3000t_a食品级液体二氧化碳生产装置
- 格式:pdf
- 大小:118.97 KB
- 文档页数:4
二氧化碳的分离与回收综述XX级XX班 XXX 2014*********摘要:石油、煤、天然气等化石燃料的大量使用,排出大量的废物,使大气中CO2的含量逐年增加,造成严重的环境污染,引起全球的“温室效应”,带来一系列的负面影响。
如何降低CO2的排放量,变废为宝,实现其分离回收与综合利用,将成为21世纪最为重要的能源与环境问题之一。
着重介绍了低温蒸馏法、溶剂吸收法、吸附分离法、膜分离法等分离CO2 的方法以及其在碳酸化饮料(啤酒)、二氧化碳气体保护焊、香烟丝的膨化处理、化工利用、食品贮存、二氧化碳气体化肥、油气开采、医疗、实验室、地下开采等方面的用途。
关键词: 二氧化碳,分离,回收,利用一、前言[1] 随着人类社会大量使用以煤和石油为代表的化石燃料,造致全球变暖的温室气体--二氧化碳的排放量急剧攀升,严重影响着大气圈与生物圈原有的平衡,并因此导致了温室效应以及引发了一系列与人类生活环境紧密相关的问题,严重地威胁着人类的生存。
截至2006年,全世界二氧化碳排放量至少在270亿万吨以上,能源专家预测,到2030年排放量可能达到380亿吨以上。
据美国能情报署2006年初预测,2050年世界二氧化碳排放量将达到388亿吨。
[2]而同时二氧化碳又可作为潜在的碳资源加以开发利用。
为了解决这一对矛盾,相关部门投入了大量的人力物力去研究。
炼厂转化制氢装置所排放的尾气中大约含50%左右的二氧化碳,每年排放二氧化碳总量不容忽视,无论从环保角度还是从资源合理利用方面,都值得考虑将其回收和利用。
二氧化碳又一种用途广泛的资源,在工业和国民经济各部门具有广泛的应用价值。
近年来,世界各国竞相开发利用,二氧化碳市场不断扩大,国内外市场前景看好。
二、二氧化碳的分离回收方法2.1. [3]低温蒸馏法本法适合于气体中二氧化碳浓度较高的情况,由于设备庞大、能耗较高、分离效果较差因而成本较高,一般适合于油田开采现场。
2.2 溶剂吸收法溶剂吸收法是使用溶剂对二氧化碳进行吸收和解吸, 按照吸收分离原理的不同, 又可以分为化学溶剂吸收法以及物理溶剂吸收法。
将二氧化碳制成食品级的技术调研摘要:二氧化碳在食品方面的应用前景非常广阔。
文章介绍了食品级二氧化碳的三种典型生产工艺和国内外的产品质量标准,并对食品级二氧化碳的市场前景进行了分析和经济技术论证。
关键词:二氧化碳生产工艺市场1 引言二氧化碳在食品方面的主要应用为碳酸饮料、烟丝膨化、食品保鲜等领域。
二氧化碳在碳酸饮料中的作用是可以增加口感、解渴、促进消化和帮助解除疲劳的功效。
据统计每吨碳酸饮料对食品级二氧化碳的需求量约为0.015~0.02t。
二氧化碳用于烟丝膨化的处理则可使烟丝节省5%,并可提高烟丝质量。
据统计每l0万箱香烟,其烟丝膨化时,需3000 t左右二氧化碳。
在食品保鲜领域,近年来国际上广泛使用二氧化碳气调、干冰速冻、液体二氧化碳的保鲜。
该方法能控制好气体成分,保持适当低温,使水果、蔬菜获得良好的贮存效果。
食品二氧化碳还可作为贮存粮食的杀虫熏蒸剂。
食品级二氧化碳的市场应用前景非常广阔。
2 食品级二氧化碳的生产工艺[1~3]二氧化碳来源广泛,含量和杂质各不相同。
为保证产品质量和经济效益,形成了不同的工艺路线。
一般包括提浓、加压、净化、液化、提纯工艺。
2.1 二氧化碳的提浓二氧化碳浓度在10%-40%,压力为常压的气源,比如石灰窑气、烟道气、水泥窑气等,通常称为低分压二氧化碳,目前一般采用湿法回收工艺(如活化MEA、热钾碱等),首先将二氧化碳浓度提高到98%以上。
化肥厂PSA脱碳尾气、湿法脱碳(如PC脱碳、低温甲醇洗)闪蒸气中,二氧化碳含量只有70%-85%,这类气源作为原料生产液体二氧化碳,理论上讲可以采用直接加压液化工艺,也可以采用将二氧化碳提浓后再加压液化。
后者更为先进合理、更有经济效益。
以酒精发酵尾气、化工厂湿法脱碳解析气为原料生产液体二氧化碳,由于气源中二氧化碳含量高(一般高于97%),就无须提浓工艺。
2.2 二氧化碳的净化净化工艺主要脱除含硫杂质、烃类、水等。
采用氧化铁系常温脱硫剂、水解转化型脱硫、特种活性炭等常温使用型脱硫剂,脱除原料气中的硫,使原料气中的硫达到0.1×10-6以下。
5万吨/年食品级液体二氧化碳项目初步技术方案湘潭弘润气体有限公司2014年05月目录1.技术方案 (1)1.1气源条件 (1)1.2产品方案 (1)1.3生产规模 (2)1.4工艺技术方案选择 (2)1.5工艺流程与配套设施 (3)1.6公用工程 (6)2.技术经济分析 (7)2.1投资概算 (7)2.2成本估算 (7)3.建设周期 (8)4.设计单位和我公司二氧化碳项目业绩 (8)5.天柱宏泰钡业相关投资 (10)1.技术方案1.1气源条件本项目所用气源来自于煤制合成气干法脱碳尾气,原料气CO2纯度约98%,本方案按总硫(H2S和COS)含量100ppm考虑,后期正式设计时根据实际情况再做调整。
1.2产品方案本方案的目标产品定位为食品级液体二氧化碳,产品质量按国际饮料技术学会(ISBT)标准和中国新国家标准GB10621-2006《食品添加剂液体二氧化碳》执行,具体内容见下表。
(1)国家新标准GB10621-2006序号项目指标1 二氧化碳含量,10-2(V/V)≥99.92 水份,10-6(V/V)≤203 酸度按5.4检验合格4 一氧化氮,10-6(V/V)≤ 2.55 二氧化氮,10-6(V/V)≤ 2.56 二氧化硫,10-6(V/V)≤ 1.07 总硫(除二氧化硫外,以硫计),10 -6(V/V)≤0.18 碳氢化合物总量(以甲烷计),10-6(V/V)≤50(其中非甲烷烃不超过20)9 苯, 10 -6(V/V)≤0.0210 甲醇,10-6(V/V)≤1011 乙醇,10-6(V/V)≤1012 乙醛, 10-6(V/V)≤0.213 其它含氧有机物,10-6(V/V)≤ 1.014 氯乙烯,10-6(V/V)≤0.315 油脂,10-6(m/m)≤ 516 水溶液气味、味道及外观按5.10检验合格17 蒸发残渣,10-6(m/m)≤1018 氧气, 10 -6(V/V)≤3019 一氧化碳, 10 -6(V/V)≤1020 氨, 10 -6(V/V)≤ 2.521 磷化氢, 10 -6(V/V)≤0.322 氰化氢, 10 -6(V/V)≤0.5注:其它含氧有机物包括二甲醚、环氧乙烷、丙酮、正、异丙醇、正、异丁醇、乙酸乙酯、乙酸异戊酯。
四川美丰梅赛尔气体产品有限公司二氧化碳回收建设项目食品级液体二氧化碳技术方案四川晨光工程设计院2013年3月1 概述根据贵公司的询标文件要求,结合我设计院近年来的工程设计经验,特制定该技术方案。
本技术方案在传统工艺流程基础上进行重大优化设计,采用我院独特的具有成熟业绩的液化工艺流程和技术,整个装置投资成本大幅降低,同时运行维护方便。
技术方案编制依据:业主提供的《工程设计与服务询标书》、原料气指标、产品标准和相关的设计资料。
2 方案的编制依据装置规模:10万吨/年食品级液体二氧化碳年操作时间:7200小时产品品种:食品级液体二氧化碳产品指标:执行《食品添加剂液体二氧化碳》GB 10621-2006 、ISBT。
3 技术方案3.1工艺流程说明根据业主相关资料可知,本项目二氧化碳的气源有两种,即合成氨装置尾气与硝铵装置尾气。
两种气源的二氧化碳含量都达到了99.5%以上,其他杂质含量很低,适合生产食品级二氧化碳。
气源进入界区后由3台二氧化碳压缩机(2开1备)压缩,压缩到较高压力后进入硅胶干燥器干燥,除去水分。
干燥后的气源再进入吸附塔,除去其余非二氧化碳成分。
此时的气体就已净化达标,温度约在100℃左右。
然后进入循环水冷却器降温,降温至40℃左右。
降温后的气体经节流膨胀至分离器储槽,此时二氧化碳完成部分液化,常温液体二氧化碳根据需要一部分从分离器储槽底部经过滤器过滤后送至汇流排充瓶,另一部分通过再次节流膨胀进入低温储槽,生成低温液体二氧化碳,再由低温液体二氧化碳转运泵送至液体二氧化碳球罐,然后再由充装泵送去充装槽车。
CO2充瓶食品级液体二氧化碳流程框图3.2 工艺特点本工艺方案与传统工艺技术相比,有明显的特点与优势。
众所周知,要使气体液化,就要从两个方面着手,一方面加大其压力,另一方面降低其温度。
传统二氧化碳液化流程均采用较低的压力和较低的温度,必须设置氨冷系统。
而本方案则完全不需要氨冷系统,根据二氧化碳工艺介质特性,通过节流膨胀就能得到常温的液体二氧化碳和低温的液体二氧化碳。
洛阳鑫冠化工有限公司40kt/a液体二氧化碳装置试生产操作规程目录目录 (2)1、二氧化碳的物理性质 (5)2、工业级液体二氧化碳产品规格 (8)3、原料气成分 (9)4、生产工序说明 (10)4.1原料气的脱硫脱醇 (10)4.2原料气的压缩 (11)4.3原料气的脱水 (11)5、工艺流程简述 (12)6、主要设备一览表 (14)7、主要工艺指标 (15)7.1 压力(MPa) (15)7.2 温度 (15)7.3 液位 (16)7.4 气体成分 (16)8、开车前准备 (16)8.1现场清理检查 (17)8.2系统吹扫 (17)8.3塔内净化材料的装填 (19)8.4试压 (19)8.5冰机系统抽真空 (20)8.6保温、刷漆 (20)8.7联动试车 (20)9、正常操作要点 (21)9.1预脱硫 (21)9.2水解精脱硫 (21)9.3吸附塔再生操作 (22)9.4分子筛再生操作 (22)9.5冷凝器 (23)9.6 提纯塔 (23)10、正常开停车 (24)10.1 开车前准备 (24)10.2 装置开车 (25)10.3正常停车 (26)10.4紧急停车 (27)10.5长期停车 (27)11、不正常情况原因及处理 (27)12、环保和安全要点 (29)13、附录................................................................. 错误!未定义书签。
说明本操作规程为试生产操作规程;试生产结束后,由业主生产部门根据试生产情况适当修改相关参数,并按业主相关管理规定编制正式的操作规程。
液体二氧化碳装置试生产操作规程1、二氧化碳的物理性质为了便于生产操作管理,本处列出与装置有关的二氧化碳物理性质数据,以便工作时参考。
表1 二氧化碳的相变参数性质数值性质数值三相点:升华状态:0.101MPa温度,℃-56.57 温度,℃-78.5压力,MPa 0.518 升华热,kJ/kg 573.6汽化热,kJ/kg 347 固态密度kg/m3 1562熔化热,kJ/kg 195.82 气态密度kg/m3 2.814(-78.5℃)表2 液体二氧化碳密度-温度对照表温度℃密度kg/m3 温度℃密度kg/m331 463.9 -12.5 993.830 596.4 -15 1008.127.5 661 -17.5 1018.525 705.8 -20 1029.922.5 741.2 -22.5 1041.720 770.7 -25 1052.617.5 795.5 -27.5 1063.615 817 -30 1074.212.5 838.5 -32.5 1084.510 858 -35 1094.97.5 876 -37.5 11055 893.1 -40 11152.5 910 -42.5 11250 924 -45 1134.5-2.5 940 -47.5 1144.4-5 953 -50 1153.5 -7.5 968 -55 1172.1-10 980.8表3 二氧化碳在不同温度下的汽化热温度℃汽化热kJ/kg温度℃汽化热 kJ/kg-56.57 347.77 -10 261.54 -55 345.18 -5 248.95 -50 337.06 0 234.85 -45 328.82 5 219.03 -40 320.41 10 201.21 -35 311.75 15 180.2 -30 302.8 20 155.23 -25 293.63 25 119.37 -20 283.63 30 62.97 -15 270.04 31 0表4 液体二氧化碳饱和蒸汽压温度℃饱和蒸汽压k Pa温度℃饱和蒸汽压k Pa温度℃饱和蒸汽压k Pa温度℃饱和蒸汽压k Pa-59 465.96 -36 1162 -13 2430.2 10 4501.4 -58 487.15 -35 1203.8 -12 2501.7 11 4613.9 -57 509.05 -34 1246.6 -11 2574.7 12 4728.5 -56 531.67 -33 1290.4 -10 2649.4 13 4845.3 -55 555.05 -32 1335.5 -9 2725.5 14 4964.4 -54 579.19 -31 1381.6 -8 2803.2 15 5085.7 -53 604.1 -30 1428.9 -7 2882.7 16 5209.3 -52 629.8 -29 1477.5 -6 2963.6 17 5335.1 -51 656.3 -28 1527.2 -5 3046.3 18 5463.5 -50 695.65 -27 1578.3 -4 3130.7 19 5549.2 -49 711.8 -26 1630.4 -3 3216.7 20 5727.4 -48 740.9 -25 1683.9 -2 3304.5 21 5863.1 -47 770.7 -24 1738.5 -1 3394 22 6001.4 -46 801.5 -23 1794.6 0 3485.3 23 6142.4 -45 833.3 -22 1852 1 3578.4 24 6286.1 -44 865.8 -21 1910.6 2 3673.3 25 6432.8 -43 899.4 -20 1970.6 3 3769.9 26 6582.1 -42 933.9 -19 2032 4 3868.6 27 6734.6 -41 969.4 -18 2094.8 5 3969.1 28 6890.1 -40 1005.9 -17 2159 6 4071.5 29 7048.9 -39 1043.4 -16 2224.6 7 4176 30 7210.9-38 1081.9 -15 2291.7 8 4282.4 31 7376.3 -37 1121.5 -14 2360.2 9 4390.8表5 二氧化碳的工程量值性质数值性质数值气体粘度,mPa·s 0.0138(0℃,0.101MPa)热导率52.75(0℃,0.101MPa)/[W/(m·K)]表面张力,mN/m 9.13(-25℃)折射率1.0004506(0℃,0.101MPa,λ=546.1)比热容,kJ/(kg·K)(0℃,0.101M Pa)Cp 0.845Cv 0.6512、工业级液体二氧化碳产品规格本装置生产的产品:质量符合GB10621-2006标准的食品级液体二氧化碳产品。
安徽金禾实业股份有限公司利用工业废气制5万吨食品级液体二氧化碳生产项目环境影响报告书(报批简本)安徽金禾实业股份有限公司二零一二年十月1 项目概况安徽金禾实业股份有限公司是由皖东金瑞化工有限责任公司发起,于2006年12月25日注册成立,主要从事精细化工产品和基础化工产品生产、研发和销售的国家高新技术企业。
公司现有合成氨、甲醇、尿素、碳酸氢铵、甲醛、硝酸等17个产品项目,其中14个已通过验收,1000t安赛蜜、5000t安赛蜜和10000双乙烯酮、100t甲基环戊烯酮醇三个项目在试生产中。
根据饮料行业巨头可口可乐和百事可乐两家公司反馈的信息,从2004年开始,两家公司每年的产销量均以20%的速度递增。
同时,啤酒行业也在不断发展壮大,装置产能不断提升,对食品级液体二氧化碳的需求亦相应增加。
CO2在工业焊接等生产应用上已日趋成熟,工业用户也从原来集装箱厂、造船厂等发展到了铸造、家具厂、摩托车厂、电子厂、汽车制造厂、生物萃取工程等各行业用户。
全国市场对工业级CO2的需求增量以每年10~15%的速度增加。
以往我国在食品保鲜方面主要采用机械冷藏等方式,冷冻贮存过程中,食品易因失水、风干、气化而不新鲜。
国际上目前广泛使用CO2气调、干冰速冻、液体CO2等保鲜法,气调法既控制好气体成份,保持适当低温,使水果、蔬菜获得良好的贮存效果。
为适应国际食品竞争的需要,食品CO2以干冰或液体CO2形式作为食品冷冻保鲜和贮存粮食杀虫熏蒸剂等方面的应用,具有潜在的广阔市场。
CO2属温室气体。
由于CO2等温室气体的大量排放,引起了全球气候变暖,对世界各国的社会经济等各领域产生负面影响,它会造成诸如水资源短缺、居住环境恶化、经济损失加剧、海平面上升、热浪袭击增加等现象的发生,人类健康受到严重威胁,另外还可能引起物种变化的加剧。
金禾公司可回收的CO2气源充足,CO2含量高,其公用工程可充分利用,具有投资少、建设周期短、投资效率较高、资产质量良好的总体效果。