高二数学古典概率
- 格式:pdf
- 大小:811.62 KB
- 文档页数:8
【导语】以下是⽆忧考为⼤家推荐的有关⾼⼆数学必修3知识点整理:古典概型,如果觉得很不错,欢迎点评和分享~感谢你的阅读与⽀持! 古典概型的基本概念 1.基本事件:在⼀次试验中可能出现的每⼀个基本结果称为基本事件; 2.等可能基本事件:若在⼀次试验中,每个基本事件发⽣的可能性都相同,则称这些基本事件为等可能基本事件; 3.古典概型:满⾜以下两个条件的随机试验的概率模型称为古典概型①所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等; 4.古典概型的概率:如果⼀次试验的等可能基本事件共有n个,那么每⼀个等可能基本事件发⽣的概率都是 1,如果某个事件A包含了其中m个等可能基本事件,那么事件A发⽣的概率为nP(A)?m.n 知识点⼀:古典概型的基本概念 *例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?思路分析: 题意分析:本试题考查⼀次试验中⽤列举法列出所有基本事件的结果,⽽画树状图是列举法的基本⽅法. 解题思路:为了了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.或者利⽤树状图将它们之间的关系列出来.解答过程:解法⼀:所求的基本事件共有6个: A?{a,b},B?{a,c},C?{a,d}D?{b,c},E?{b,d},F?{c,d} 解法⼆:树状图 解题后的思考:⽤树状图求解⼀次试验中的基本事件数⽐较直观、形象,可做到不重不漏.掌握列举法,学会⽤数形结合、分类讨论的思想解决概率的计算问题. **例2:(1)向⼀个圆⾯内随机地投射⼀个点,如该点落在圆内任意⼀点都是等可能的,你认为这是古典概型吗?为什么? (2)如图,某同学随机地向⼀靶⼼射击,这⼀试验的结果只有有限个:命中10环、命中9环??命中5环和不中环.你认为这是古典概型吗?为什么? 思路分析: 题意分析:本题考查古典概型的概念.应明确什么是古典概型及其应具备什么样的条件.解题思路:结合古典概型的两个基本特征可进⾏判定解决.解答过程: 答:(1)不是古典概型,因为试验的所有可能结果是圆⾯内所有的点,试验的所有可能结果数是⽆限的,虽然每⼀个试验结果出现的“可能性相同”,但这个试验不满⾜古典概型的第⼀个条件. (2)不是古典概型,因为试验的所有可能结果只有7个,⽽命中10环、命中9环??命中5环和不中环的出现不是等可能的,即不满⾜古典概型的第⼆个条件. 解题后的思考:判定是不是古典概型,主要看两个⽅⾯,⼀是实验结果是不是有限的;另⼀个就是每个事件是不是等可能的. ***例3:单选题是标准化考试中常⽤的题型,⼀般是从A,B,C,D四个选项中选择⼀个正确答案.如果考⽣掌握了考查的内容,他可以选择正确的答案.假设考⽣不会做,他随机的选择⼀个答案,问他答对的概率是多少?思路分析: 题意分析:本题考查古典概型概率的求解运算. 解题思路:解本题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考⽣掌握了全部或部分考查内容,这都不满⾜古典概型的第2个条件——等可能性,因此,只有在假定考⽣不会做,随机地选择了⼀个答案的情况下,才可将此问题看作古典概型. 解答过程:这是⼀个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考⽣随机地选择⼀个答案是选择A,B,C,D的可能性是相等的.从⽽由古典概型的概率计算公式得: P(答对\答对所包含的基本事件的个数1==0.25 基本事件的总数4解题后的思考:运⽤古典概型的概率公式求概率时,⼀定要先判定该试题是不是古典概型,然后明确试验的总的基本事件数,和事件A发⽣的基本事件数,再借助于概率公式运算.⼩结:本知识点的例题主要考查对古典概型及其概率概念的基本理解.把握古典概型的两个特征是解决概率问题的第⼀个关键点;理解⼀次试验中的所有基本事件数,和事件A发⽣的基本事件数,是解决概率问题的第⼆个关键点. 知识点⼆:古典概型的运⽤ *例4:同时掷两个骰⼦,计算:(1)⼀共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少? (4)为什么要把两个骰⼦标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?思路分析: 题意分析:本题考查了古典概型的基本运算问题. 解题思路:先分析“同时掷两个骰⼦的所有事件数”,然后分析事件A:向上的点数之和为5的基本事件数,最后结合概率公式运算.同时可以运⽤举⼀反三的思想⾃⾏设问、解答. 解答过程: 解:(1)掷⼀个骰⼦的结果有6种,我们把两个骰⼦标上记号1,2以便区分,由于1号骰⼦的结果都可与2号骰⼦的任意⼀个结果配对,我们⽤⼀个“有序实数对”来表⽰组成同时掷两个骰⼦的⼀个结果(如表),其中第⼀个数表⽰掷1号骰⼦的结果,第⼆个数表⽰掷2号骰⼦的结果.(可由列表法得到)1号骰⼦2号骰⼦1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2) (4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5) (5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)123456由表中可知同时掷两个骰⼦的结果共有36种.(2)在上⾯的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1) (3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得 P(A)=A所包含的基本事件的个数41== 基本事件的总数369(4)如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是: (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5) (5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),则所求的概率为 P(A)=A所包含的基本事件的个数2= 基本事件的总数21这就需要我们考察两种解法是否满⾜古典概型的要求了.可以通过展⽰两个不同的骰⼦所抛掷出来的点,感受第⼆种⽅法构造的基本事件不是等可能事件. 解题后的思考:考查同学们运⽤古典概型的概率计算公式时应注意验证所构造的基本事件是否满⾜古典概型的第⼆个条件. 对于同时抛掷的问题,我们要将骰⼦编号,因为这样就能反映出所有的情况,不⾄于把(1,2)和(2,1)看作相同的情况,保证基本事件的等可能性.我们也可将此试验通过先后抛掷来解决,这样就有顺序了,则基本事件的出现也是等可能的. **例5:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后不放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查的是不放回抽样的古典概型概率的运⽤ 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“不放回的,连续的取两次”. 先列举出试验中的所有基本事件数,然后求事件A的基本事件数,利⽤概率公式求解.解答过程: 解法1:每次取出⼀个,取后不放回地连续取两次,其⼀切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品. ⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因⽽P(A)= 42=63解法2:可以看作不放回3次⽆顺序抽样,先按抽取顺序(x,y)记录结果,则x有3种可能,y有2种可能,但(x,y),(y,x)是相同的,所以试验的所有结果有3×2÷2=3种,按同样的⽅法,事件B包含的基本事件个数为2×1÷1=2,因此P(B)= 23解题后的思考:关于不放回抽样,计算基本事件的个数时,既可以看作是有顺序的,也可以看作是⽆顺序的,其结果是⼀样的,但⽆论选择哪⼀种⽅式,观察的⾓度必须⼀致,否则会导致错误. ***例6:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查放回抽样的概率问题. 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“有放回的,连续的取两次”. 解答过程:每次取出⼀个后放回,连续取两次,其⼀切可能的结果组成的基本事件有9个,即 (a1,a1),(a1,a2)和(a1,b1)(a2,a1),(a2,b1)和(a2,a2)(b1,a1),(b1,a2)和(b1,b1) 其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品.⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(b1,a1),(b1,a2),(a2,b1),(a1,b1)]事件A由4个基本事件组成,因此P(A)= 4.9解题后的思考:对于有放回抽样的概率问题我们要理解每次取的时候,总数是不变的,且同⼀个体可被重复抽取,同时,在求基本事件数时,要做到不重不漏.⼩结: (1)古典概型概率的计算公式是⾮常重要的⼀个公式,要深刻体会古典概型的概念及其概率公式的运⽤,为我们学好概率奠定基础. (2)体会求解不放回和有放回概率的题型. 知识点三:随机数产⽣的⽅法及随机模拟试验的步骤 **例7:某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析: 题意分析:本题考查的是近似计算⾮古典概型的概率. 解题思路:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能⽤古典概型的概率公式计算,我们⽤计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解答过程: 我们通过设计模拟试验的⽅法来解决问题,利⽤计算机或计算器可以⽣产0到9之间的取整数值的随机数. 我们⽤1,2,3,4表⽰投中,⽤5,6,7,8,9,0表⽰未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为⼀组. 例如:产⽣20组随机数: 812,932,569,683,271,989,730,537,925,488907,113,966,191,431,257,393,027,556,458 这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表⽰恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为解题后的思考: (1)利⽤计算机或计算器做随机模拟试验,可以解决⾮古典概型的概率的求解问题.(2)对于上述试验,如果亲⼿做⼤量重复试验的话,花费的时间太多,因此利⽤计算机或计算器做随机模拟试验可以⼤⼤节省时间. (3)随机函数(RANDBETWEEN)(a,b)产⽣从整数a到整数b的取整数值的随机数. ⼩结:能够简单的体会模拟试验求解⾮古典概型概率的⽅法和步骤.⾼考对这部分内容不作更多的要求,了解即可.5=25%.20 【同步练习题】 1.(2014•惠州调研)⼀个袋中装有2个红球和2个⽩球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同⾊的概率为()A.12;B.13;C.14;D.25 答案:A[把红球标记为红1、红2,⽩球标记为⽩1、⽩2,本试验的基本事件共有16个,其中2个球同⾊的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,⽩1、⽩1,⽩1、⽩2,⽩2、⽩1,⽩2、⽩2,故所求概率为P=816=12.] 2.(2013•江西⾼考)集合A={2,3},B={1,2,3},从A,B中各任意取⼀个数,则这两数之和等于4的概率是 ()A.23B.12C.13D.16 答案:C[从A,B中各任取⼀个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为26=13.故选C.] 3.(2014•宿州质检)⼀颗质地均匀的正⽅体骰⼦,其六个⾯上的点数分别为1、2、3、4、5、6,将这⼀颗骰⼦连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为()A.112B.118C.136D.7108 答案:A[基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P=186×6×6=112.] 4.(2013•安徽⾼考)若某公司从五位⼤学毕业⽣甲、⼄、丙、丁、戊中录⽤三⼈,这五⼈被录⽤的机会均等,则甲或⼄被录⽤的概率为 ()A.23B.25C.35D.910 答案:D[五⼈录⽤三⼈共有10种不同⽅式,分别为:{丙,丁,戊},{⼄,丁,戊},{⼄,丙,戊},{⼄,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲,丙,丁},{甲,⼄,戊},{甲,⼄,丁},{甲,⼄,丙}. 其中含甲或⼄的情况有9种,故选D.] 5.(理)(2014•安徽⽰范⾼中联考)在棱长分别为1,2,3的长⽅体上随机选取两个相异顶点,若每个顶点被选取的概率相同,则选到两个顶点的距离⼤于3的概率为()A.47B.37C.27D.314 答案:B[从8个顶点中任取两点有C28=28种取法,其线段长分别为1,2,3,5,10,13,14.①其中12条棱长度都⼩于等于3;②其中4条,棱长为1,2的⾯对⾓线长度为5<3;故长度⼤于3的有28-12-4=12,故两点距离⼤于3的概率为12C28=37,故选B.]。
课题:古典概型江苏省赣榆县厉庄高级中学张宁善一、设计思路本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法。
①设置“问题”情境,激发学生解决问题的欲望;②提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识。
二、教学目标知识与技能目标:理解古典概型及其概率计算公式,会求简单的古典概型;会用列举法或图表法计算一些随机事件所含的基本事件数及事件发生的概率。
过程与方法目标:通过模拟试验让学生理解古典概型的特征,并归纳出古典概型的概率计算公式,提高学生的探究问题、分析与解决问题的能力,渗透数形结合及转化的思想,优化学生的思维品质。
情感与态度目标:通过经历对古典概型公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、数学的严谨美。
三、教学重点理解古典概型的概念及利用古典概型求解随机事件的概率。
四、教学难点判断一个试验是否为古典概型,及能找准在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
五、教学准备硬币、骰子;及阅读、寻找生活中的一些概率问题。
六、教学过程1 创设情境,提出问题在课堂教学的开始,让学生分组做下面两个试验:①掷一枚质地均匀的硬币;②掷一个质地均匀的骰子。
思考:在这两个试验中共出现了多少个结果?这两个试验所包含的基本事件的特点是什么?【设计意图】数学是现实世界的反映。
通过学生动手试验,激发学生的兴趣,引发学生的思考,培养学生从实际问题抽象出数学模型的能力。
2 分析问题,形成概念引导学生回答,结合同学的课前预习,可自然引出基本事件的概念:在一次试验中可能出现的每一个基本结果。
分析可得这两个试验所包含的基本事件有限;每个基本事件出现的可能性一样。
这些特征也就是我们今天要研究的基本内容。
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。
6.2 古典概型及条件概率(精讲)(基础版)思维导图考点呈现例题剖析考点一古典概型【例1】(2022·河南安阳)某市在疫情期间,便民社区成立了由网格员、医疗人员、志愿者组成的采样组,并上门进行,核酸检测,某网格员对该社区需要上门核酸检测服务的老年人的年龄(单位:岁)进行了统计调查,将得到的数据进行适当分组后(每组为左开右闭区间),得到的频率分布直方图如图所示.(1)求m 的值,并估计需要上门核酸检测服务的老年人的年龄的平均数;(精确到1,同一组中的数据用该组区间的中点值作为代表)(2)在年龄处于(]70,90的老人中,用分层随机抽样的方法选取9人,再从9人中随机选取2人,求2人中恰有1人年龄超过需要上门核酸检测服务的老年人的平均年龄的概率. 【答案】(1)0.016m =,平均数为80岁(2)59【解析】(1)解:由图可得()0.0320.0400.012101m +++⨯=,解得0.016m =.估计需要上门核酸检测服务的老年人的年龄的平均数为650.16750.32850.4950.1279.880⨯+⨯+⨯+⨯=≈岁.(2)解:(]70,80,(]80,90两组的人数之比为0.032:0.0404:5=,∴在(]70,80,(]80,90的老人中抽取的人数分别为4,5,分别记为1a ,2a ,3a ,4a ,1b ,2b ,3b ,4b ,5b ,从9人中随机选取2人,样本空间()()()()()()()(){1213141112131415Ω,,,,,,,,,,,,,,,,a a a a a a ab a b a b a b a b =()()()()()()()23242122232425,,,,,,,,,,,,,,a a a a a b a b a b a b a b ()()()()()()343132333435,,,,,,,,,,,,a a a b a b a b a b a b ()()()()()4142434445,,,,,,,,,,a b a b a b a b a b ()()()()12131415,,,,,,,,b b b b b b b b ()()()232425,,,,,,b b b b b b ()()3435,,,,b b b b ()}45,b b ,共有36个样本点,恰有一人年龄超过80岁,即恰有一人年龄在(]80,90,令“恰有一人年龄在(]80,90”为事件B ,则()()()()(){1112131415,,,,,,,,,,B a b a b a b a b a b =()()()()()2122232425,,,,,,,,,,a b a b a b a b a b ()()()()()3132333435,,,,,,,,,,a b a b a b a b a b ()()()()()}4142434445,,,,,,,,,a b a b a b a b a b ,共有20个样本点,∴()205369P B ==.【一隅三反】1.(2022河北省)某校为了保障体艺节顺利举办,从高一、高二两个年级的同学中挑选了志愿者60人,人数如下表所示:(1)从所有志愿者中任意抽取一人,求抽到的这人是女同学的概率;(2)用等比例分层随机抽样的方法从所有的女志愿者中按年级抽取六人,再从这六人中随机抽取两人接受记者采访,求这两人中恰有一人来自高一年级的概率.【答案】(1)35(2)815【解析】(1)高一年级志愿者有121628+=人,其中女同学12人,高二年级志愿者有82432+=人,其中女同学24人.故抽到的这人是女同学的概率1224328325+==+P .(2)在高一年级中抽取的志愿者的人数为2,在高二年级中抽取的志愿者的人数为4.记从高一年级中抽取的志愿者为a ,b ,从高二年级中抽取的志愿者为A ,B ,C ,D ,样本空间{(),(),(),(),(),(),(),(),(),(),(),(),(),(),()}Ω=ab aA aB aC aD bA bB bC bD AB AC AD BC BD CD ,共15个样本点.设事件M =“这两人中恰有一人来自高一年级”,则{(),(),(),(),(),(),(),()}=M aA aB aC aD bA bB bC bD ,共8个样本点.故所求概率为8()15P M =. 2.(2022·广东)新冠肺炎疫情期间,某地为了了解本地居民对当地防疫工作的满意度,从本地居民中随机抽取若干居民进行评分(满分为100分),根据调查数据制成如下频率分布直方图,已知评分在[)70,90的居民有660人.(1)求频率分布直方图中a 的值;(2)根据频率分布直方图估计本次评测分数的平均数(同一组中的数据用该组区间的中点值作代表,并精确到0.1);(3)为了今后更好地完成当地的防疫工作,政府部门又采用比例分配的分层抽样的方法,从评分在[)40,60的居民中选出6人进行详细的调查,再从中选取两人进行面对面沟通,求选出的两人恰好都是评分在[)40,50之间的概率.【答案】(1)0.025(2)80.7(3)115【解析】(1)()0.0020.0040.0140.0200.035101a +++++⨯=,0.025a ∴=.(2)平均数为()450.002550.004650.014750.020850.035950.0251080.7⨯+⨯+⨯+⨯+⨯+⨯⨯=.(3)评分在[)40,50和[)50,60的频率之比为1:2,∴应在评分在[)40,50的居民中应抽取2人,记为,A B ;在[)50,60的居民中应抽取4人,记为a b c d ,,,,则从中选取两人有AB ,Aa ,Ab ,Ac ,Ad ,Ba ,Bb ,Bc ,Bd ,ab ,ac ,ad ,bc ,bd ,cd ,共15种情况;其中选出的两人恰好都是评分在[)40,50之间的有AB ,仅有1种;∴所求概率115p =. 3.(2022·四川眉山)某校高二(2)班的一次化学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图:(1)求全班人数及全班分数的中位数;(2)根据频率分布直方图估计该班本次测试的平均成绩(同一组中的数据用该组区间的中点值为代表). (3)若从分数在[)80,90及[]90,100的答题卡中采用分层抽样的方式抽取了5份答题卡,再从抽取的这5份答题卡中随机抽取2份答题卡了解学生失分情况,求这2份答题卡至少有一份分数在[]90,100的概率. 【答案】(1)50人,76.5分(2)77.2(3)710【解析】(1)解:由茎叶图可知,分数在[)50,60内的频数为3,由频率分布直方图可知,分数在[)50,60内的频率为0.006100.06⨯=,所以, 全班人数为3500.06=人,因为分数在[)60,70内的频数为11,分数在[)70,80内的频数为16,所以,全班分数的中位数767776.52+=. (2)解:由茎叶图知,分数在[)50,60内的频数为3,在[)60,70内的频数为11,分数在[)70,80内的频数为16,在[]90,100内的频数为8,所以,分数在[)80,90内的频数为5031116812----=,所以,该班本次测试的平均成绩为550.06650.22750.32850.24950.1677.2⨯+⨯+⨯+⨯+⨯=.(3)解:因为分数在[)80,90内的频数为12,在[]90,100内的频数为8,所以,由分层抽样抽取了5份答题卡中,分数在[)80,90内的有3份,分别记为,,a b c ,分数在[]90,100内的有2份,分别记为,m n ,所以,从抽取的这5份答题卡中随机抽取2份答题卡的所有情况有:()()()(),,,,,,,a b a c a m a n ,()()(),,,,,b c b m b n ,()(),,,c m c n ,(),m n 共10种,其中,这2份答题卡至少有一份分数在[]90,100内的情况有:()(),,,a m a n ,()(),,,b m b n ,()(),,,c m c n ,(),m n 共7种,所以,这2份答题卡至少有一份分数在[]90,100的概率为710P =. 考点二 条件概率【例2-1】(2022·广东·石门高级中学高二阶段练习)设()()()11,||32P P P B A A B A ===,则()P B =( )A .16B .14C .13D .12【答案】D 【解析】因为()()()1|3P AB P B A P A ==,且()12P A =,所以()16P AB = ()()()1|3P AB P A B P B ==,所以()12P B =,故选:D. 【例2-2】(2022·陕西渭南·高二期末(文))甲、乙两人到一商店购买饮料,他们准备分别从加多宝、唯怡豆奶、雪碧这3种饮品中随机选择一个,且两人的选择结果互不影响.记事件A =“甲选择唯怡豆奶”,事件B =“甲和乙选择的饮品不同”,则条件概率()P B A =________. 【答案】23【解析】由题意得,设加多宝、唯怡豆奶、雪碧分别标号为1,2,3,则两人的选择结果有: (1,1)(1,2)(1,3)(2,1)(2,2)(2,3),,,,,,(3,1,)(3,2)(3,3),,,则事件A 的可能结果为:(2,1)(2,2)(2,3),,,共3个, 在事件A 的条件下发生事件B 的结果有(2,1)(2,3),,共2个,所以2()3P B A =.故答案为: 23.【例2-3】(2022·广东·石门高级中学高二阶段练习)已知箱中有5个大小相同的产品,其中3个正品,2个次品,每次从箱中取1个,不放回的取两次,求: (1)第一次取到正品的概率;(2)在第一次取到正品的条件下,第二次取到正品的概率.【答案】(1)35(2)12【解析】(1)解:设A =“第一次取到正品” B =“第二次取到正品”,所以()11341154C C 3C C 5P A ==,第一次取到正品的概率为35;(2)解:()11321154C C 3C C 10P AB ==,所以()()()3110|325P A P AB P B A ===,故在第一次取到正品的条件下第二次取到正品的概率为12. 【一隅三反】1.(2022·福建)设A ,B 为两个事件,已知()0.4P B =,()0.5P A =,()|0.3P B A =,则()|P A B =( ) A .0.24B .0.375C .0.4D .0.5【答案】B 【解析】由()0.5P A =,()|0.3P B A =,得()()()|0.15P AB P B A P A =⋅=,所以()()()0.15|0.3750.4P AB P A B P B ===.故选:B 2.(2022·陕西西安)长时间玩手机可能影响视力,据调查,某校学生大约30%的人近视,而该校大约有40%的学生每天玩手机超过2h ,这些人的近视率约为60%.现从该校近视的学生中任意调查一名学生,则他每天玩手机超过2h 的概率为( ) A .45B .15C .35D .320【答案】A【解析】从该校学生中任意调查一名学生他是近视记为事件A ,且()0.3P A =,从该校学生中任意调查一名学生他每天玩手机超过2h 记为事件B ,且由题可知,()0.60.40.24P AB =⨯=,所以从该校近视的学生中任意调查一名学生,则他每天玩手机超过2h 的概率为:()0.244(|)()0.35P BA P B A P A ===.故B ,C ,D 错误.故选:A.3.(2022·福建三明)有3箱同一品种的零件,每箱装有10个零件,其中第一箱内一等品6个,第二箱内一等品4个,第三箱内一等品2个,现从3箱中随机挑出一箱,然后从该箱中依次随机取出2个,取出的零件均不放回,求:(1)第1次取出的零件是一等品的概率;(2)在第1次取出的零件是一等品的条件下,第2次取出的零件也是一等品的概率. 【答案】(1)25(2)1127【解析】(1)设i A =“被挑出的是第i 箱”()i 1,2,3=,i B =“第i 次取出的零件是一等品”()i 1,2=, 则()()()12313P A P A P A ===, 因为()()()311121634221|,|,|105105105P B A P B A P B A ======,()()()()()()()223111111313212|||35555P B P A P B A P A P B A P A P B A ⎛⎫=++=++= ⎪⎝⎭,所以第1次取出的零件是一等品的概率是25.(2)由(1)得()125P B =, 因为()()()222642121122123222101010C C C 121|,|,|C 3C 15C 45P B B A P B B A P B B A ======,所以()()()()()()()12112212231231|||P B B P A P B B P A P B B A P A P B B A A =++1112112233315345135=⨯+⨯+⨯=,所以()()()1221111|27P B B P B B P B ==.故在第1次取出的零件是一等品的条件下,第2次取出的零件也是一等品的概率为1127. 考点三 综合运用【例3】(2022·江苏扬州·高三期末)为了更好满足人民群众的健身和健康需求,国务院印发了《全民健身计划(20212025-)》.某中学为了解学生对上述相关知识的了解程度,先对所有学生进行了问卷测评,所得分数的分组区间为(]50,60、(]60,70、(]70,80、(]80,90、(]90,100,由此得到总体的频率分布直方图,再利用分层抽样的方式随机抽取20名学生进行进一步调研,已知频率分布直方图中a 、b 、c 成公比为2的等比数列.(1)若从得分在80分以上的样本中随机选取2人,用X 表示得分高于90分的人数,求X 的分布列及期望;(2)若学校打算从这20名学生中依次抽取3名学生进行调查分析,求在第一次抽出1名学生分数在区间(]70,80内的条件下,后两次抽出的2名学生分数在同一分组区间(]80,90的概率.【答案】(1)分布列见解析,期望为1;(2)257. 【解析】(1)解:由题意得2b a =,4c a =,因为10101010101a b c b a ++++=,所以0.01a =. 由分层抽样,抽出的20名学生中得分位于区间(]50,60内有200.12⨯=人, 位于(]60,70内有200.24⨯=人,位于(]70,80内有200.48⨯=人, 位于(]80,90内有200.24⨯=人,位于区间(]90,100学生有200.12⨯=人, 这样,得分位于80分以上的共有6人,其中得分位于(]90,100的有2人,所以X 的可能取值有0、1、2,()3436C 10C 5P X ===,()214236C C 31C 5P X ===()124236C C 12C 5P X ===, 所以X 的分布列为:所以()1310121555E X =⨯+⨯+⨯=.(2)解:记事件:A 第一次抽出1名学生分数在区间(]70,80内, 记事件:B 后两次抽出的2名学生分数在同一分组区间(]80,90内,则()82205P A ==,()1284320C A 4A 1519P AB ==⨯,由条件概率公式可得()()()4521519257P AB P B A P A ==⨯=⨯. 【一隅三反】1.(2022·全国·高三专题练习)某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动.(1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率.【答案】(1)13;(2)15.【解析】记4名男生为A ,B ,C ,D ,2名女生为a ,b ,则从6名成员中挑选2名成员,有AB ,AC ,AD ,Aa ,Ab ,BC ,BD ,Ba ,Bb ,CD ,Ca ,Da ,Db ,ab ,共15种情况.(1)记“男生甲被选中”为事件M ,不妨假设男生甲为A ,事件M 所包含的基本事件为AB ,AC ,AD ,Aa ,Ab ,共有5个,∴()51153P M ==. (2)记“男生甲被选中”为事件M ,“女生乙被选中”为事件N ,不妨设男生甲为A ,女生乙为b ,则()115P M N ⋂=. 又由(1)知:()13P M =,故()()()15P M N P N M P M ⋂==. 2.(2022·辽宁沈阳·二模)甲、乙是北京2022冬奥会单板滑雪坡面障碍技巧项目的参赛选手,二人在练习赛中均需要挑战3次某高难度动作,每次挑战的结果只有成功和失败两种.(1)甲在每次挑战中,成功的概率都为12.设X 为甲在3次挑战中成功的次数,求X 的分布列和数学期望;(2)乙在第一次挑战时,成功的概率为0.5,受心理因素影响,从第二次开始,每次成功的概率会发生改变其规律为:若前一次成功,则该次成功的概率比前一次成功的概率增加0.1;若前一次失败,则该次成功的概率比前一次成功的概率减少0.1.(∴)求乙在前两次挑战中,恰好成功一次的概率; (∴)求乙在第二次成功的条件下,第三次成功的概率. 【答案】(1)分布列见解析,32(2)(∴)0.4;(∴)0.62. 【解析】(1)由题意得,1~3,2X B ⎛⎫ ⎪⎝⎭,则()3311C 122k kk P X k -⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭,其中0,1,2,3k =, 则X 的分布列为:则()13322E X =⨯=. (2)设事件i A 为“乙在第i 次挑战中成功”,其中1,2,3i =.(∴)设事件B 为“乙在前两次挑战中,恰好成功一次”,则1212B A A A A =+, 则()()()()()()()1212121121P B P A A P A A P A P A A P A P A A =+=+()()0.510.610.50.40.4=⨯-+-⨯=.即乙在前两次挑战中,恰好成功一次的概为0.4.(∴)因为()()()()()()21212121121P A P A A A A P A P A A P A P A A =+=+0.50.60.50.40.5=⨯+⨯=,且()()()()23123123123123P A A P A A A A A A P A A A P A A A =+=+0.50.60.70.50.40.50.31=⨯⨯+⨯⨯=,所以()()()233220.310.620.5P A A P A A P A ===. 即乙在第二次成功的条件下,第三次成功的概率为0.62.。
高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。
2. 必然事件:在一定条件下必然发生的事件。
3. 不可能事件:在一定条件下不可能发生的事件。
4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。
如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。
二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。
-每个基本事件出现的可能性相等。
2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。
三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。
-每个基本事件出现的可能性相等。
2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。
四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。
-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。
2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。
-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。
高二数学古典概型知识点1.基本事件:试验结果中不能再分的最简单的随机事件称为基本事件.基本事件的特点:(1)每个基本事件的发生都是等可能的.(2)因为试验结果是有限个,所以基本事件也只有有限个.(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.2.古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.3.计算古典概型的概率的基本步骤为:(1)计算所求事件A所包含的基本事件个数m;(2)计算基本事件的总数n;(3)应用公式P(A)?m计算概率. n4.古典概型的概率公式:P(A)?A包含的基本事件的个数基本事件的总数.应用公式的关键在于准确计算事件A所包含的基本事件的个数和基本事件的总数.要点诠释:古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.高二数学随机事件知识点随机现象在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象对随机现象进行大量的重复试验(观测)其结果往往能呈现出某种统计规律性l随机试验为了研究随机现象的统计规律性,我们把各种科学实验和对事物的观测统称为试验.如果试验具有下述特点:(1)试验可以在相同条件下重复进行;(2)每次试验的所有可能结果都是明确可知的,并且不止一个;(3)每次试验之前不能预知将会出现哪一个结果,则称这种试验为随机试验简称试验。
高二数学古典概型试题1.在正方体中任取两条棱,则这两条棱为异面直线的概率为()A.B.C.D.【答案】B.【解析】从正方体的12条棱中,任取两条棱,有种不同的方法,因为与已知棱成异面直线的有4条,所以共有对异面直线,则这两条棱为异面直线的概率.【考点】古典概型.2.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件,“第2次拿出的是白球”为事件,则事件与同时发生的概率是()A.B.C.D.【答案】D【解析】从装有大小相同的5个白球和3个红球共8个球的袋中先后不放回的各取出一个球的方法共有种,事件与同时发生的即两次中第1次取出的是白球,第2次取出的还是白球,这样的取法有种,由古典概型的概率计算公式得事件与同时发生的概率是,故选择D.【考点】古典概型的概率计算.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是A.B.C.D.【答案】C【解析】由已知及古典概率得:,;且知事件A,B相互独立,则也相互独立,则事件A,B中一个都没有发生的概率为:,又因为“事件A,B中一个都没有发生”与“事件A,B中至少有一件发生”是对立事件,所以事件A,B中至少有一件发生的概率为:;故选C.【考点】事件的概率.4.袋中装有大小相同的总数为5的黑球、白球,若从袋中任意摸出2个球,得到的都是白球的概率是,则至少得到1个白球的概率是 .【答案】【解析】设白球有个,则从袋中任意摸出2个球,得到的都是白球的概率是解得先求从袋中任意摸出2个球,得到的都是黑球的概率是因此至少得到1个白球的概率是【考点】古典概型概率5.在一次考试中,某班语文、数学、外语平均分在80分以上的概率分别为、、,则该班的三科平均分都在80分以上的概率是________.【答案】【解析】由于语文、数学、外语平均分在80分以上这三个事件是相互独立的,所以所求事件的概率为××=.6.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为________.【答案】【解析】能获奖有以下两种情况:①5袋食品中三种卡片数分别为1,1,3,此时共有×A33=60(种)不同的方法,其概率为P1==;②5袋食品中三种卡片数分别为2,2,1,共有×A33=90(种)不同的装法,其概率为P2==,所以所求概率P=P1+P2=.7.某市准备从5名报名者(其中男3人,女2人)中选2人参加两个副局长职务竞选。