材料分析测试 第七章 X射线衍射分析的应用.
- 格式:ppt
- 大小:451.50 KB
- 文档页数:34
X射线衍射分析的应用衍射分析方法是以材料结构分析为基本目的的现代分析方法。
电磁辐射或电子束、中子束等与材料相互作用产生相干散射(弹性散射),相干散射相长干涉的结果——衍射是材料衍射分析方法的技术基础。
衍射分析包括X射线衍射分析、电子衍射分析及中子衍射分析等方法。
X射线衍射分析基于以下原理:X射线照射晶体,晶体中电子受迫振动产生相干涉,同一原子内各电子散射波相互干涉形成原子散射波,各原子散射波相互干涉,在某些方向上一致加强,即形成了晶体的衍射波(线)。
衍射方向(衍射线在空间分布的方位)和衍射强度是据以现实材料结构分析等工作的两个基本特征。
衍射方向以衍射角即入射线与衍射线的夹角2θ表达,其与产生衍射晶面之晶面间距[d hkl,(HKL)为干涉指数表达之晶面]及入射线波长(λ)的关系即衍射产生的必要条件遵从布拉格方程:2d HKL sinθ=λ多晶X射线衍射的基本方法为衍射仪法与(粉末)照相法。
(粉末)照相法以光源(X射线管)发出的单色光(特征X射线,一般为K a射线)照射(粉末)多晶体(圆柱形)样品,用底片记录产生的衍射线。
用其轴线与样品轴线重合的圆柱形底片记录者称为德拜(Debye)法;用平板底片记录着称为针孔法。
较早的x射线衍射分析多采用照相法,而德拜法是常用的照相法,一般称照相法即德拜法,德拜法照相装置称德拜相机。
衍射仪法分析装置称衍射仪,由光源、测角计、检测器(计数管)、辐射测量电路(信号处理器)及读出部分组成。
衍射仪法亦以单色光照射(置于测角计中心样品架上的)多晶体(平板)样品,检测器与样品台同步转动(保持2:1的角速度比),扫描接收衍射线并转换为电脉冲信号,再经信号处理并记录或显示,得到I(衍射强度)——2θ曲线。
近年来衍射仪法已在绝大多数场合下取代了照相法,成为衍射分析的主要方法。
单晶X射线衍射分析的基本方法为劳埃(Laue)法与周转晶体法。
劳埃法以光源发出的复合光即连续X射线照射置于样品台上不动的单晶体样品,用平板底片记录产生的衍射线。
X射线衍射在材料分析当中的应用X射线衍射是一种重要的材料分析方法,广泛应用于材料科学、物理学、化学、地质学等领域。
它基于X射线与晶体中的原子相互作用而产生的衍射现象,通过测量衍射角度和强度,可以获得关于材料的结构、晶格参数、晶体形态、晶体质量、晶体缺陷等信息。
下面将详细介绍X射线衍射在材料分析当中的应用。
1.结构测量X射线衍射可以用来确定晶体的结构。
晶体的结构是由周期性排列的原子组成的,X射线可以通过与晶体中的原子相互作用而产生衍射现象。
测量X射线的衍射图样可以得到晶体的结构信息,包括晶胞参数、晶体对称性、原子位置等。
这对于研究固体结构和材料的物理、化学性质非常重要。
2.晶体质量分析X射线衍射可以用来评估晶体的质量。
晶体的质量对于材料的性能具有重要影响。
通过测量X射线衍射的强度和形状,可以判断晶体的纯度、晶格缺陷、晶体畸变等信息,从而评估晶体的质量。
这对于工业生产和材料品质控制非常重要。
3.相变研究X射线衍射可以用来研究材料的相变行为。
相变是材料中的原子或分子之间发生的结构转变。
通过测量相变前后X射线衍射的变化,可以确定相变的发生温度、相变类型、相变机制等信息。
这对于研究材料在不同温度、压力等条件下的结构变化和性质变化非常重要。
4.晶体的应力分析X射线衍射可以用来分析材料中的应力状态。
当晶体中存在应力时,晶胞参数会发生变化,进而影响X射线衍射的角度和强度。
通过测量X射线衍射的变化,可以计算材料中的应力状态。
这对于理解材料的力学性能、设计材料的使用条件非常重要。
5.晶体取向分析X射线衍射可以用来分析材料中晶体的取向情况。
当材料中存在多个取向的晶体时,不同晶面的衍射强度会有区别。
通过测量X射线衍射的强度和方向,可以确定晶体的取向分布。
这对于研究材料的制备方法、材料的性能分布等具有重要意义。
6.材料成像利用X射线衍射原理,可以实现材料的成像。
例如,X射线衍射成像技术可以用来观察材料的内部结构,如晶体的缺陷、晶体的结构变化等。
射线衍射分析的实验方法及其应用自1896年X射线被发现以来, 可利用X射线分辨的物质系统越来越复杂。
从简单物质系统到复杂的生物大分子, X射线已经为我们提供了很多关于物质静态结构的信息。
此外, 在各种测量方法中, X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。
由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用, 人们对晶体的研究日益深入, 使得X射线衍射分析成为研究晶体最方便、最重要的手段。
本文主要介绍X射线衍射的原理和应用。
1. X射线衍射原理1912年劳埃等人根据理论预见, 并用实验证实了X射线与晶体相遇时能发生衍射现象, 证明了X射线具有电磁波的性质, 成为X射线衍射学的第一个里程碑。
当一束单色X射线入射到晶体时, 由于晶体是由原子规则排列成的晶胞组成, 这些规则排列的原子间距离与入射X射线波长有相同数量级, 故由不同原子散射的X射线相互干涉, 在某些特殊方向上产生强X射线衍射, 衍射线在空间分布的方位和强度, 与晶体结构密切相关。
这就是X射线衍射的基本原理。
衍射线空间方位与晶体结构的关系可用布拉格方程表示:1.1 运动学衍射理论Darwin的理论称为X射线衍射运动学理论。
该理论把衍射现象作为三维Frannhofer衍射问题来处理, 认为晶体的每个体积元的散射与其它体积元的散射无关, 而且散射线通过晶体时不会再被散射。
虽然这样处理可以得出足够精确的衍射方向, 也能得出衍射强度, 但运动学理论的根本性假设并不完全合理。
因为散射线在晶体内一定会被再次散射, 除了与原射线相结合外, 散射线之间也能相互结合。
Darwin不久以后就认识到这点, 并在他的理论中作出了多重散射修正。
1.2 动力学衍射理论Ewald的理论称为动力学理论。
该理论考虑到了晶体内所有波的相互作用, 认为入射线与衍射线在晶体内相干地结合, 而且能来回地交换能量。
X射线衍射的应用及其原理1. 引言X射线衍射是一种重要的材料结构表征方法,它通过测量材料对X射线的散射来获取关于材料结构的有关信息。
本文将介绍X射线衍射的应用领域以及其原理。
2. X射线衍射的应用X射线衍射广泛应用于材料科学领域和相关研究中,以下列点方式介绍了其主要应用:•晶体结构分析:X射线衍射可以确定晶体的晶胞参数、晶体结构和晶面取向。
它是研究晶体结构的主要方法之一。
•结构相变研究:X射线衍射可以帮助研究材料的相变过程,例如晶体的相变、晶格参数的变化等。
•晶体缺陷分析:通过分析X射线衍射的衍射峰形状、强度和位置的变化,可以获得关于晶体缺陷的信息,例如晶格畸变、晶格杂质等。
•无机材料分析:X射线衍射可以用于无机材料的结构分析和鉴定,例如矿物、陶瓷等。
•金属材料分析:X射线衍射可以用于金属材料的晶粒大小分析、残余应力分析等。
•薄膜分析:X射线衍射可以对薄膜的结构、厚度和取向进行表征。
3. X射线衍射的原理X射线衍射的原理基于X射线与晶体相互作用时的散射现象。
以下列点方式介绍了X射线衍射原理的关键步骤:•散射源发射:X射线源(通常是X射线管)发射的X射线经过滤波器和聚焦系统,形成具有高度单色性和准直性的X射线束。
•入射X射线与晶体相互作用:X射线束照射到晶体上时,其中的X 射线将与晶体中的电子相互作用,被散射出去。
•衍射模式的产生:入射X射线与晶体中的原子间距和晶面取向相符合时,会发生衍射现象,形成衍射模式。
•衍射图案的采集和分析:通过在不同角度下旋转晶体,采集衍射图案,利用布拉格方程和相应的衍射几何关系,可以得到关于晶体结构和晶面取向的信息。
4. 结论X射线衍射是一种重要的材料结构表征方法,广泛应用于材料科学研究和相关领域。
它可以用于晶体结构分析、相变研究、晶体缺陷分析、无机材料分析、金属材料分析和薄膜分析等。
X射线衍射的基本原理是利用X射线与晶体相互作用时发生的散射现象,通过衍射模式的观察和分析来获得关于晶体结构和晶面取向的信息。
X射线衍射在材料分析测试中的应用第一篇:X射线衍射在材料分析测试中的应用X射线衍射技术在材料分析测试中的应用摘要:X 射线衍射分析技术是一种十分有效的材料分析方法, 在众多领域的研究和生产中被广泛应用。
介绍了X 射线衍射的基本原理, 从物相鉴定、点阵参数测定、微观应力测定等几方面概述了X 射线衍射技术在材料分析中的应用进展。
X射线基本原理由于X 射线是波长在1000Å~0.01Å之间的一种电磁辐射, 常用的X 射线波长约在2.5Å~ 0.5Å之间, 与晶体中的原子间距(1Å)数量级相同, 因此可以用晶体作为X 射线的天然衍射光栅, 这就使得用X射线衍射进行晶体结构分析成为可能。
当X射线沿某方向入射某一晶体的时候, 晶体中每个原子的核外电子产生的相干波彼此发生干涉.当每两个相邻波源在某一方向的光程差(Δ)等于波长λ的整数倍时, 它们的波峰与波峰将互相叠加而得到最大限度的加强, 这种波的加强叫做衍射, 相应的方向叫做衍射方向, 在衍射方向前进的波叫做衍射波。
Δ= 0的衍射叫零级衍射, Δ = λ的衍射叫一级衍射, Δ = nλ的衍射叫n级衍射.n不同, 衍射方向也不同。
在晶体的点阵结构中, 具有周期性排列的原子或电子散射的次生X 射线间相互干涉的结果, 决定了X射线在晶体中衍射的方向, 所以通过对衍射方向的测定, 可以得到晶体的点阵结构、晶胞大小和形状等信息。
晶体结构= 点阵+ 结构基元, 点阵又包括直线点阵,平面点阵和空间点阵.空间点阵可以看成是互不平行的三组直线点阵的组合, 也可以看作是由互相平行且间距相等的一系列平面点阵所组成.劳厄和布拉格就是分别从这两个角度出发, 研究衍射方向与晶胞参数之间的关系。
伦琴发现X射线之后, 1912年德国物理学家劳厄首先根据X 射线的波长和晶体空间点阵的各共振体间距的量级, 理论预见到X 射线与晶体相遇会产生衍射现象, 并且他成功地验证了这一预见, 并由此推出了著名的劳厄定律。
X射线衍射的应用在X射线衍射的应用中,经常涉及到点阵常数的精密测定、X射线物相分析以及X射线应力的测定。
如固溶体的晶格常数随溶质的浓度而变化,可以根据晶格常数确定某溶质的含量,而且晶体的热膨胀系数以及物质的内应力都可以通过点阵常数的测定而确定。
另外,在金属材料的研究中,常常需要通过点阵常数的测定来研究相变过程、晶体缺陷等,有时甚至需要对点阵常数的精密测定。
X射线的物相分析是一项广泛且有效的分析手段,在地质矿产、耐火材料、冶金、腐蚀生成物、磨屑、工厂尘埃、环保、考古食品等行业经常有所应用,如区分物质同素异构体时,X射线的分析非常迅速,已证实Al2O3的同素异构体有14种之多。
在测定应力时,X射线具有有效的无损检测方法,照射的面积可以小到1~2mm的直径,即可以测定小区域的局部应力。
1 点阵常数的精确测定1.1传统的测量理论我们对晶体的点阵常数进行精确测定,主要还是利用X射线技术来进行测量。
在测量中所用到的最基本的公式就是晶体衍射的布拉格方程:2dsinθ=nλ其中,d为晶面指数为(hkl)的面间距,θ为衍射角,也称布拉格角度,λ为所用X射线的波长,n为衍射的发生级数,布拉格衍射方程可以确定出多级衍射情况,但是,级数越高,所得到的衍射强度越小,光谱分析越不明显,误差也就越大,所以,在点阵常数的精确测定中,真正起作用的就是级数较低的情形。
点阵常数的精确度取决于sinθ的精确度,而不是θ测量值的精确度,当θ越接近90°时,对应的测量误差△θ的△sinθ值误差越小,由此计算点阵常数也就越精确。
对于布拉格方程的微分式分析作个微分近似处理得:△d/d=△λ/λ-cotθ*△θ如果不考虑波长误差则:△d/d=-cotθ*△θ由此可见,由布拉格角度所引起误差是一个与余切函数相关的函数,显然,布拉格角度θ越小,所引起误差就越大。
从精确度角度考虑,我们所选择的布拉格角度θ处于20°~35°这样的一个范围。
X射线衍射在材料分析中的应用和原理摘要:本文概要介绍了X射线衍射分析的基本原理及先关理论,提及了X射线衍射的各种方法,主要对X射线衍射分析技术的应用进行了叙述。
关键词:X射线衍射分析布拉格方程X射线衍射仪衍射花样前言X射线衍射分析(X-Ray Diffraction,简称XRD),顾名思义是利用晶体对入射的X射线形成衍射,对晶体物质进行内部原子在空间分布状况等结构信息分析的方法。
1. X射线衍射分析基本原理1.1 X射线及其获得X射线同无线电波、可见光、紫外光等一样,本质上均属于电磁波,区别在于彼此占据不同波长范围。
与所有基本粒子一样,X射线具有波粒二相性,由于其波长较短,大约在10-8~ 10-10cm之间,它的粒子性往往表现突出,故X射线可以视为一束具有一定能量的光量子流。
进行X射线衍射分析首先需得获得稳定的X射线,通常利用一种类似热阴极二极管的装置,用一定材料制作的板状阳极(靶)和阴极(灯丝)密封于一个真空玻璃-金属管壳内,阴极通电加热,在两极间加以直流高压(几KV-10KV),则阴极产生大量热电子,其在高压电场作用下飞向阳靶,在与阳极撞击瞬间产生X射线(包括连续和特征/标识X射线谱),其基本电气线路如下图。
图1X射线产生基本电气线路1.2 X射线衍射分析基本原理X射线与物质相遇时,会产生一系列效应,这是X射线应用的基础。
X射线在传播途中,与晶体中束缚较紧的电子相遇时,将发生经典散射。
晶体由大量原子组成,每个原子又有多个电子。
各电子锁产生的经典散射会相互干涉,使在某些方向被加强,另一些方向被削弱。
电子散射线干涉的总结果即为X射线衍射的本质。
由于电磁波散射干涉的矢量性,分析不难得知并不是每个方向都能获得衍射。
将晶体看成由平行的原子面组成,晶体的衍射亦当是由原子面的衍射线叠加而得,叠加的衍射线中大部分被抵消,只有一些得到加强,这些保留下来的衍射线可看成晶体中某些原子面对X射线的“反射”。
在将衍射看成反射的基础上,科学家最终导出结论:在某个方向上散射线互相加强的条件即产生X射线衍射条件是X射线与晶体之间需满足布拉格方程:2d sinθ=nλd——晶面间距;n——反射级数;θ——掠射角/布拉格角;λ——入射波长其导出条件如下图所示。
材料物理专业《材料分析测试⽅法A》作业材料物理专业《材料分析测试⽅法A 》作业第⼀章电磁辐射与材料结构⼀、教材习题1-1 计算下列电磁辐射的有关参数:(1)波数为3030cm -1的芳烃红外吸收峰的波长(µm );(2)5m 波长射频辐射的频率(MHz );(3)588.995nm 钠线相应的光⼦能量(eV )。
1-3 某原⼦的⼀个光谱项为45F J ,试⽤能级⽰意图表⽰其光谱⽀项与塞曼能级。
1-5 下列原⼦核中,哪些核没有⾃旋⾓动量?12C 6、19F 9、31P 15、16O 8、1H 1、14N 7。
1-8 分别在简单⽴⽅晶胞和⾯⼼⽴⽅晶胞中标明(001)、(002)和(003)⾯,并据此回答:⼲涉指数表⽰的晶⾯上是否⼀定有原⼦分布?为什么?1-9 已知某点阵∣a ∣=3?,∣b ∣=2?,γ = 60?,c ∥a ×b ,试⽤图解法求r *110与r *210。
1-10 下列哪些晶⾯属于]111[晶带?)331(),011(),101(),211(),231(),132(),111(。
⼆、补充习题1、试求加速电压为1、10、100kV 时,电⼦的波长各是多少?考虑相对论修正后⼜各是多少?第⼆章电磁辐射与材料的相互作⽤⼀、教材习题2-2 下列各光⼦能量(eV )各在何种电磁波谱域内?各与何种跃迁所需能量相适应?1.2×106~1.2×102、6.2~1.7、0.5~0.02、2×10-2~4×10-7。
2-3 下列哪种跃迁不能产⽣?31S 0—31P 1、31S 0—31D 2、33P 2—33D 3、43S 1—43P 1。
2-5 分⼦能级跃迁有哪些类型?紫外、可见光谱与红外光谱相⽐,各有何特点? 2-6 以Mg K α(λ=9.89?)辐射为激发源,由谱仪(功函数4eV )测得某元素(固体样品)X 射线光电⼦动能为981.5eV ,求此元素的电⼦结合能。
X射线衍射在材料分析当中的应用摘要:X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。
本文主要介绍X射线衍射分析在材料科学中应用并以测量内应力为例对其进行具体分析。
关键词:材料分析,射线衍射,应用1912年劳厄衍射实验的成功,为X射线衍射分析的应用开辟了广阔的前景。
根据衍射花样可以进行晶体和非晶体的结构测定,研究与结构和结构变化相关的各种问题。
X射线衍射的应用已渗透到物理、化学、地质、天文、生命科学、材料科学、石油化工、金属冶金、医药等行业 ,成为非常重要的近代物理分析方法。
X 射线衍射分析在石油化工领域的应用包括未知物物相鉴定、催化研究、结晶性聚合物研究。
X射线衍射分析用于催化研究已经有五十余年的历史,近年来由于X射线仪的新发展以及电子计算机技术的应用,使X射线衍射成为催化研究中不可缺少的分析手段。
在催化研究中的应用包括催化剂的剖析、催化剂研制及应用过程中各阶段物相组成变化、活性组分变化状况等。
从催化剂的剖析结果可以推断催化剂载体和活性组分的类型。
通过对催化剂研制过程中各阶段的样品分析, 帮助了解工艺条件变化对各物相组成的影响。
应用过程中各阶段物相组成变化、活性组分变化状况等对于寻找改善催化剂的途径,增加其活性与选择性是十分重要的。
在催化剂的研究中,总要涉及催化剂的活性、稳定性、失活机理等问题,这些问题与催化剂的活性物相有关。
催化剂的物相组成、晶粒大小等往往是决定其活性和选择性的重要因素。
目前各衍射仪厂家都可配备各种附件装置,包括高低温衍射附件、原位样品池,可以在高、低温条件下模拟生产过程,测量出相变或反应动力学的各种信息,高温加热中样品的晶体结构变化或各种物质相互熔解的变化,晶格常数漂移,熔融样品析出晶相的识别等。
X射线衍射分析的应用晶体的X射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。
制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。
鉴定出各个相后,根据各相花样的强度正比于改组分存在的量(需要做吸收校正者除外),就可对各种组分进行定量分析。
目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS)”负责编辑出版的“粉末衍射卡片(PDF卡片)”进行物相分析。
目前,物相分析存在的问题主要有:⑴待测物图样中的最强线条可能并非某单一相的最强线,而是两个或两个以上相的某些次强或三强线叠加的结果。
这时若以该线作为某相的最强线将找不到任何对应的卡片。
⑵在众多卡片中找出满足条件的卡片,十分复杂而繁锁。
虽然可以利用计算机辅助检索,但仍难以令人满意。
⑶定量分析过程中,配制试样、绘制定标曲线或者K值测定及计算,都是复杂而艰巨的工作。
为此,有人提出了可能的解决办法,认为从相反的角度出发,根据标准数据(PDF卡片)利用计算机对定性分析的初步结果进行多相拟合显示,绘出衍射角与衍射强度的模拟衍射曲线。
通过调整每一物相所占的比例,与衍射仪扫描所得的衍射图谱相比较,就可以更准确地得到定性和定量分析的结果,从而免去了一些定性分析和整个定量分析的实验和计算过程。
点阵常数的精确测定点阵常数是晶体物质的基本结构参数,测定点阵常数在研究固态相变、确定固溶体类型、测定固溶体溶解度曲线、测定热膨胀系数等方面都得到了应用。
点阵常数的测定是通过X射线衍射线的位置(θ)的测定而获得的,通过测定衍射花样中每一条衍射线的位置均可得出一个点阵常数值。
点阵常数测定中的精确度涉及两个独立的问题,即波长的精度和布拉格角的测量精度。