中考第一轮复习导学案14 二次函数
- 格式:doc
- 大小:168.53 KB
- 文档页数:6
第14课时:二次函数的应用一、考试大纲要求:1、从已知条件中提取信息,确定二次函数的表达式,体会二次函数的意义;解决简单的实际问题。
2、分析题中条件,创设二次函数模型,来解决实际问题。
二、重点、易错点分析:1、重点:能从实际问题中感受到二次函数的模型作用,能利用二次函数的图形和性质解决实际问题.2、易错点:从实际问题中抽象出数学模型,表示成二次函数形式.三、典型例题:类型一:用二次函数表示实际问题例一(2019青岛,第22题10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线时的点C到墙面OB的水平距离为3m,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?类型二:几何图形面积的最大值例二(2019安徽, 第22题12分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;[中国@^*%教育出#版](2)x为何值时,y有最大值?最大值是多少?分析:(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.类型三:市场销售中最大利润问题例三(2019滨州,第22题10分)一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?分析:用每件的利润乘以销售量即可得到每周销售利润,即y=(x﹣40)[300﹣10(x﹣60)],再把解析式整理为一般式,然后根据二次函数的性质确定销售单价定为多少元时,每周的销售利润最大.五、中考链接1.(2019•铜仁市第3题)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.3.(2019宁夏第25题10分)某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进(2)通过对上面表格中的数据进行分析,发现销量y(件)与单价x(元/件)之间存在一次函数关系,求y关于x的函数关系式(不需要写出函数自变量的取值范围);(3)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?4. (2019湖北省随州市,第23题8分)如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m 的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?第28题第28题(2)若足球飞行的水平距离x (单位:m )与飞行时间t (单位:s )之间具有函数关系x=10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?5.(2019济南28题9分)如图1,抛物线2163x y -=平移后过点A (8,,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D .(1)求平移后抛物线的解析式并直接写出阴影部分的面积阴影S ;(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,PMN ∠为直角,边MN 与AP 相交于点N ,设t OM =,试探求: ①t 为何值时MAN ∆为等腰三角形;②t 为何值时线段PN 的长度最小,最小长度是多少.六、本课小结:1、知识:应用二次函数,就是要把实际问题转化为二次函数的问题,它的基本模式是:2、方法:把实际问题数学化,要细心研究题意,提炼出相关信息,对相关信息进行分析、加工,从而把实际问题转化为数学问题。
2023年中考数学总复习一轮讲练测()专题14二次函数的图象与性质(讲练)1.理解二次函数的意义,掌握二次函数的表达式,熟练应用待定系数法求二次函数的表达式;2.会画二次函数的图象,掌握二次函数的性质1.二次函数的定义:一般地,形如(其中a,b,c是常数,a≠0)的函数叫做二次函数.2.二次函数的三种表达式:(1)一般式:(a,b,c是常数,a≠0).(2)顶点式:(a,h,k是常数,a≠0),顶点坐标是.(3)交点式:(a,x1,x2是常数,a≠0),其中x1,x2是二次函数与x轴的交点的横坐标,图象的对称轴为直线.3.二次函数的图象与性质:二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,当a>0时,抛物线的开口,这时当x≤-b2a时,y随x的增大而;当x≥-b2a时,y随x的增大而;当x=-b2a时,y有最值.当a<0时,抛物线开口,这时当x≤-b2a时,y随x的增大而;当x≥-b2a时,y随x的增大而;当x=-b2a时,y有最值.该抛物线的对称轴是直线,顶点坐标是4.二次函数的图象的平移:平移规律:左右平移由h值决定:左加右减;上下平移由k值决定:上加下减.二次函数与x轴交点情况5.对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0)△=b2﹣4ac决定抛物线与x轴的交点个数:①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.考点一、二次函数的定义例1(2022秋•义乌市月考)若函数y=是二次函数,即m的值是()A.﹣1B.﹣1或3C.2D.3【变式训练】1.(2022•苏州模拟)下列各式中,y是关于x的二次函数的是()A.y=4x+2B.y=ax2+1C.y=3x2+5﹣4x D.y=2.(2021秋•林口县期末)是二次函数,则m的值是()A.m≠0B.m=±1C.m=1D.m=﹣13.(2022秋•禹州市期中)若函数y=(m﹣3)x|m|﹣1+5是关于x的二次函数,则m=()A.﹣3B.3C.3或﹣3D.2考点二、二次函数的图象例2(2022秋•舟山月考)在同一直角坐标系中,函数y=ax+a和函数y=ax2+x+2(a是常数,且a≠0)的图象可能是()A.B.C.D.【变式训练】1.(2022秋•巧家县期中)直线y=ax+b与抛物线y=ax2+bx+2在同一平面直角坐标系中的图象可能是()A.B.C.D.2.(2022秋•洪山区校级月考)在同一坐标系中,二次函数y=ax2+bx+c(b>0)与一次函数y=ax+c的大致图象可能是()A.B.C.D.3.(2022秋•凉州区校级月考)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象为()A.B.C.D.考点三、二次函数的性质例3(2022秋•淳安县期中)已知二次函数y=ax2+bx+c(a,b,c为常数,a>0)的图象经过点(﹣2,0)和(2,3),该函数图象的对称轴为直线x=m,则下列说法正确的是()A.0<m≤2B.m<0C.m>0D.﹣2≤m<0【变式训练】1.(2021秋•新会区期末)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表.下列结论错误的是()x…﹣10123…y…03430…A.函数图象开口向下B.当x=1时,y取最大值4C.对称轴是直线x=1D.当x>1时,y的值随x的增大而增大2.(2021秋•孝义市期末)对于二次函数y=﹣x2﹣2x+m(m为常数),当y随x的增大而减小时,x的取值范围是()A.x>﹣1B.x>﹣2C.x>1D.x>03.(2021秋•榆阳区期末)如表中所列的x,y的5对值是二次函数y=ax2+bx+c的图象上的点所对应的坐标:x…﹣2﹣1034…y…1163611…若(x1,y1),(x2,y2)是该函数图象上的两点,根据表中信息,以下说法正确的是()A.该函数的最小值为3B.这个函数图象的开口向上C.当x1<x2时,y1<y2D.当y1>y2时,x1<x24.(2022春•沙坪坝区校级月考)一列自然数0,1,2,3,⋯,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()①当原数取50时,原数与对应新数的差最大②原数与对应新数的差不可能等于零③原数与对应新数的差,随着原数的增大而增大④当原数与对应新数的差等于21时,原数等于30和70A.①②B.①③C.①④D.②③考点四、二次函数的图象与系数关系例4(2022•金华模拟)已知二次函数y=ax2+bx+c的图象如图所示,与x轴有个交点(﹣1,0),有以下结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(其中m≠1).其中所有正确结论的个数是()A.3个B.2个C.1个D.0个【变式训练】1.(2021秋•昌吉市校级期末)已知抛物线y=ax2+bx+c(a=0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A.a>0B.b<0C.c<0D.a+b+c>02.(2022春•成都月考)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是直线x=﹣1,且过点(﹣3,0),下列说法不正确的是()A.abc<0B.2a﹣b=0C.3a+c=0D.若(﹣5,y1),(3,y2)是抛物线上两点,y1>y23.(2022•东港区校级二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣1,则下列结论:①abc>0,②a+b<﹣c,③4a﹣2b+c>0,④3b+2c<0,⑤a﹣b>m(am+b)(其中m为任意实数).中正确的个数是()A.2个B.3个C.4个D.5个考点五、二次函数的点的坐标特征例5(2022秋•宁波月考)已知点(﹣1,y1),(﹣2,y2),(﹣4,y3)在二次函数y=﹣2x2﹣8x+c的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【变式训练】1.(2022春•九龙坡区校级月考)已知A(﹣,y1),B(,y2),C(﹣,y3)是二次函数y=﹣x2+4x ﹣k的图象上的三点,则y1,y2,y3的大小关系是()A.y1=y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y22.(2022秋•范县期中)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=a(x+1)2+k(a>0)上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y23.(2022秋•林州市校级月考)在函数y=x2﹣2x+a(a为常数)的图象上有三个点(﹣1,y1),(﹣2,y2),(1,y3),则函数值y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y34.(2022秋•闽清县校级月考)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论中,不正确的是()A.存在实数k,使得△ABC为等腰三角形B.存在实数k,使得△ABC的内角中有两个角为45°C.存在实数k,使得△ABC为直角三角形D.存在实数k,使得△ABC为等边三角形考点六、二次函数与几何变换例6(2022秋•拱墅区校级期中)抛物线y=x2﹣4x+3可以由抛物线y=x2平移得到,则下列平移方法正确的是()A.先向左平移2个单位,再向上平移7个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移7个单位D.先向右平移2个单位,再向下平移1个单位【变式训练】1.(2022•珙县模拟)抛物线y=x2+4x﹣1的顶点坐标向上平移一个单位后,再向右平移一个单位后的坐标为()A.(4,﹣1)B.(2,﹣1)C.(﹣1,﹣4)D.(1,﹣4)2.(2022秋•庐阳区校级期中)将抛物线y=x2先向右平移4个单位,再向下平移3个单位,所得抛物线表达式为()A.y=(x﹣4)2﹣3B.y=(x﹣4)2+3C.y=(x+4)2+3D.y=(x+4)2﹣33.(2022秋•林州市月考)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经过变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位长度B.向右平移2个单位长度C.向左平移8个单位长度D.向右平移8个单位长度4.(2022秋•林州市校级月考)将抛物线y=(x+1)2的图象位于直线y=4以上的部分向下翻折,得到如图图象,若直线y=x+m与此图象只有四个交点,则m的取值范围是()A.B.C.D.考点七、二次函数的最值例7(2022秋•萧山区月考)已知非负数a,b,c,满足a﹣b=2且c+3a=9,设y=a2+b+c的最大值为m,最小值为n,则m﹣n的值是()A.1B.2C.3D.4【变式训练】1.(2022秋•宁明县月考)二次函数y=﹣(x+2)2﹣5的最大值是()A.5B.﹣5C.2D.﹣22.(2022秋•思明区校级期中)已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是()A.函数有最小值1,有最大值3B.函数有最小值﹣1,有最大值0C.函数有最小值﹣1,有最大值3D.函数有最小值﹣1,无最大值3.(2022秋•番禺区校级期中)二次函数y=﹣x2﹣2x+c2﹣2c在﹣3≤x≤2的范围内有最小值为﹣5,则c的值()A.3或﹣1B.﹣1C.﹣3或1D.3考点八、二次函数与坐标轴交点例8(2022秋•舟山期中)在研究函数图象的性质时,若将自变量x变为|x|,则函数图象变化为:保留y轴右侧的图象,y轴左侧的图象变为右侧图象关于y轴的对称图形.已知抛物线y=﹣x2+2x+3的图象,则对于y=﹣x2+2|x|+3,当y>0时,x的取值范围是()A.﹣1<x<3B.﹣1<x<1C.﹣3<x<3D.x<﹣1或x>3【变式训练】1.(2022秋•庐阳区校级期中)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.﹣B.﹣4C.D.42.(2022•海陵区校级三模)如图,已知二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),则以下结论:①若y≥c,则x≤﹣2或x≥0;②b+c=m.其中正确的是()A.①B.②C.都对D.都不对3.(2022秋•庐阳区校级期中)已知二次函数y=﹣x2+bx+c的图像与x轴的两个交点分别是(﹣n,0)和(n+2,0),且抛物线还经过点(2,y1)和(﹣2,y2),则下列关于y1,y2的大小关系判断正确的是()A.y1=y2B.y1>y2C.y1<y2D.y1与y2的大小无法比较考点九、二次函数与方程不等式例9(2022秋•桐庐县期中)若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c <0的解集为()A.x<1或x>3B.x>3C.x<﹣1D.x<3或x>5【变式训练】1.(2022秋•朝阳区校级期中)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论有()个.A.1B.2C.3D.42.(2022•罗庄区二模)如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,有以下结论:①b2﹣4c>0;②3b+c+6=0;③当1<x<3时,x2+(b﹣1)x+c<0;④当x>2时,x2+bx+c>.其中正确的个数是()A.1B.2C.3D.43.(2021秋•微山县期末)如图,二次函数y=x2﹣2x﹣3的图象与一次函数y=x+b的图象相交于点A,B.若点A的坐标是.那么不等式x2﹣2x﹣3<x+b的解集是()A.B.或C.﹣1<x<3D.x<﹣1或x>34.(2021秋•梁山县期末)如图是抛物线图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1;其中正确的是()A.①②③B.①③④C.②④⑤D.①③⑤考点十、待定系数法求二次函数解析式例10(2022秋•温州校级月考)如图,抛物线的顶点坐标为(1,﹣4),且图象经过点(3,0).(1)求抛物线的表达式;(2)若在y轴正半轴上取一点P(0,m),过点P作x轴的平行线,分别交抛物线于A,B两点(A在B 点左侧),若P A:PB=1:2,求m的值.【变式训练】1.(2022秋•林州市月考)如图,已知直线y=﹣2x+m与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求m的值;(2)求抛物线的解析式.2.(2022秋•朝阳区校级月考)已知抛物线y=x2+bx+c经过A(﹣1,0)、B(6,0)两点.(1)请求出抛物线的解析式;(2)当0<x<4时,请直接写出y的取值范围.3.(2022秋•宁明县月考)已知抛物线经过点(3,﹣1),顶点坐标为(2,﹣2).(1)求抛物线对应的函数表达式;(2)若点P(t,y1),(t+3,y2)都在抛物线上,且y1=y2,求P,Q两点的坐标.4.(2022秋•西城区校级月考)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣101 2.53…y=ax2+bx+c…m1﹣2n﹣2…根据以上列表,回答下列问题:(1)直接写出c的值和该二次函数图象的对称轴;(2)求此二次函数的解析式;(3)在(2)条件下,求当﹣1≤x≤3.8时,函数值y的取值范围.考点十一、二次函数的推理计算与证明例11(2022秋•西湖区月考)设二次函数y=(x+1)(ax+2a+2)(a是常数,a≠0).(1)若a=1,求该函数图象的顶点坐标.(2)若该二次函数图象经过(﹣1,1),(﹣2,3),(0,﹣2)三个点中的一个点,求该二次函数的表达式.(3)若二次函数图象经过(x1,y1),(x2,y2)两点,当x1+x2=2,x1<x2时,y1>y2,求证:a<﹣.【变式训练】1.(2022•永嘉县模拟)已知二次函数y=2x2﹣bx+c的图象经过A(1,n),B(3,n).(1)用含n的代数式表示c.(2)若二次函数y=2x2﹣bx+c的最小值为,求n的值.2.(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.3.(2021•河西区一模)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(Ⅲ)若该函数的图象不经过第三象限,当﹣3≤x≤4时,函数的最大值与最小值之差为40,求b的值.。
2024成都中考数学一轮复习专题二次函数解答压轴题一、解答题1.(2023·浙江绍兴·统考中考真题)已知二次函数2y x bx c =-++.(1)当4,3b c ==时,①求该函数图象的顶点坐标.②当13x -≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.2.(2023·浙江·统考中考真题)已知点(),0m -和()3,0m 在二次函数23,(y ax bx a b =++是常数,0)a ≠的图像上.(1)当1m =-时,求a 和b 的值;(2)若二次函数的图像经过点(),3A n 且点A 不在坐标轴上,当21m -<<-时,求n 的取值范围;(3)求证:240b a +=.5(1)求二次函数的表达式;(2)求四边形ACDB 的面积;(3)P 是抛物线上的一点,且在第一象限内,若ACO PBC ∠=∠6.(2023·山东烟台·统考中考真题)如图,抛物线2y ax =+(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为7.(2023·江苏苏州·统考中考真题)如图,二次函数268y x x =-+的图像与x 轴分别交于点,A B (点A 在点B 的左侧),直线l 是对称轴.点P 在函数图像上,其横坐标大于4,连接,PA PB ,过点P 作PM l ⊥,垂足为M ,以点M 为圆心,作半径为r 的圆,PT 与M 相切,切点为T .(1)求点,A B 的坐标;(2)若以M 的切线长PT 为边长的正方形的面积与PAB 的面积相等,且M 不经过点()3,2,求PM 长的取值范围.8.(2023·山东东营·统考中考真题)如图,抛物线过点()0,0O ,()10,0E ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上,设(),0B t ,当2t =时,4BC =.(1)求抛物线的函数表达式;(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持2t =时的矩形ABCD 不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形ABCD 的面积时,求抛物线平移的距离.(1)求这条抛物线的函数解析式;(2)P 是抛物线上一动点(不与点A ,B ,C 重合),作①如图,若点P 在第三象限,且tan 2CPD ∠=,求点②直线PD 交直线BC 于点E ,当点E 关于直线PC 周长.10.(2023·四川自贡·统考中考真题)如图,抛物线(1)求抛物线解析式及B ,(2)以A ,B ,C ,D 为顶点的四边形是平行四边形,求点(3)该抛物线对称轴上是否存在点11.(2023·四川达州·统考中考真题)如图,抛物线2y ax bx c =++过点()()()1,0,3,,00,3A B C -.(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.12.(2023·四川泸州·统考中考真题)如图,在平面直角坐标系xOy 中,已知抛物线2y ax 2x c =++与坐标轴分别相交于点A ,B ,()0,6C 三点,其对称轴为2x =.(1)求该抛物线的解析式;(2)点F 是该抛物线上位于第一象限的一个动点,直线AF 分别与y 轴,直线BC 交于点D ,E .①当CD CE =时,求CD 的长;②若CAD ,CDE ,CEF △的面积分别为1S ,2S ,3S ,且满足1322S S S +=,求点F 的坐标.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.∠的边与x轴平行时,求点P与点Q的纵坐标的差.(3)当PAQ(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD(3)在(2)的条件下,将该抛物线向右平移5个单位,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以Q15.(2023·四川凉山·统考中考真题)如图,已知抛物线与x 轴交于()1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F .①当EF 取得最大值时,求m 的值和EF 的最大值;②当EFC 是等腰三角形时,求点E 的坐标.16.(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy 中,已知抛物线2y ax c =+经过点3(4,)P -,与y 轴交于点(0,1)A ,直线(0)y kx k =≠与抛物线交于B ,C 两点.(1)求抛物线的函数表达式;(2)若ABP 是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点(0,)M m 作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E .试探究:是否存在常数m ,使得OD OE ⊥始终成立?若存在,求出m 的值;若不存在,请说明理由.(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BE EC的值.(2)连接,PC CPE ∠与BAO ∠能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC标及PDDB的最大值;(3)过点P作x轴的垂线交直线AC于点M,连接PC,将好落在y轴上时,请直接写出此时点M的坐标.33(1)求点,,D E C 的坐标;(2)F 是线段OE 上一点()OF EF <,连接①求证:DFC △是直角三角形;②DFC ∠的平分线FK 交线段DC 于点K 坐标.28.(2023·江苏扬州·统考中考真题)在平面直角坐标系xOy 中,已知点A 在y 轴正半轴上.(1)如果四个点()()()()0,00,21,11,1-、、、中恰有三个点在二次函数2y ax =(a 为常数,且0a ≠)的图象上.①=a ________;②如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长;③如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m -是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2y ax =(a 为常数,且0a >)的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式.(1)请求出抛物线1Q 的表达式.(2)如图1,在y 轴上有一点()0,1D -,点E 在抛物线1Q 上,点F 为坐标平面内一点,是否存在点边形DAEF 为正方形?若存在,请求出点,E F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线1Q 向右平移2个单位,得到抛物线2Q ,抛物线2Q 的顶点为(1)求抛物线的表达式;(2)如图1,直线11:y OP y x x =交BF 于点G ,求BPG BOGS S △△的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于求点P 的横坐标.31.(2023·山东枣庄·统考中考真题)如图,抛物线2y x bx c =-++经过(1,0),(0,3)A C -两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接..写出所有满足条件的点Q 的坐标;若不存在,请说明理由.32.(2023·湖北随州·统考中考真题)如图1,平面直角坐标系xOy 中,抛物线2y ax bx c =++过点(1,0)A -,(2,0)B 和(0,2)C ,连接BC ,点(,)P m n (0)m >为抛物线上一动点,过点P 作PN x ⊥轴交直线BC 于点M ,交x 轴于点N .(1)直接写出....抛物线和直线BC 的解析式;(2)如图2,连接OM ,当OCM 为等腰三角形时,求m 的值;(3)当P 点在运动过程中,在y 轴上是否存在点Q ,使得以O ,P ,Q 为顶点的三角形与以B ,C ,N 为顶点的三角形相似(其中点P 与点C 相对应),若存在,直接写出....点P 和点Q 的坐标;若不存在,请说明理由.(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点交x轴于点D,求与12PK PD+的最大值及此时点2①求证:23DO EO =.②当点E 在线段OB 上,且BE =35.(2023·山西·统考中考真题)如图,二次函数直线与该函数图象交于点()1,3B (1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是第一象限内二次函数图象上的一个动点,过点P 作直线PE 设点P 的横坐标为m .①当12PD OC =时,求m 的值;②当点P 在直线AB 上方时,连接OP ,过点B 作BQ x ⊥轴于点Q ,36.(2023·湖北武汉·统考中考真题)抛物线21:28=--C y x x 交x 轴于,A B 两点(A 在B 的左边),交y 轴于点C .(1)直接写出,,A B C 三点的坐标;(2)如图(1),作直线()04=<<x t t ,分别交x 轴,线段BC ,抛物线1C 于,,D E F 三点,连接CF .若BDE 与CEF △相似,求t 的值;(3)如图(2),将抛物线1C 平移得到抛物线2C ,其顶点为原点.直线2y x =与抛物线2C 交于,O G 两点,过OG 的中点H 作直线MN (异于直线OG )交抛物线2C 于,M N 两点,直线MO 与直线GN 交于点P .问点P 是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.(1)直接判断AOB 的形状:AOB 是_________三角形;(2)求证:AOE BOD △≌△;(3)直线EA 交x 轴于点(,0),2C t t >.将经过B ,C 两点的抛物线21y ax =物线2y .①若直线EA 与抛物线1y 有唯一交点,求t 的值;(1)求抛物线的表达式;(2)如图1,点P 是抛物线的对称轴l 上的一个动点,当PAC △(3)如图2,取线段OC 的中点D ,在抛物线上是否存在点若不存在,请说明理由.(1)直接写出结果;b =_____,c =_____,点A 的坐标为_____,tan ABC ∠=______;(2)如图1,当2PCB OCA ∠=∠时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=︒,点E ,F 分别为BDQ △的边,DQ DB 上的动点,QE DF =,记BE Q F +的最小值为m .①求m 的值;②设PCB 的面积为S ,若214S m k =-,请直接写出k 的取值范围.(1)求抛物线的解析式.(2)过点M 作x 轴的垂线,与拋物线交于点N .若04t <<,求NED 面积的最大值.(3)抛物线与y 轴交于点C ,点R 为平面直角坐标系上一点,若以B C M R 、、、为顶点的四边形是菱形,请求出所有满足条件的点R 的坐标.41.(2023·四川·统考中考真题)如图1,在平面直角坐标系中,已知二次函数2y ax bx =++交于点()2,0A -,()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴且90BFE ∠=︒,求出点F 的坐标;(3)如图2,P 为第一象限内抛物线上一点,连接运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.42.(2023·山东聊城·统考中考真题)如图①,抛物线29y ax bx =+-与x 轴交于点()30A -,,()6,0B ,与y 轴交于点C ,连接AC ,BC .点P 是x 轴上任意一点.(1)求抛物线的表达式;(2)点Q 在抛物线上,若以点A ,C ,P ,Q 为顶点,AC 为一边的四边形为平行四边形时,求点Q 的坐标;(3)如图②,当点(),0P m 从点A 出发沿x 轴向点B 运动时(点P 与点A ,B 不重合),自点P 分别作∥PE BC ,交AC 于点E ,作PD BC ⊥,垂足为点D .当m 为何值时,PED V 面积最大,并求出最大值.43.(2023·湖北荆州·统考中考真题)已知:y 关于x 的函数()()221y a x a x b =-+++.(1)若函数的图象与坐标轴...有两个公共点,且4a b =,则a 的值是___________;(2)如图,若函数的图象为抛物线,与x 轴有两个公共点()2,0A -,()4,0B ,并与动直线:(04)l x m m =<<交于点P ,连接PA ,PB ,PC ,BC ,其中PA 交y 轴于点D ,交BC 于点E .设PBE △的面积为1S ,CDE 的面积为2S .①当点P 为抛物线顶点时,求PBC 的面积;②探究直线l 在运动过程中,12S S -是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.(1)求抛物线的解析式;(2)若32m<<,当m为何值时,四边形CDNP是平行四边形?(3)若32m<,设直线MN交直线BC于点E,是否存在这样的m值,使值;若不存在,请说明理由.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD 好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点F ,过点F 作FG x ⊥轴,垂足为G ,求2FG +(1)求二次函数的表达式;(2)如图1,求AOD △周长的最小值;(3)如图2,过动点D 作DP AC ∥交抛物线第一象限部分于点P ,连接,PA PB ,记PAD 与△为S ,当S 取得最大值时,求点P 的坐标,并求出此时S 的最大值.(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?50.(2023·四川南充·统考中考真题)如图1,抛物线23y ax bx =++(0a ≠)与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点()1,3K 的直线(直线KD 除外)与抛物线交于G ,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.51.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()4,0A -、()2,0B ,且经过点()2,6C -.(1)求抛物线的表达式;(2)在x 轴上方的抛物线上任取一点N ,射线AN 、BN 分别与抛物线的对称轴交于点P 、Q ,点Q 关于x 轴的对称点为Q ',求APQ '△的面积;(3)点M 是y 轴上一动点,当AMC ∠最大时,求M 的坐标.52.(2023·四川广安·统考中考真题)如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x -,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.53.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =--的顶点为P .直线l 过点()()0,3M m m ≥-,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.54.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA 标;(3)设直线135 :4l y kx k=+-交抛物线于点M、N,求证:无论存在一点E,使得MEN∠为直角.(1)求a 的值.(2)将直线BC 向下平移()0m m >个单位长度,交抛物线于在定点D ,无论m 取何值时,都是点D 到直线B C ''的距离最大,若存在,请求出点请说明理由.(3)抛物线上是否存在点P ,使45PBC ACO ∠+∠=︒,若存在,请求出直线58.(2023·湖北十堰·统考中考真题)已知抛物线28y ax bx =++过点()4,8B 和点()8,4C ,与y 轴交于点A .(1)求抛物线的解析式;(2)如图1,连接,AB BC ,点D 在线段AB 上(与点,A B 不重合),点F 是OA 的中点,连接FD ,过点D 作DE FD ⊥交BC 于点E ,连接EF ,当DEF 面积是ADF △面积的3倍时,求点D 的坐标;(3)如图2,点P 是抛物线上对称轴右侧的点,(),0H m 是x 轴正半轴上的动点,若线段OB 上存在点G (与点,O B 不重合),使得GBP HGP BOH ∠=∠=∠,求m 的取值范围.59.(2023·吉林长春·统考中考真题)在平面直角坐标系中,点O 为坐标原点,抛物线22y x bx =-++(b 是常数)经过点(2,2).点A 的坐标为(,0)m ,点B 在该抛物线上,横坐标为1m -.其中0m <.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B 在x 轴上时,求点A 的坐标;(3)该抛物线与x 轴的左交点为P ,当抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点与最低点的纵坐标之差为2m -时,求m 的值.(4)当点B 在x 轴上方时,过点B 作BC y ⊥轴于点C ,连结AC 、BO .若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC 的顶点),设这两个交点分别为点E 、点F ,线段BO 的中点为D .当以点C 、E 、O 、D (或以点C 、F 、O 、D )为顶点的四边形的面积是四边形AOBC 面积的一半时,直接写出所有满足条件的m 的值.60.(2023·湖北·统考中考真题)如图1,在平面直角坐标系xOy 中,已知抛物线()260y ax bx a =+-≠与x 轴交于点()()2,0,6,0A B -,与y 轴交于点C ,顶点为D ,连接BC .(1)抛物线的解析式为__________________;(直接写出结果)(2)在图1中,连接AC 并延长交BD 的延长线于点E ,求CEB ∠的度数;(3)如图2,若动直线l 与抛物线交于,M N 两点(直线l 与BC 不重合),连接,CN BM ,直线CN 与BM 交于点P .当MN BC ∥时,点P 的横坐标是否为定值,请说明理由.61.(2023·黑龙江齐齐哈尔·统考中考真题)综合与探究如图,抛物线2y x bx c =-++上的点A ,C 坐标分别为()0,2,()4,0,抛物线与x 轴负半轴交于点B ,点M 为y 轴负半轴上一点,且2OM =,连接AC ,CM .(1)求点M 的坐标及抛物线的解析式;【基础训练】(1)请分别直接写出抛物线214y x =的焦点坐标和准线l 的方程:___________,___________【技能训练】(2)如图2,已知抛物线21y x =上一点()()000,0P x y x >到焦点F 的距离是它到x 轴距离的参考答案一、解答题222(3)如图,P是抛物线上的一点,且在第一象限,当⊥交BP于连接PB,过C作CE BC∵5OC OB ==,则OCB 为等腰直角三角形,由勾股定理得:52CB =,∵ACO PBC ∠=∠,∴tan tan ACO PBC ∠=∠,即1552CE CE CB ==,∴2CE =由CH BC ⊥,得90BCE ∠=︒,【点拨】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.A7.【答案】(1)()2,0,y=【分析】(1)令0(2)由题意可得抛物线的对称轴为假设M 过点()3,2N ,则有以下两种情况:①如图1:当点M 在点N 的上方,即∴2683m m -+=,解得:m =∵4m >∴5m =;②如图2:当点M 在点N 的上方,即∴2681m m -+=,解得:m =∵4m >∴32m =±;综上,32PM m =-=或2.∴当M 不经过点()3,2时,1【点拨】本题主要考查了二次函数的性质、切线的性质、勾股定理等知识点,掌握分类讨论思想是解答本题的关键.∵直线GH平分矩形ABCD的面积,∴直线GH过点P..由平移的性质可知,四边形OCHG是平行四边形,=.∴PQ CH∵四边形ABCD是矩形,∴P是AC的中点.33⎝∴90,PEC CED ∠=∠=︒。
二次函数1. 二次函数2()y a x h k =-+的图像和性质2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = ,k = . 3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.4. 常用二次函数的解析式:(1)一般式: ;(2)顶点式: ;(3)交点式: 5. 顶点式的几种特殊形式.⑴ , ⑵ , ⑶ ,(4) . 6.二次函数c bx ax y ++=2通过配方可得224(24b ac b y a x aa-=++,其抛物线关于直线x = 对称,顶点坐标为( , ),与y 轴交点坐标为( , )。
⑴ 当0a >时,抛物线开口向 ,有最 点, 当x = 时,y 有最 值是 ; ⑵ 当0a <时,抛物线开口向 ,有最 点, 当x = 时,y 有最 值是 .(第1题)练习题一、选择题1.已知二次函数y=ax 2+bx 的图象经过点A (-1,1),则ab 有( ) A .最大值 1 B .最大值2 C .最小值0 D .最小值41-2、如图,抛物线与两坐标轴的交点分别为(-1,0),(2,0),(0,2),则当2y >时,自变量x 的取值范围是( ) A .102x <<B . 01x <<C .112x << D.12x -<< 3.小李从如图所示的二次函数c bx ax y ++=2的图象中,观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)ab >0;(4)a -b +c <0. 你认为其中错误..的有( )A. 2个B. 3个C. 4个D. 1个二、填空题1.如图,某涵洞的截面是抛物线形,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO 为2.4m ,在图中直角坐标系内,涵洞截面所在抛物线的解析式是___ _______.2.抛物的大小关系为 .6.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则x 的取值范围是 .。
y
x
O
第21课时 二次函数
一、考点解析
考点一:二次函数的图像和性质 考点二:二次函数图像的平移 考点三:二次函数与方程不等式的关系 考点四:二次函数的解析式
二、重难点知识回顾及本章知识体系 1、 二次函数2
()y a x h k =-+的图像和性质
a >0
a <0
图 象
开 口 对 称 轴 顶点坐标
最 值
当x = 时,y 有最 值
当x = 时,y 有最
值
增减
性
在对称轴左侧
y 随x 的增大而
y 随x 的增大而
在对称轴右侧 y 随x 的增大而
y 随x 的增大而
2、 二次函数c bx ax y ++=2
用配方法可化成()k h x a y +-=2
的形式,其中
h = , k = . 3、 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.
4、 二次函数c bx ax y ++=2
中c b a ,,的符号的确定.
O
y
x
B
A
三、典例解析
例1、(2007吉林)如图,抛物线y 1=-x 2+2向右平 移1个单位得到抛物线y 2,回答下列问题:
(1)抛物线y 2的顶点坐标_____________; (2)阴影部分的面积S =___________; (3)若再将抛物线y 2绕原点O 旋转180° 得到抛物线y 3,则抛物线y 3的开口方 向__________,顶点坐标____________.
例2、(1)二次函数y=ax 2+bx+c 的图像如图1,则点M (b ,
c
a
)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
(2)(05武汉)已知二次函数y=ax 2+bx+c (a≠0)的图象如图2所示, 则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( )
A .1个
B .2个
C .3个
D .4个
例3、(08大连)如图,直线和抛物线
都经过点A(1,0),B(3,2).
⑴ 求m 的值和抛物线的解析式; ⑵写出图像与x 轴的另一个交点坐标
(3) 求不等式的解集.
(直接写出答案)
m x y +=c bx x y ++=2m x c bx x +>++2
1-2
-1
-2 -1 2 2
1 1
3
x
y
y 1 y 2 O
例4、见《天府教与学》43页例3
例5、(2007上海市)在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,. (1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.
变式题:(2007天津市)知一抛物线与x 轴的交点是)0,2(-A 、B (1,0), 且经过点C (2,8)。
(1)求该抛物线的解析式; (2)求该抛物线的顶点坐标
四、考点精练
1、(2008年泰州市)二次函数342
++=x x y 的图像可以由二次函数2x y =的图像平移而
得到,下列平移正确的是( )
A .先向左平移2个单位,再向上平移1个单位
B .先向左平移2个单位,再向下平移1个单位;
C .先向右平移2个单位,再向上平移1个单位;
D .先向右平移2个单位,再向下平移1个单位
2、(四川省资阳市)在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )
A .y =2(x -2)2 + 2
B .y =2(x + 2)2-2
C .y =2(x -2)2-2
D .y =2(x + 2)2 + 2
3、(2006云南)二次函数21
(4)52
y x =
-+的开口方向、对称轴、顶点坐标分别是( )
A.向上、直线x=4、(4,5)
B.向上、直线x=-4、(-4,5)
C.向上、直线x=4、(4,-5)
D.向下、直线x=-4、(-4,5)
4、(2008 湖南 长沙)二次函数c bx ax y ++=2的图象如图所
示,则下列关系式不正确的是( )
.
.
O x
y
1
-1 B
A A 、a <0
B 、abc >0
C 、c b a ++>0
D 、ac b 42->0
5、(2008年芜湖市)函数在同一直角坐标系内的图象大致是 ( )
5、二次函数2
(0)y ax bx c a =++≠的图象如图4所示, 则下列说法不正确的是( ) A .240b ac -> B .0a >
C .0c >
D .02b
a
-
<
6、(2007南充)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.
给出四个结论: b 2>4ac ; 2a +b =0; a -b +c =0 ; 5a <b .其中正确结论是( ). (A ) (B ) (C ) (D )
7、(2008天津)已知关于x 的函数同时满足下列三个条件:
函数的图象不经过第二象限; 当时,对应的函数值; 当时,函数值y 随x 的增大而增大.
你认为符合要求的函数的解析式可以是: (写出一个即可).
8、如右图,抛物线n x x y ++-=52经过点)0,1(A ,与 y 轴交于点B.
(1)求抛物线的解析式;
2
y ax b y ax bx c =+=++和2<x 0<y 2<x
(2)P 是y 轴正半轴上一点,且 PAB 是等腰三角形, 试求点P 的坐标.
9、(2006年南通市)已知抛物线y=ax 2+bx+c 经过A ,B ,C 三点,当x≥0时, 其图象如图所示.
(1)求抛物线的解析式,写出抛物线的顶点坐标; (2)画出抛物线y=ax 2+bx+c 当x<0时的图象; (3)利用抛物线y=ax 2+bx+c ,写出x 为何值时,y>0.
10、(2008年庆阳市)(12分)一条抛物线2
y x mx n =++经过点()03,与()43,.
(1)求这条抛物线的解析式,并写出它的顶点坐标; (2)现有一半径为1、圆心P 在抛物线上运动的动圆,当P 与坐标轴相切时,求圆心P
的坐标; (3)
P 能与两坐标轴都相切吗?如果不能,试通过上下平移抛物线2y x mx n =++使
P 与两坐标轴都相切(要说明平移方法).
O 图15。