例2: C[a,b]表示在[a,b]所有实连续函数的全体, 其构成R上的 线性空间,f ( x), g( x) [a,b]规定
b
(f (x), g(x)) a f ( x)g( x)dx
证明: C[a,b]是欧氏空间.
b
f ( x), g( x), a f ( x)g( x)dx 是唯一确定实数
当 t (t R,非零),显然定理中等号成立;反之,如果等号 成立,则, 必线性相关.因为若, 线性无关,则t R, 非零,都有 t 0.从而( t , t ) 0,所以等号不
成立, 矛盾.
返回
证明(2):若=0,不等式显然成立. 设 0,则
0 -k 2 =(-k ,-k )
( , )-k( , )-k( , ) kk( , )
(4)(分配律): ( , ) ( , ) ( , )
则映射( , ) 是 Vn(C) 上的内积,定义了内积的V为
n维酉空间.
返回
例1: (a1 ,L ,an )T , (b1 ,L ,bn )T Rn ,若规定
n
( , ) aibi i 1
则上式定义了一个内积, Rn是内积空间.
i 1
j 1
n
n
n
n
( , ) ( xii , y j j )
xi y j (i , j )= xi y j aij
i 1
j 1
i, j 1
i, j 1
(其中aij=(i , j )),构造矩阵和列向量:
(1, 1) (1, 2 ) L
A ( 2 ,1) ( 2 , 2 ) L
(2) , V , , 在基1 ,L
,
下的坐标分别为
n
x (x1 ,L , xn )T , y (y1 ,L , yn )T ,则