三相桥式整流及有源逆变
- 格式:docx
- 大小:3.22 MB
- 文档页数:10
西安文理学院机械电子工程系课程设计报告专业班级自动化课程电力电子技术题目三相全控桥式整流及有源逆变电路的设计学号 000000000204 学生姓名 weitor 指导教师2010年 12月西安文理学院机械电子工程系课程设计任务书学生姓名专业班级学号指导教师职称讲师教研室自动化课程《电力电子技术》题目三相全控桥式整流及有源逆变电路的设计任务与要求任务:在已学的《电力电子技术》课程后, 为了进一步加强对整流和有源逆变电路的认识。
可设计一个三相全控桥式整流电路及有源逆变电路。
分析两种电路的工作原理及相应的波形。
通过电路接线的实验手段来进行调试,绘制相关波形图要求:a. 要有设计思想及理论依据b. 设计出电路图即整流和有源逆变电路的结构图c. 计算晶闸管的选择和电路参数d. 绘出整流和有源逆变电路的 u d (t、 i d (t、 u VT (t的波形图e. 对控制角α和逆变β的最小值的要求开始日期 2010.12.21 完成日期 2010.12.31 2010年 12月 21日设计题目三相全控桥式整流及有源逆变电路的设计一.设计目的1.更近一步了解三相全控桥式整流电路的工作原理,研究全控桥式整流电路分别工作在电阻负载、电阻—电感负载下 Ud, Id及 Uvt 的波形,初步认识整流电路在实际中的应用。
2.研究三相全控桥式整流逆变电路的工作原理,并且验证全控桥式电路在有源逆变时的工作条件,了解逆变电路的用途。
二.设计理念与思路晶闸管是一种三结四层的可控整流元件,要使晶闸管导通,除了要在阳极—阴极间加正向电压外, 还必须在控制级加正向电压, 它一旦导通后, 控制级就失去控制作用,当阴极电流下降到小于维持电流,晶闸管回复阻断。
因此,晶闸管的这一性能可以充分的应用到许多的可控变流技术中。
在实际生产中,直流电机的调速、同步电动机的励磁、电镀、电焊等往往需要电压可调的直流电源, 利用晶闸管的单向可控导电性能, 可以很方便的实现各种可控整流电路。
2三相桥式全控整流及有源逆变电路实验报告
一、实验目的
本次实验的目的是研究三相桥式全控整流及有源逆变电路的工作原理,探讨电路结构和特性,并对实际应用进行探究。
二、实验原理
三相桥式全控整流及有源逆变电路是自主控制全三相调制半桥型整流,并用PGL线圈构成有源逆变电路,将全桥式整流和有源等效件结合,组成的智能放大型结构无功补偿电路。
独特的PGL(Pulse Generator and Logic)系统控制全桥式整流,实现有效的三相调制,并给消耗功率的用电仪表供电。
三、实验装置
本次实验主要使用德国LreUro制造的三相桥式全控整流及有源逆变电路装置,包括输出及控制模块、专用电源模块和保护模块等。
四、实验步骤
1.根据实验原理,组装实验电路。
2.检查电路的丝印和引脚序号是否完整,如有损坏,可以用万用表检查是否符合等电位要求。
3.使用专用电源模块向实验电路供电,将调制输出和有源输出供给恒定电压和频率。
4.测量三相电压输出电流,检查三相等电压,检验实验电路正常工作。
五、实验结果
实验中得出结论:三相桥式全控整流及有源逆变电路能够形成正确的三相输出,具有较高的调制率,输出电压、电流稳定,实际负载能有效的调制,满足有效的实际需求,可以用于智能放大型补偿系统。
三相桥式全控整流及有源逆变电路实验一.实验目的1.熟悉MCL-31A,MCL-33组件。
2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
3.了解集成触发器的调整方法及各点波形。
二.实验内容1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。
三.实验线路及原理实验线路如图4-9所示。
主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。
触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。
三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。
四.实验所需挂件及附件序号1型号MCL—32A电源控制屏备注该控制屏包含“三相电源输出”,“励磁电源”等几个模块。
2MCL-31A低压电源和仪表该挂件包含“给定电源和±15V低压电源”等模块。
3MCL-33晶闸管主电路和触发电路等该挂件包含“晶闸管”、“二极管”“电感”、“触发电路”等几个模块。
4MEL—03三相可调电阻56MEL-02芯式变压器双踪示波器和万用表自备五.实验方法1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。
(1)打开MCL-31A电源开关,给定电压有电压显示。
(2)用示波器观察MCL-33的脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。
(3)检查相序,用示波器观察“1”,“2”脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。
(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。
注:将面板上的Ublf(当三相桥式全控变流电路使用I组桥晶闸管VT1~VT6时)接地,将I组桥式触发脉冲的六个开关均拨到“接通”。
(5)将给定器输出Ug接至MCL-33面板的Uct端,调节偏移电压Ub,在Uct=0时,使=150o。
2.三相桥式全控整流电路按图4-9接线,S拨向左边短接线端,将Rd调至最大(450)。
实验编号实验报告书实验项目:三相桥式全控整流及实验所属课程: 电力电子技术基础课程代码:面向专业: 自动化学院(系): 物理与机电工程学院自动化系实验室: 电机与拖动代号: 4262012年10 月20 日一、实验目的:1.熟悉MCL-01, MCL-02组件。
2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
3.了解集成触发器的调整方法及各点波形。
二、实验内容:1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。
三、实验主要仪器设备:1.MCL系列教学实验台主控制屏。
2.MCL—01组件。
3.MCL—02组件。
4.MEL-03可调电阻器。
5.MEL-02芯式变压器6.二踪示波器7.万用表三相桥式全控整流及有源逆变电路实验线路图及接线图四、实验示意图:五、实验有关原理及原始计算数据,所应用的公式:三相桥式全控整流电路的原理一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。
一般1、3、5为共阴极,2、4、6为共阳极。
(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。
(2)对触发脉冲的要求:1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60︒。
2)共阴极组VT1、VT3、VT5的脉冲依次差120︒,共阳极组VT4、VT6、VT2也依次差120︒。
3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180︒。
(3)Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。
(4)需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。
三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。
在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。
实验四三相桥式全控整流及有源逆变电路实验1.实验目的(1)了解三相全控桥式整流电路的工作原理,研究可控整流电路在电阻—电感性负载时的整流输出电压u d、电流i d、晶闸管承受的电压u VT的波形及工作情况。
(2)了解三相全控桥式有源逆变电路的工作原理,研究在不同的控制角时输出的电压电流波形。
2.实验设备及仪器(1) MCL-Ⅱ型电机控制教学实验台主控制屏;(2) MCL-18控制和检测单元及过流过压保护组件;(3) MCL-33触发电路及晶闸管主回路组件;(4)MEL-03三相可调电阻器组件(900Ω,0.41A);(5)MEL-05波形测试及开关板组件;(6)双踪示波器;(7)万用电表;3.注意事项(1) 整流电路与三相电源连接时,一定要注意相序;(2) 整流电路的负载电阻不宜过小,应使i d不超过0.8A,同时负载电阻不宜过大保证i d超过0.1A,避免晶闸管时断时续;(3) 正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。
4.实验步骤1)按图接线,未上主电源之前,检查晶闸管的脉冲是否正常a.用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲。
b.检查相序,用示波器观察“1”“2”单脉冲观察孔,“1”脉冲超前“2”脉冲60°,则相序正确,否则,应调整输入电源。
c.用示波器观察每只晶闸管的控制极,阴极,应有幅值为1V—2V的脉冲。
=0时,触发脉冲滞后同步信号180︒d.调节MCL-33上锯齿波偏移电压,使Uct(即α=150︒)。
e.“交流电源输出调节”旋钮逆时针调到底,主回路串联电阻RP调至最大。
2) 研究三相桥式可控整流电路供电给阻感性负载时的工作情况:a) 将开关S 拨向左侧,接通主电源,顺时针旋转三相调压器,调节主控制屏输出电压UV U 、VW U 、WU U ,从0V 调至220V ;b) 将MCL-18组件上的开关S 1拨至正给定,S 2拨至给定;调节MCL —18上的脉冲移相电位器RP1旋钮,改变控制电压Uct ,观察在不同控制角α时的u d 、i d 、u VT 的波形;c) 记录α=30︒、α=60︒时u d 、i d 、u VT 的波形。
实验三、三相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(3)了解KC系列集成触发器的调整方法和各点的波形。
二、实验线路的构成及原理(1)DDS02主电路挂箱配置原理DDS02挂箱包括脉冲和熔断丝指示、晶闸管(I组桥、Ⅱ组桥)电路、电抗器等内容。
脉冲有无指示为方便实验中判断对应晶闸管上门阴极上是否正常,若正常,则指示灯亮,否则则不亮;同样熔断丝指示也是同理。
主要分I组桥和Ⅱ组桥分别指示。
晶闸管电路装有12只晶闸管、6只整流二极管。
12只晶闸管分两组晶闸管变流桥,其中VTl~VT6为正组桥(I组桥),由KP5-8晶闸管元件构成,一般不可逆、可逆系统的正桥、交-直-交变频器的整流部分均使用正组元件;由VT1ˊ~VT6ˊ组成反组桥(Ⅱ组桥),元件为KP5-12晶闸管,可逆系统的反桥、交-直-交变频器的逆变部分使用反组元件;同时还配置了6只整流二极管VDl~VD6,可构成不可控整流桥作为直流电源,元件的型号为KZ5-10。
所有这些功率半导体元件均配置有阻容吸收、熔丝保护,电源侧、直流环节、电机侧均配置有压敏电阻或阻容吸收等过电压保护装置。
电抗器为平波电抗器L,共有4档电感值,分别为50mH、100mH、200mH、700mH,1200 mH可根据实验需要选择电感值。
续流二极管为桥式整流实验时电路续流用,型号为KZ5-10;另外挂箱还配有一组阻容吸收电路。
(2)DDS03控制电路挂箱配置原理DDS03挂箱包括三相触发电路及功放电路、FBC+FA(电流反馈与过流保护)、G(给定器)等内容。
面板上部为同步变压器,其连线已在内部接好,连接组为△/Y-1.可在“同步电源观察孔”观察同步电源的相位。
三相触发电路(GT)及功放电路(AP)包括有GTF正组(I组)触发脉冲装置和GTR 反组(Ⅱ组)触发脉冲装置,分别通过开关连至VF正组晶闸管和VR反组晶闸管的门极、阴极。
三相桥式全控整流电路仿真实验报告实验报告书实验项目:三相桥式全控整流及实验所属课程: 电力电子技术基础面向专业: 自动化学院(系): 物理与机电工程学院自动化系实验室: 电机与拖动代号: 4262012年 10 月 20 日一、实验目的:1.熟悉MCL-01, MCL-02组件。
2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
3.了解集成触发器的调整方法及各点波形。
第 2 页二、实验内容:1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。
三、实验主要仪器设备:1.MCL系列教学实验台主控制屏。
2.MCL—01组件。
3.MCL—02组件。
4.MEL-03可调电阻器。
5.MEL-02芯式变压器6.二踪示波器7.万用表三相桥式全控整流及有源逆变电路实验线路图及接线图五、实验有关原理及原始计算数据,所应用的公式:三相桥式全控整流电路的原理一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。
一般1、3、5为共阴极,2、4、6为共阳极。
(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。
(2)对触发脉冲的要求:1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60。
2)共阴极组VT1、VT3、VT5的脉冲依次差120,共阳极组VT4、VT6、VT2也依次差120。
3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。
(3)Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。
(4)需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。
三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。
在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。
电力电子技术三相桥式全控整流及有源逆变电路实验报告实验目的:1.熟悉三相桥式全控整流电路和有源逆变电路的工作原理;2.学习三相桥式全控整流电路和有源逆变电路的控制方法;3.通过实验验证三相桥式全控整流电路和有源逆变电路的性能。
实验器材:1.三相交流电源;2.三相桥式全控整流电路电路板;3.电阻箱;4.示波器。
实验原理:三相桥式全控整流电路是一种常见的电力电子设备,用于将三相交流电转换为直流电。
其基本原理是通过控制整流桥中的晶闸管开通角和关断角,控制电路中负载电流的方向和大小,从而实现对电流的整流和调节。
有源逆变电路是一种将直流电转换为交流电的电力电子设备。
其基本原理是通过控制逆变桥中的晶闸管开通角和关断角,控制电路中负载电流的方向和大小,从而实现对电流的逆变和调节。
实验过程:1.将三相交流电源连接到三相桥式全控整流电路电路板;2.根据实验要求调节电源电压和频率;3.设置适当的负载电阻;4.通过控制触发电路,控制晶闸管的开通和关断;5.使用示波器观察和记录整流电流和电压波形。
实验结果:根据实验数据和示波器观察结果,整流电流和电压波形基本符合预期,呈现出期望的整流和调节性能。
实验结论:通过本次实验,我们深入理解了三相桥式全控整流电路和有源逆变电路的工作原理和控制方法。
同时,我们也验证了这两种电路的性能和实际应用。
这项实验的结果对于电力电子技术的学习和应用具有重要意义,为我们掌握和应用电力电子技术提供了实验基础和理论指导。
同时,通过实验的过程,我们也提高了实验操作的能力和实验数据处理的技巧。
总结:本次实验对于我们理解和掌握电力电子技术中的三相桥式全控整流电路和有源逆变电路的工作原理、控制方法和性能具有重要意义。
通过实验,我们不仅加深了对电力电子技术的理解,提高了实验操作的能力,还培养了我们的团队合作精神和实验数据处理的技巧。
通过本次实验的学习,我们对于电力电子技术的应用和发展有了更加深入的了解,相信在今后的学习和工作中,我们将能够更好地应用电力电子技术解决实际问题,为电力电子技术的发展做出更大的贡献。
实验编号实验报告书实验项目:三相桥式全控整流及实验所属课程: 电力电子技术基础课程代码:面向专业: 自动化学院(系): 物理与机电工程学院自动化系实验室: 电机与拖动代号: 4262012年10 月20 日一、实验目的:1.熟悉MCL-01, MCL-02组件。
2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。
3.了解集成触发器的调整方法及各点波形。
二、实验内容:1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。
三、实验主要仪器设备:1.MCL系列教学实验台主控制屏。
2.MCL—01组件。
3.MCL—02组件。
4.MEL-03可调电阻器。
5.MEL-02芯式变压器6.二踪示波器7.万用表三相桥式全控整流及有源逆变电路实验线路图及接线图四、实验示意图:五、实验有关原理及原始计算数据,所应用的公式:三相桥式全控整流电路的原理一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。
一般1、3、5为共阴极,2、4、6为共阳极。
(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。
(2)对触发脉冲的要求:1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60︒。
2)共阴极组VT1、VT3、VT5的脉冲依次差120︒,共阳极组VT4、VT6、VT2也依次差120︒。
3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180︒。
(3)Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。
(4)需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。
三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。
在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。