的数量,并将系统分为高压侧和低压侧两大部分。实际制冷系统中,除上述四大件之外,常常有一些辅助设备,如电磁阀、分配器、干燥器、集热器、易熔塞、压力控制器等部件组成,它们是为了提高运行的经济性,可靠性和安全性而设置的。 2、冷柜制冷系统设计 2.1、冷柜制冷系统设计的内容和流程 制冷系统设计的主要内容是落实一款产品的整个制冷系统,需明确压缩机、蒸发器、冷凝器等一系列制冷件,但也要考虑其它零件,如感温导管、连接管等。简单来说,就是制冷人员要将整个制冷系统考虑一遍,并在明细表中确定下来。需要考虑的大原则是零件尽量通用,产品设计零件数量少,零件规格通用化,加工设备(包括外协厂制作加工)尽量少,生产效率高。 针对冷柜系统焊点要尽可能少,简单产品不超过10个焊点,最多不超过15个。压缩机物料号需技术副总审批,通用化高的制冷件物料审批需部长级审批,

基于单片机的冰箱温度智能控制系统的设计

编号:_______________ 商丘工学院 毕业论文(设计) 题目冰箱温度控制系统设计 系别机电工程学院 专业电气自动化 学生姓名梁子鹏 成绩 指导教师吴德刚 2012年04月

冰箱温度控制系统设计 摘要 单片机即单片微型计算机,是集CPU,RAM,ROM,定时,计数和多种接口于一体的微控制器。其中51单片机是各种单片机中最为典型和最有代表性的一种,广泛应用于各个领域。 本课题设计的电冰箱的电控系统主要应用AT89C51单片机作为核心控制元件进行分析和设计,对各部分的软件编程、硬件电路设计、及调试进行了介绍。电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度,通过INTEL公司的高效微控制器MCS-C51单片机进行数字信号处理,从而达到智能控制的目的。本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。 本文在第一章介绍了电冰箱的系统组成及工作原理,第二章论述了本控制系统的硬件设计部分。第三章论述了系统的软件设计部分。 通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效应明显。 关键词:AT89C51单片机A/DC0809智能仪器

目录 前言 (3) 第一章电冰箱的系统概述 (2) 1.1电冰箱的设计原理 (2) 1.2工作过程的设计.............................................................................错误!未定义书签。 1.3冷冻室冷藏室温度检测采样电路.................................................错误!未定义书签。第二章硬件部分设计 (4) 2.1系统结构 (4) 2.2冷冻室冷藏室温度检测采样原理 (4) 2.2.1主要特性 (4) 2.2.2管脚说明 (5) 2.2.3振荡特性 (6) 2.2.4计算器 (6) 2.3过欠压保护电路 (6) 2.4电压检测装置的设计....................................................................错误!未定义书签。 2.5功能按键的设计 (7) 2.6开门报警点路 (8) 第三章软件部分的设计 (9) 3.1主程序的设计 (9) 3.2始化程序的设计 (9) 3.3关闭压缩机的设计 (10) 结论 (11) 参考文献 (12)

电冰箱温度控制系统设计样本

电冰箱温度控制系统设计 一、引言 电冰箱是每个家庭现代化厨房必备的家用电器之一, 它是利用电能在箱体内形成低温环境,用于冷藏冷冻各种食品和其它物品的家用电器设备。它的主要任务就是控制压缩机、化霜加热等来保持箱内食品的最佳温度达到食品保鲜的目的, 即保证所储存的食品在经过冷冻或冷藏之后保持色、味、水分、营养基本不变。从19 世界上第一台电机压缩式电冰箱研制成功, 随着科学技术的飞速发展电冰箱也在不断的演变和更新特别是近年来高新技术的迅猛崛起更使得电冰箱的发展日新月异。现代社会每一个家庭都处在快节奏的生活中人们大多已无闲暇的时间和精力花费在经常性的采购日常生活用品上。因此集中时间大量采购的新型生活方式已为越来越多的人所接受从而决定了大容量电冰箱将是一种国际化的发展趋势。传统的机械式直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使电冰箱内的温度保持在设定温度范围内。一般,当蒸发器温度升至3~5℃时启动压缩机制冷;当温度低于-10 ~ -20℃时停止制冷,关断压缩机。 随着微机技术的飞速发展,单片机以其体积小、价格低、应用灵活等优点在家用电器、仪器仪表等领域中得到了广泛的应用。

采用单片机进行控制,能够使电冰箱的控制更准确、灵活、直观。 本次所设计的就是基于51单片机的电冰箱温度控制系统, 以AT89C51单片机为核心控制压缩机的启动和停止, 解决了传统电冰箱控制系统存在的不足, 能够使控制更准确、更灵活。 本次设计的目的是设计一个温度控制系统, 要求: 1.利用键盘分别控制冷藏室、冷冻室温度( 0~5℃, -7 ~ -18℃) ; 2.显示各室的温度值; 3.制冷压缩机运行后若突然断电要有30秒延时; 4.各个门开后超过2分钟要报警。 本次设计的意义是经过此次设计加深对测控系统原理与设计课程的理解, 掌握微机化测控系统设计的思路, 了解一般设计过程。 二、电冰箱温度控制系统硬件电路设计 1. 总体设计方案 以AT89S51单片机为核心, 来实现各个模块的功能。温度传感器模块、键盘输入模块作为系统的输入模块, 液晶显示模块、温度控制器模块、报警模块作为系统的输出模块, 构成基本电路, 原

电冰箱自动控制系统的设计

目录 1.引言 (2) 2 设计要求及分析 (3) 2.1电冰箱温度自动调节功能 (3) 2.3电源过欠压保护功能 (3) 2.4压缩机开启延时功能 (3) 2.5故障报警功能 (3) 3. 自动控制系统硬件结构设计 (4) 3.1主要部件选择与功能实现 (4) 3.1.1 单片机选型及功能介绍 (4) 3.1.2 A/D转换器选型及功能介绍 (5) 3.1.3 74LS373简介 (5) 3.2检测及控制电路 (6) 3.2.1 传感器的选择与温度自动调节功能的实现 (6) 3.2.2 电冰箱的过欠压保护电路及功能实现 (8) 3.2.3 电冰箱的开启延时电路及功能的实现 (9) 3.2.4 自动除霜功能的实现 (10) 3.2.5 报警器 (11) 总结 (13) 参考文献 (14)

电冰箱自动控制系统的设计 1.引言 冰箱自动控制系统在正常工况下工作,当运行过程中需要进行自动调节时,系统能通过预设程序进行调节,要求控制系统应有一定的应变能力。 对于冰箱性能的主要调节指标是箱体温度由此实现的功能有自动温度调节,自动除霜等。 要求维持冰箱的冷藏冷冻室温度维持在预先设定的数值,当箱内温度高于或低于这一值时判断启动或关闭压缩机,使温度回归。 系统还要求累计压缩机运行时间和检测环境温度,来判断是否满足化霜条件,当满足化霜条件时,接通化霜加热丝,同时断开压缩机和风机,当完成化霜工作后恢复压缩机风机的工作。 另外当运行达到安全极限时,要求系统能采取一些相应的保护措施,促使运行离开安全极限,返回到正常情况,以防事故。 属于生产保护性措施的有两类:一类是硬保护措施;一类是软保护措施。 例如电源的过欠压保护,压缩机开启延时,故障自检报警等. 本系统通过监控环境温度,冰箱的冷冻,冷藏室温度,电源电压等数据,通过处理判断调整冰箱的运行以达到预期的运行效果。使冰箱在节能,储藏效果,安全方面都能进行自动有效的控制。

低温冷柜设计特点

低温冷柜设计特点 在生活节奏、工作节奏越来越快的今天,现代人、尤其是白领阶层去采购食物的时间越来越少了,而对食物口感、营养、安全方面的要求还越来越高。在如此矛盾的情况下,选择一款家用低温冷柜就非常必要了。 家用低温冷柜采用微电脑控制,数码显示,箱内温度10℃至-50℃、-60℃可调,像三文鱼这类的高营养的食品,需要储存在深冷环境下营养才不会流失;冷柜采用高低温报警控制,可根据需要设定报警温度点,智能报警,使用可靠,尽享现代科技带来的美好生活。家用低温冷柜采用复叠制冷技术,制冷速度快,冷力超强;采用优化复叠制冷技术,独特的蒸发冷凝换热系统设计,制冷能力更强,无氟发泡、无氟制冷,绿色环保,超厚保温层,锁住冷气,保温效果好;采用多重保护功能,开机延时,停机间隔,键盘锁定与密码保护功,防止随意调整参数;能让用户安全又省心。 据了解,10℃到-40℃可调温区,涵盖家庭食物保存的所有低温需求,让食物快速通过冰晶生成区,快速冷动,深度保鲜。 低温冷柜可阻霜、抑菌、除味,除霜周期延长3倍,阻霜,功能高于其他品牌,全时、全效、全方位锁定食物新鲜和营养。 家用低温冷柜采用当前最时尚、最新潮的苹果派智能触控。隐藏式苹果派造型,图案来自跑车仪表盘设计灵感,风格清新简洁,四种角度,轻松实现冷藏、微动、冷冻、速冻无极转换。家用低温冷柜自上市以来,得到了8090后白领的青睐,也成为很多家庭冷柜的选

择。 食物如果因长时间保存在普通冷柜里会造成营养流失,口感也大打折扣。-40℃的低温冷柜可以让食材保持时间更长,保鲜效果更好,营养不流失,口感也不打折扣。 -40℃低温冷以来保存食材效果显著,这是因为肉类、鱼类等食材在-40℃的低温下细胞分解就会变慢,营养不易流失,是高档食品的储存神器。如三文鱼、驴肉、鲍鱼等高档食材在普通的冷柜里保存几个月之后,口感会变差、营养和口感也大打折扣。采用-40℃低温冷柜在保存三文鱼几个月之后,颜色新鲜、口感鲜嫩无比,营养流失很少。在节能方面,该款产品一天0.65度点,够冷还省电,这对于用户而言真是两全齐美。 -40℃家用低温冷柜采用智能控温,温度精准,冷藏在1—10℃可调;冷冻在-10—-40℃可调,采用苹果派温控,好处是需要多少度就调多少度;柜内还设有阻霜盒,可减少柜内冰霜的产生,消除异味。采用压花铝板内胆,迷宫式接缝,导热好;采用内嵌式把手,不占空间开启方便,银色饰条装饰,美观大方;在人性化设计方面,该产品内置可拆卸挡板,根据需求,任意拆卸,分装储存食品,使用方便。在外观上,-40℃家用低温冷柜顶部采用拉丝纹理面板,美观时尚大气,表面光滑易清理。 -25℃低温冷柜是医用冷链产业中众多的医疗科研设备之一,产品适用于医院、血站、科研院所、疾控防疫、畜牧等行业机构,用来冷冻保存血浆、试剂、疫苗、生物材料等,适用于疾病防控、医院、

冰箱温度智能控制系统的设计

冰箱温度智能控制系统的设计 目录 第一章概论..................................... 错误!未定义书签。 一.电冰箱的系统组成 (2) 二.工作原理: (3) 三.本系统采用单片机控制的电冰箱主要功能及要求 (4) 第二章硬件部分 (4) 一.系统结构图 (4) 二.微处理器(单片机) (5) 三.温度传感器 (8) 四.电压检测装置 (8) 五.功能按键 (9) 六.压缩机,风机、电磁阀控制 (9) 七.故障报警电路 (9) 第三章软件部分 (10) 一、主程序:MAIN (10) 二、初始化子程序:INTI1 ......................... 错误!未定义书签。 三、键盘扫描子程序:KEY ......................... 错误!未定义书签。 四.打开压缩机子程序:OPEN (13) 五.关闭压缩机:CLOSE (15) 六.定时器0中断程序:用于压缩机延时............ 错误!未定义书签。 七.延时子程序.................................. 错误!未定义书签。第四章分析与结论.................................. 错误!未定义书签。

电冰箱温度测控系统设计 目前市场销售的双门直冷式电冰箱,含有冷冻室和冷藏室,冷冻室通常用于冷冻的温度为-6~-18℃;冷藏室用于在相对冷冻室较高的温度下存放食品,要求有一定的保鲜作用,不能冻伤食品,室温一般为0~10℃. 传统的电冰箱温度一般是由冷藏室控制,冷藏室、冷冻室的不同温度是通过调节蒸发器在两室的面积大小来实现的,温度调节完全依靠压缩机的开停来控制.但是冰箱内的温度受诸多因素的影响,如放入冰箱物品初始温度的高低、存放品的散热特性及热容量、物品在冰箱的充满率、环境温度的高低、开门的频繁程度等.因此对这种受控参数及随机因素很多的温度控制,既难以建立一个标准的数学模型,也无法用传统的PID调节来实现.一台品质优良的电冰箱应该具有较高的温度控制精度,同时又有最优的节能效果,而为了达到这一设计要求采用模糊控制技术无疑是最佳的选择. 一.电冰箱的系统组成 液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化的过程中需要吸热的原理来制冷的。 蒸气压缩式电冰箱制冷系统原理图如图1-1所示,主要由压缩机、冷凝器、干燥过滤器、毛细管、蒸发器等部件组成,其动力均来自压缩机,干燥过滤器用来过滤赃物和干燥水分,毛细管用来节流降压,热交换器为冷凝器和蒸发器。制冷压缩机吸入来自蒸发器的低温低压的气体制冷剂,经压缩后成为高温高压的过热蒸气,排入冷凝器中,向周围的空气散热成为高压过冷液体,高压过冷液体经干燥过滤器流入毛细管节流降压,成为低温低压液体状态,进入蒸发器中汽化,吸收周围被冷却物品的热量,使温度降低到所需值,汽化后的气体制冷剂又被压缩机吸入,至此,完成一个循环。压缩机冷循环周而复始的运行,保证了制冷过程的连续性。

冰箱制冷系统设计说明书

冰箱制冷系统设计说明书1.冰箱设计步骤

图1 BCD-348W/H电冰箱制冷系统图 2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸 2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w。如果箱体外表面温度t w低于露点温度t d,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d+0.2 t o t i

)(i o o o W t t a K t t --= (1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN 、温带N 气候条件下,露点温度为19±0.5℃ 亚热带ST 、热带T 气候条件下,露点温度为27±0.5℃ 在t w > t d 的前提下,计算箱体的漏热量Q 1,并用下面的公式校验绝热层的厚度 121)(Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; t o ——箱体外空气温度,℃; t i ——箱体空气温度,℃ αo ——箱外空气对箱体外表面的表面换热系数,W/m 2·℃; αi ——箱体表面对箱空气的表面换热系数,W/m 2·℃; i o a a K 111++=λδ

冰箱冷藏室温度智能控制系统

- . - 目录 摘要 (1) 1 引言 (1) 2 设计思路 (2) 2.1 设计任务 (2) 2.2 设计的理论基础 (2) 2.3 冰箱的系统组成 (2) 2.3.1 蒸汽式压缩机电冰箱 (2) 2.3.2 直冷式电冰箱 (3) 2.4 总体设计方案选择 (3) 2.5 方案总体介绍 (4) 3 硬件系统设计 (4) 3.1 系统总体结构 (4) 3.2 温度采集模块 (5) 3.2.1 温度采集模块的选择 (5) 3.2.2 DS18B20测温电路 (6) 3.2.3 测量数据的比较 (7) 3.3 单片机系统及液晶模块 (7) 3.3.1 微处理器(单片机) (7) 3.3.2 显示电路的设计 (8) 3.4 输出控制模块 (9) 4 软件设计 (9) 4.1 主程序流程框图 (10) 4.2 DS18B20工作的流程图 (12) 5 调试与实验 (12) 5.1 使用说明 (12) 5.1.1 Keil单片机模拟仿真 (12) 5.2 功能测试 (14) 5.2.1 温度测量分辨率 (14) 5.3 晶振的选择 (14) 附录1 硬件原理图 (15)

冰箱冷藏室温度智能控制系统 摘要:本智能温度控制主要由温度采集模块、液晶显示模块、单片机智能控制模块和输出控制模块组成。此次设计相比于传统的冰箱温度控制器,温度信号更加精确,利用单片机控制冷藏室温度在1℃~5℃之间,当温度低于1℃,继电器不工作;当温度高于5℃,继电器开始工作,并且利用液晶显示冷藏室温度的变化。 关键词:温度采集;液晶显示;温度控制 1 引言 随着集成电路的发展,单片机的功能也越发的多样。单片机因为他本是的诸多优点,比如功能强、体积小、可靠性高、开发的周期短,成为各种检测控制方面被广泛应用的元器件,在电子工业生产中变为不可缺少的存在,特别是在我们日常的生活生产中也发挥了很多的作用[1]。而在日常生活中,冰箱已经成了家庭生活中不可缺少的一部分,就此对于冰箱的性能要求也越来越高。在这其中冰箱的智能温度控制是现今市场上冰箱重要选择。 现在市面上的冰箱大多都包含着两部分,分别是冷藏室和冷冻室。其中冷藏室用于冷藏食物,要求有一定的保鲜作用,不可冻伤食物;冷冻室一般用于对食物的冷冻作用。 现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通用技术)和信息处理(计算机技术)。目前信息技术中前端的产品就是传感器,而其中被广泛应用在工业生产、科学研究方面的传感器就是温度传感器,在这些领域中温度传感器的应用是位于各种传感器的第一位[2]。 智能温度传感器最早是出现在20世纪90年代的中期,在其内部就应用了A/D转换器,但他测量的温度X围比较低,而且也只有1℃的分辨率。到了21世纪以后,智能温度传感器正在迅速的朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向发展[3]。 传统电冰箱的温度一般是由冷藏室控制。冷藏室、冷冻室之间不同的温度是通过调节蒸发器在两室的面积大小来实现的,温度的调节完全是依靠压缩机的开停来控制。但是影响冰箱内部温度的因素有很多种:如放到冰箱内的食物

电冰箱的制冷系统(抽真空、充注制冷剂等)

§3.4电冰箱的制冷系统(抽真空、充注制冷剂等) 一、教学目标 1、掌握电冰箱制冷系统各部件的结构及作用。 2、掌握电冰箱制冷系统维修工具(双表修理阀、真空泵)的使用方法。 3、掌握电冰箱制冷系统抽真空、充注制冷剂的方法和操作。 二、工具器材 1、制冷压缩机 2、双表修理阀 3、真空泵 4、电冰箱模型 5、制冷剂R12 三、相关理论知识 1、制冷压缩机 (1)制冷压缩机的分类 压缩机主要类型有:活塞式、旋转式和涡旋式三种。根据压缩机和电动机连接方式的不同,活塞式制冷压缩机可分为开启式、半封闭式和全封闭式三种。电冰箱制冷系统使用的压缩机属于全封闭式压缩机。其中比较典型的是往复活塞式压缩机。往复活塞式压缩机又可分为连杆式、滑管式、电磁式三种。 (2)全封闭式压缩机的特点 压缩机与电动机共用一主轴,安装在利用弹簧悬吊的钢制机壳内,机壳采用焊接密封。从其外形看,封闭的外壳有三根铜管(即吸气管、排气管、工艺管)和一个电动机的电源接线盒(如图3.4-1所示)。 全封闭式压缩机与开启式、半封闭式压缩机相比,结构更紧凑,重量更轻,噪音更小,制冷剂不易泄漏,日常维护工作量很小,特别适用于家庭小型制冷装置。

图3.4-1全封闭式压缩机外形图(3)往复活塞式压缩机的内部结构简介 1) 机械部分 用专用工具打开压缩机顶盖,看见压缩机内部的机械部分,如图3.4-2所示。 图3.4-2压缩机内部的机械部分 2) 压缩机的电动机 小型压缩机的电动机大多是单相电动机,其绕组由启动绕组和运转绕组两部分构成,通常启动绕组较细、运转绕组较粗。共有3个引出线端子:R、S、C,如图3.4-3所示。

3-电冰箱系统设计

3 冰箱制冷系统设计 冰箱制冷系统的设计基本思路和顺序是:先根据要求确定箱体尺寸,然后根据箱体尺寸确定热负荷,根据热负荷和其他发热元件可以确定冰箱的基本能耗,并依次确定压缩机,同时可以确定蒸发器和冷凝器两大主要传热设备,最后才是确定节流元件和制冷剂充注量。当然,计算设计不可能是很准确的,最后还需要通过试验和不断的调试来使系统运行达到最优化。 保温层设计 3.1.1 保温层设计方法 冰箱保温层厚度是设计的重点,关键是产品的成本与性能,而保温层的设计需要考虑的因素包括: ①不同的市场和不同的能耗要求; ②产品的不同风格和设计特点; . ③市场对发泡料的限制条件; ④产品成本的综合对比选择; ⑤产品的市场要求:全球性、区域性、特殊客户; ⑥产品的未来发展考虑。 冰箱保温层厚度是设计的重点,在设计中总会与不同部门发生冲突,当然要求的厚度越薄越好,这样成本低,容积大,但由于技术的能力有限制的,在能耗达到一定的水平时,厚度也不是可以薄到想要的程度,因此在厚度的设计方面存在选择是否合理的问题。 目前冰箱箱体都采用硬质聚氨脂整体发泡作绝热层,其绝热性能好,适于流水线大批量生产,发泡后的箱体内外壳被粘接成刚性整体,结构坚固,内外壳厚度可以适当降低,无须对箱体做防潮处理,年久也不会吸湿而使热导率增大。 电冰箱绝大多数为立式结构。箱体结构的发展过程,大致分为四个阶段:5 0年代以前主要是厚壁箱体(厚度为60~65mm);60年代是薄壁箱体(厚度30~3 5mm);70年代是薄壁双温双门;80年代以后世界上趋于采用中等壁厚箱体(厚度为40~45mm),并以箱背式冷凝器的三门三温或双门双温自然对流冷却(即直冷

冷柜制冷系统设计分析

冷柜制冷系统设计分析 Prepared on 22 November 2020

1、制冷系统原理介绍 一般制冷机的制冷原理的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入压缩机的入口,从而完成制冷循环。压缩制冷系统循环见下图1-1。 单级蒸汽压缩制冷系统,是由、、蒸发器和四个基本部件组成。它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。 液体制冷剂在蒸发器中吸收被冷却的物体热量之后,汽化成低温低压的蒸汽、被压缩机吸入、压缩成高压高温的蒸汽后排入冷凝器、在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体、经节流阀节流为低压低温的制冷剂、再次进入蒸发器吸热汽化,达到循环制冷的目的。这样,制冷剂在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。 在制冷系统中,蒸发器、冷凝器、压缩机和是制冷系统中必不可少的四大件,这当中蒸发器是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。压缩机是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器中吸收的热量连同压缩机功所转化的热量一起传递给冷却介质带走。节流阀对制冷剂起节流降压作用、同时控制和调节流入蒸发器中制冷剂液体的数量,并将系统分为高压侧和低压侧两大部分。实际制冷系统中,除上述四大件之外,常常有一些辅助设备,如、分配器、、、易熔塞、等部件组成,它们是为了提高运行的经济性,可靠性和安全性而设置的。

毕业设计-电冰箱的制冷控制系统

前言 众所周知,电冰箱是现代家庭中必不可少的家用电器。而目前我国市场销售的冰箱大多采用传统的机械式温控,其控制精度差,功能单一,控制方式简单难以满足冰箱发展的要求。随着经济的发展和人民生活水平的进一步提高,人们对多功能的发展要求越来越高。由于单片机性能好,控制功能强,工作可靠,成本低等优点,现在已经在家电产品中得到了广泛的应用。面临国内电冰箱发展的现状,在技术上还与其他发达国家有一定的差距,我们在原有的基础上对电冰箱进行了一定的改进,使其适应当代个性时尚、节能环保、智能高端、精确温控的发展方式,使人们体验闻所未闻的个性化感受,快捷与原汁原味不再是梦想。新一代产品在控制上还增加了人工智能,使家电性能更优异,使用更方便可靠。 本次设计基于大量的市场调查和理论研究。首先,我对传统电冰箱控制系统进行了分析。调查了10多个品牌的电冰箱的控制系统,研究了他们制冷的优缺点,吸收了一些比较好的设计思想。其后,我又查阅了大量的资料文献,其中最多的是国内外最新发表的关于制冷方面的论文,丰富了我们的理论依据。然后,根据我拥有的材料用单片机实现电冰箱控制系统的硬件设计,最后在硬件设计的基础上实现了其软件设计。 第1章电冰箱系统概述 1.1 单片机概述 自从1971年微型计算机问世以来,随着大规模集成电路技术的进一步发展,导致微型计算机正向两个方向发展:一是高速度、高性能、大容量的高档微型计算机及其系列化,向大、中型计算机挑战;另一个是稳定可靠、小而廉、能适应各种领域需要的单片机。 单片机是指把中央处理器、随机存储器、只读存储器、定时器/计数器以及I/O 接口电路等主要部件集成在一块半导体芯片上的微型计算机。虽然单片机只是一个芯片,但从组成和功能上看,它已经具有了微型计算机系统的含义,从某种意义上来说,一块单片机就是一台微型计算机。

基于单片机的冰箱温度智能控制系统的设计

基于单片机的冰箱温度智能控制系 统的设计 摘要: 近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。 电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度,通过INTEL公司的高效微控制器MCS-C51单片机进行数字信号处理,从而达到智能控制的目的。本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。 本文在第一章介绍了电冰箱的系统组成及工作原理,第二章论述了本控制系统的硬件设计部分。第三章论述了系统的软件设计部分。 通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效果良好。

目录 第一章概论 (3) 一.电冰箱的系统组成 (3) 二.工作原理: (5) 三.本系统采用单片机控制的电冰箱主要功能及要求: (5) 第二章硬件部分 (6) 一.系统结构图 (6) 二.微处理器(单片机) (6) 三.温度传感器 (11) 四.电压检测装置 (15) 五.功能按键 (15) 六.压缩机,风机、电磁阀控制 (16) 七.故障报警电路 (16) 第三章软件部分 (16) 一、主程序:MAIN (17) 二、初始化子程序:INTI1 (21) 三、键盘扫描子程序:KEY (22) 四.打开压缩机子程序:OPEN (25) 五.关闭压缩机:CLOSE (26) 六.定时器0中断程序:用于压缩机延时 (27) 七.延时子程序 (28) 第四章分析与结论 (28) 致谢 (29) 参考文献: (30)

电冰箱温控系统(DOC)

电冰箱温控系统 设计要求: A 、单片机控制。 B 、制冷控制电路、温度监测及恒温控制。 1、设计方案 本系统以AT89S51单片机为核心,来实现各个模块的功能。温度传感器模块、键盘输入模块作为系统的输入模块,液晶显示模块、温度控制器模块、报警模块作为系统的输出模块,构成基本电路,原理框图如图1所示。 温度传感器从设备环境采集温度,单片机AT89S51获取采集的温度值,经处理得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度上限时,单片机通过三极管驱动继电器开启降温设备(压缩制冷器),当采集的温度经处理后低于设定温度下限时,单片机通过三极管驱动继电器开启升温设备 (加热器)。 AT89S51 键盘电路 DS18B20 温度芯片数据传输 继电器1 压缩制冷 继电器2 加热器 MAX232电平转换芯片 报警电 PC 机 输入电源 复位电路 LED 数据显时钟电

2.测温模块的选择方案 DS18B20是一种单端通信的数字式温度传感器,操作简单。我们把单片机的一条I/O分配给温度传感器,即可完成温度采集。本系统在温度采集中使用的DS18B20测温原理图如图2-1所示:图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号,送给减法计数器1;高温度系数晶振振荡频率随着温度变化,变化明显,所产生的信号作为减法计数器2的脉冲输入。图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数,进而完成温度测量,计数门的开启时间由高温度系数振荡器来决定。每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1、温度寄存器中。 图2-1 DS18B20测温原理图 DS18B20的内部有一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器TH、TL。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在高速暂存存储器的第1和第2个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变为原码,再计算十进制值。第3和第4字节是TH 和TL的拷贝,是易失性的,每次上电复位时被刷新,第5字节为配置寄存器,它主要用来确定温度值的数字转换分辨率。6、7、8字节保留未用,为全逻辑1,第9字节是冗余检验字节。

相关主题
文本预览
相关文档 最新文档