电流型与电压型变频器
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
1、变频器的外形根据功率的大小有盒式和柜式。
2、通用变频器的发展方向是低成本的简易型和高性能的多功能。
3、变频器的问世,使电气传动领域发生了一场技术革命,即交流调速取代直流调速。
4、变频器的控制端子中设置 3 个开关 x1 、x2 、x3,用其开关状态的组合来选择频率,一共可选择8 个频率档。
5、变频器按控制方式分类:压频比控制变频器( V/f ) 、转差频率控制变频器(SF) 、矢量控制(VC) 、直接转矩控制。
6、变频器产生谐波时,由于功率较大,因此可视为一个强大的干扰源,其干扰途径与一般电磁干扰途径相似,分别为传导、辐射和二次辐射、电磁耦合、边传导边辐射等。
变频器的保护措施,过流保护、电动机过载保护、过压保护、欠压保护、瞬间停电什么是U/f控制?变频器在变频时为什么还要变压。
在进行电动机调速,通常要考虑的一个重要因素是希望保持电动机每极磁通量为额定值,保持不变。
如果磁通太弱就等于没有充分利用电动机的铁心,是一种浪费;如果过分增大磁通,又会使铁心饱和,过大的励磁电流会使绕组过热,从而损坏电动机。
U/f 控制是使变频器的输出在改变频率的同时也改变电压,通常是使 U/f 为常数,这样可使电动机的磁通保持一定,在较宽的调速范围内,电动机的转矩、效率、功率因数不下降。
1.交流变频调速特性(1)调速时平滑性好,效率高。
低速时,特性静关率较高,相对稳定性好。
(2)调速范围较大,精度高。
(3)起动电流低,对系统及电网无冲击,节电效果明显。
(4)变频器体积小,便于安装、调试、维修简便。
(5)易于实现过程自动化。
(6)在恒转矩调速时,低速段电动机的过载能力大为降低。
1.变频器种类很多,其中按滤波方式可分为电压型和电流型;按用途可分为通用型和专用型。
2.变频器的组成可分为主电路和控制电路。
4.变频器安装要求其正上方和正下方要避免可能阻挡进风、出风的大部件,四周距控制柜顶部、底部、隔板或其他部件的距离不应小于 120mm。
1、按变换的环节分类:可分为交-交变频器,即将工频交流直接变换成频率电压可调的交流,又称直接式变频器;交-直-交变频器,则是先把工频交流通过整流器变成直流,然后再把直流变换成频率电压可调的交流,又称间接式变频器,是目前广泛应用的通用型变频器。
2、按直流电源性质分类:(1)电流型变频器电流型变频器特点是中间直流环节采用大电感作为储能环节,缓冲无功功率,即扼制电流的变化,使电压接近正弦波,由于该直流内阻较大,故称电流源型变频器(电流型)。
电流型变频器的特点(优点)是能扼制负载电流频繁而急剧的变化。
常选用于负载电流变化较大的场合。
(2)电压型变频器电压型变频器特点是中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲,直流电压比较平稳,直流电源内阻较小,相当于电压源,故称电压型变频器,常选用于负载电压变化较大的场合。
此外,变频器还可以按输出电压调节方式分类,按控制方式分类,按主开关元器件分类,按输入电压高低分类。
变频器常用的控制方式综述摘要:综述了近年来在变频器控制中常用的控制方式以及各自的特点,展望了今后变频器控制方式发展的一些方向。
关键词:变频器控制Abstract: The control methods and characteristics of inverters are summarized in this paper and the developments in the future of the inverters control methods are proposed, too.Keywords: inverter control变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心-变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。
本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。
变频器控制方式有哪些_变频器有几种控制方式_变频器的控制方式详解变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的先天条件外,对变频器采用什么样的控制方式也是非常重要的。
本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。
变频器简介1)变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。
对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。
2)变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
变频器控制方式选择依据对于控制方式,要根据生产机械的具体要求来进行选择。
1、二次方律负载对于离心式风机、水泵和空气压缩机一类的二次方律负载,一般采用V/F控制方式为宜。
因为V/F控制方式有低励磁U/f线,在低频运行时可以更好地节能。
矢量控制方式实质上是使电动机始终保持额定磁通的控制方式,不可能实现低励磁。
2.恒转矩负载(1)对于负载率经常变动、调速范围又不很大的负载,一般以选择无反馈矢量控制为好,因为V/F控制方式的转矩提升量不易预置得恰到好处,但采用无馈矢量控制方式时,须注。
一、填空题1.变频器按变换环节分为(交—交变频器)和(交—直—交变频器);前者称为(直接式变频器),后者称为(间接式变频器)。
2.变频器按直流电源的性质分为(电流型变频器)和(电压型变频器)。
3.电流型变频器的中间直流环节采用(大电感器)作为储能元件,常应用于(负载电流)变化较大的场合;电压型变频器的中间直流环节采用(大电容器)作为储能元件,常应用于(负载电压)变化较大的场合。
4.变频器按电压的调制方式分为(脉宽调制[SPWM])变频器和(脉幅调制[PAM])变频器。
5.变频器的功用是将(频率固定)的交流电变换成(电压频率连续可调)的三相交流电,以供给电动机运转的电源装置。
6.变频器的额定功率指的是它适用的(4极交流异步电动机的功率)。
7.输出电抗器的主要作用是(补偿长线分布电容)的影响,并能抑制变频器输出的(谐波),起到减小(噪声)的作用。
8.把功率开关、驱动电路和故障检测电路集成在一起的智能功率模块,称为(IPM)。
9.(IEGT)是融合了IGBT与GTO优点的一种新型电力电子器件。
10.EXB系列集成驱动器是结合(IGBT)模块的特点而研制和开发的专用集成驱动器。
11.三相电源的线电压为380V,则通用变频器直流母线的平均电压是(513 )V。
在过电压发生时,直流母线的储能电容将被充电,当电压上升至(760V)左右时,变频器过电压保护动作。
12.电流型变频器输出的电流波形为(矩形波),与负载性质无关;当带电动机负载时,输出的电压波形为近似(正弦波);而电压型变频器输出的交流电压波形为(矩形波)。
13.在基频以下,变频器的输出电压随输出率的变化而变化,适合变频调速系统的(恒转矩负载特性);在基频以上,变频器的输出电压维持电源额定电压不变,适合变频调速系统的(恒功率负载特性)。
14.变频器和主电源间常用的切换方式有(冷切换)和(热切换),后者又可分为(硬切换)和(软切换)。
15.变频器供电电源异常表现的形式有(缺相)、(电压波动)和(瞬间停电)。
简述电压型变频器和电流型变频器的特点电压型变频器和电流型变频器是两种常见的变频器类型,它们在工业生产中调节电机运行速度和控制电机转矩方面起到了重要的作用。
这两种变频器在原理、特点和应用方面有一些不同之处。
首先,电压型变频器是通过调节输出电压的大小来控制电机转速和转矩的。
在电压型变频器中,通过调整输入电压和频率的比例关系,来控制输出电压的大小和频率,进而控制电机的转速和转矩。
电压型变频器具有输出电压和频率可连续调节的特点,可以实现无级调速,对于转矩需求不高的负载有较好的控制效果。
它的输出电压与输入电压成正比,输出频率与输入频率成正比,因此在控制电机的转速时,容易产生电机的扭矩和功率下降的问题。
而电流型变频器是通过调节输出电流的大小来控制电机转速和转矩的。
在电流型变频器中,通过反馈电机电流的大小,来控制输出电流的大小和频率,进而控制电机的转速和转矩。
电流型变频器具有输出电流和频率可连续调节的特点,对于转矩需求较高的负载有较好的控制效果。
它的输出电流与输入电流成正比,输出频率与输入频率成正比,因此在控制电机的转速时,能保持较高的扭矩和功率输出。
从应用来看,电压型变频器主要适用于转矩需求不高的负载,例如风机、水泵、压缩机等,这些负载在变频调速过程中对扭矩和功率的要求较低。
而电流型变频器主要适用于转矩需求较高的负载,例如起重机、升降机、输送机等,这些负载在变频调速过程中对扭矩和功率的要求较高。
因此,根据负载的不同,选择合适的变频器类型能够更好地满足生产需求。
另外,电压型变频器和电流型变频器在运行效果上也有一些不同。
电压型变频器输出电压与频率的比例关系是固定的,因此在转速和扭矩调节方面可能存在一定的限制,可能会对负载产生一定的影响。
而电流型变频器可以根据负载情况动态调整输出电流的大小和频率,因此对负载的适应性较好,可以更好地控制电机的转速和转矩。
综上所述,电压型变频器和电流型变频器在原理、特点和应用方面有一些不同之处。
1、什么是变频器?变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
2、PWM和PAM的不同点是什么?PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。
PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。
3、电压型与电流型有什么不同?变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
4、为什么变频器的电压与频率成比例的改变?异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
8、按比例地改V和f时,电机的转矩如何变化?频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。
因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。
可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法10、对于一般电机的组合是在60Hz以上也要求转矩一定,是否可以?通常情况下时不可以的。
在60Hz以上(也有50Hz以上的模式)电压不变,大体为恒功率特性,在高速下要求相同转矩时,必须注意电机与变频器容量的选择。
11、所谓开环是什么意思?给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环”,不用PG运转的就叫作“开环”。
电流型与电压型变频器,两者都属于交-直-交变频器,由整流器和逆变器两部分组成。
由于负载一般都是感性的,它和电源之间必有无功功率传送,因此在中间的直流环节中,需要有缓冲无功功率的元件。
如果采用大电容器来缓冲无功功率,则构成电压源型变频器;如采用大电抗器来缓冲无功功率,则构成电流源型变频器。
电压型变频器和电流型变频器的区别仅在于中间直流环节滤波器的形式不同,但是这样一来,却造成两类变频器在性能上相当大的差异,主要表现列表比较如下:
电压型变频器与电流型变频器的性能比较
1、储能元件:电压型变频器——电容器;电流型——电抗器。
2、输出波形的特点:电压形电压波形为矩形波电流波形近似正弦波;电流型变频器则为电流波形为矩形波电压波形为近似正弦波
3、回路构成上的特点,电压型有反馈二极管直流电源并联大容量电容(低阻抗电压源);电流型无反馈二极管直流电源串联大电感(高阻抗电流源)电动机四象限运转容易。
4、特性上的特点,电压型为负载短路时产生过电流,开环电动机也可能稳定运转;电流型为负载短路时能抑制过电流,电动机运转不稳定需要反馈控制。
电流型逆变器采用自然换流的晶闸管作为功率开关,其直流侧电感比较昂贵,而且应用于双馈调速中,在过同步速时需要换流电路,在低转差频率的条件下性能也比较差。
变频器的结构特征
1. 电流型变频器变频器的直流环节采用了电感元件而得名,其优点是具有四象限运行能力,能很方便地实现电机的制动功能。
缺点是需要对逆变桥进行强迫换流,装置结构复杂,调整较为困难。
另外,由于电网侧采用可控硅移相整流,故输入电流谐波较大,容量大时对电网会有一定的影响。
2. 电压型变频器由于在变频器的直流环节采用了电容元件而得名,其特点是不能进行四象限运行,当负载电动机需要制动时,需要另行安装制动电路。
功率较大时,输出还需要增设正弦波滤波器。
3. 高电流型变频器它采用GTO,SCR或IGCT元件串联的办法实现直接的高压变频,目前电压可达10KV。
由于直流环节使用了电感元件,其对电流不够敏感,因此不容易发生过流故障,逆变器工作也很可靠,保护性能良好。
其输入侧采用可控硅相控整流,输入电流谐波较大。
变频装置容量大时要考虑对电网的污染和对通信电子设备的干扰问题。
均压和缓冲电路,技术复杂,成本高。
由于器件较多,装置体积大,调整和维修都比较困难。
逆变桥采用强迫换流,发热量也比较大,需要解决器件的散热问题。
其优点在于具有四象限运行能力,可以制动。
需要特别说明的是,该类变频器由于较低的输入功率因数和较高的输入输出谐波,故需要在其输入输出侧安装高压自愈电容。
4. 高电压型变频器电路结构采用IGBT直接串联技术,也叫直接器件串联型高压变频器。
其在直流环节使用高压电容进行滤波和储能,输出电压可达6KV,其优点是可以采用较低耐压的功率器件,串联桥臂上的所有IGBT作用相同,能够实现互为备用,或者进行冗余设计。
缺点是电平数较低,仅为两电平,输出电压dV/dt 也较大,需要采用特种电动机或整加高压正弦波滤波器,其成本会增加许多。
它不具有四象限运行功能,制动时需另行安装制动单元。
这种变频器同样需要解决器件的均压问题,一般需特殊设计驱动电路和缓冲电路。
对于IGBT驱动电路的延时也有极其苛刻的要求。
一旦IGBT的开通、关闭的时间不一致,或者上升、下降沿的斜率相差太悬殊,均会造成功率器件的损坏.
高压变频器的种类繁多,其分类方法也多种多样。
按着中间环节有无直流部分,可分为交交变频器和交直交变频器;按着直流部分的性质,可分为电流型和电压型变频器。
电流型变频器
由于在变频器的直流环节采用了电感元件而得名,其优点是具有四象限运行能力,能很方便地实现电机的制动功能。
缺点是需要对逆变桥进行强迫换流,装置结构复杂,调整较为困难。
另外,由于电网侧采用可控硅移相整流,故输入电流谐波较大,容量大时对电网会有一定的影响2.1电流型变频器。
电压型变频器
由于在变频器的直流环节采用了电容元件而得名,其特点是不能进行四象限运行,当负载电动机需要制动时,需要另行安装制动电路。
功率较大时,输出还需要增设正弦波滤波器。
1,电压型与电流型有什么不同?变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
2、为什么变频器的电压与电流成比例的改变?异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。