甲壳素与壳聚糖综述
- 格式:ppt
- 大小:1.20 MB
- 文档页数:30
甲壳素与壳聚糖综述甲壳素是自然界中最丰富的氨基多糖类有机资源,广泛存在于甲壳纲动物虾蟹的甲壳、昆虫的甲壳、真菌(酵母、霉菌)的细胞壁和植物(菇类)的细胞壁中,它通常与蛋白质、钙质等结合在一起,形成生物体的支撑组织。
在海洋中甲壳类动物就有两万多种,其中最主要的品种有100多种,各种虾类和蟹类是最主要的甲壳类水产。
甲壳素的自然年产量大约与纤维素差不多,估计每年生物合成的甲壳素达100亿吨。
全世界每年水产加工后的甲壳素废弃物约为140多万吨,甲壳素在我国有丰富的自然资源,如何充分利用这一宝贵的自然资源,长期以来一直是人们探索的课题。
早在1811年,H.Bracohnot首次从蘑菇中分离出甲壳素,并命名为“fangin”。
1823年,A.Odier发现昆虫的外皮上分布有大量的甲壳素,并用希腊语命名为“chitin”。
1859年,C.Rouget用浓氢氧化钾处理甲壳素,使其脱乙酰化,制备出能溶于稀有机酸的物质。
1894年Hoppe-seiler[1]将该物质命名为壳聚糖。
1937年,Iobell等人发现能把甲壳素水解成甲壳素低聚糖的甲壳素酶; 1973年,Eveleighdeng等人发现能把壳聚糖水解成低聚糖的壳聚糖酶。
壳聚糖酶对生物体自溶、形态发生和营养代谢中具有一系列重要作用,同时一些疾病和生物共生现象也与壳聚糖酶有关。
1977年,日本人首次将壳聚糖作为天然絮凝剂处理废水。
同年,在美国波士顿召开第一次有关甲壳素/壳聚糖的国际会议。
从此,甲壳素的开发应用在世界范围内形成一股热潮[1]。
甲壳素及其衍生物由于其优异的生物性能而具有广泛的应用前景,对其物理与化学结构的研究也一直是高分子材料领域所关注的热点。
随着现代化表征手段的建立和应用,对甲壳素及其衍生物的化学结构,超分子结构以及它们的应用研究得到了极大的发展。
甲壳素及其衍生物己被广泛应用于农业、食品添加剂、化妆品、抗菌剂、医疗保健以及药物开发等众多领域,其中尤为重要的是生物医用领域。
1 甲壳素与壳聚糖甲壳素(chitin)又名甲壳质、壳蛋白、几丁、几丁质,广泛存在于昆虫和甲壳动物(虾、蟹等)的甲壳中,少数真菌和绿藻等低等植物的细胞壁中也含有甲壳素。
在天然高分子中,其数量仅次于纤维素。
甲壳素是由N-乙酰-2-氨基-2-脱氧-D-葡萄糖经由β-1,4糖苷键聚合而成的线型高分子,分子量100万以上。
甲壳素和壳聚糖有不同的化学结构,甲壳素分子链上存在羟基和乙酰基,壳聚糖分子链上还含有游离的氨基可以通过各种化学改性,获得多种功能和用途。
甲壳素和壳聚糖可以与一氯乙酸、环氧乙烷、丙烯腈等醚化剂进行羧甲基化、羟乙基化、氰乙基化反应,生成相应的离子型醚和非离子型醚。
例如,在碱性(NaOH)条件下,以异丙醇为溶剂,加入一氯乙酸与甲壳素或壳聚糖反应,经中和、洗涤、干燥得到羧甲基甲壳素或羧甲基壳聚糖,是一类水溶性离子型醚。
2 甲壳素和壳聚糖的应用甲壳素、壳聚糖及其多种多样的化学改性产品具有种种功能,在纺织、印染、造纸、生化、食品、医疗、日用化工、农业和环境保护等方面都得到了广泛应用。
壳聚糖是一种阳离子聚电解质,对固体悬浮物有很好的凝聚作用,壳聚糖本身无毒性,所以可作为絮凝剂应用。
例如:用于水质净化和饮料(果汁、果酒)的除浊澄清;仪器工业下脚废水处理及对淀粉、蛋白质的回收;活性污泥的凝集及脱水;印染废水染料的凝集等。
根据美国商业部估计,目前全世界甲壳素的工业用量每年约15万t,主要用作环保处理剂及净水剂、约占50%。
它涉及的行业有食品业、屠宰业、染整业、电镀业。
甲壳素本身是天然材料,在发达国家环保管理机构均鼓励业界优先考虑使用,因对于其凝集之沉淀物不需考虑“二次污染”问题。
以甲壳素为主的滤材目前已使用于游泳池及其他大型水池除污及饮水净化。
甲壳素和壳聚糖及其衍生物在农业、纺织、造纸、生化、化学分析、重金属富集回收等方面还有多种用途。
甲壳素及其衍生物由于分子中羟基、氨基及其他基团的存在,对许多金属离子具有螯合作用,所以能有效地吸附或捕集溶液中的重金属离子,但不吸附水中的K+、Na+、Ca2+、Mg2+、Cl-、SO42-、CO32-、HCO3-等离子,因而不影响天然水的本底浓度。
甲壳素及壳聚糖的制备与利用
甲壳素和壳聚糖是生物多糖,具有广泛的应用。
它们主要来源于海洋生物,如海藻、海参、单细胞藻类等,也可以从非海洋生物中分离纯化而来,如硅藻中的甲壳素,以及禾谷科植物的壳聚糖。
甲壳素和壳聚糖的制备方法包括离子交换法、溶剂萃取法、乳化-凝胶法、气相法、水解法等,但以水解法为主,因其简便性、成本低廉、效率高、成品纯度高等优势。
在水解中,一般采用酶进行水解,如α-葡萄糖苷酶、β-葡萄糖苷酶等,也可以采用酸性碱性溶液进行水解。
利用甲壳素和壳聚糖可以制备各种复合材料,如复合膜、复合无纺布、复合涂料等,具有良好的抗水蚀性能、抗紫外线性能、耐腐蚀性能等,可用于食品包装、水处理、生物医学等领域。
此外,它们还可以用于制备含有药物的纳米粒子、纳米复合材料、纳米纤维素以及药物输送体系等,以及制备生物活性物质、抗菌剂、抗炎剂、抗癌剂等。
甲壳素和壳聚糖综述食品生物技术1班,20137710125,谭子颖一、甲壳素的概述11、甲壳素的历史1811年,法国研究自然科学史的H.Braconnot教授,用温热的稀碱溶液反复处理蘑菇,最后得到一些纤维状的白色残渣,他以为这是纤维素,并称为Fungine,即为真菌纤维素。
1823年,又一位法国科学家A.Odier从甲壳类昆虫的翅膀中分离出同样的物质,并称为chitin。
1843年,法国A.Payen发现chitin与纤维素性质不大相同。
同年,法国的ssaigne发现chitin中含有氮元素,因而证明chitin不是纤维素。
1878年,G.Ledderhose从chitin的水解反应液中检出氨基葡萄糖和乙酸。
1894年,E.Gilson进一步证明了chitin中确实含有氨基葡萄糖。
后来的研究证明,组成chitin的单体是N-乙酰氨基葡萄糖。
从1811年发现到研究清楚其结构,几乎用了100年的时间。
2、甲壳素的分布甲壳素广泛存在于甲壳纲虾、蟹的甲壳中,昆虫的甲壳,真菌的细胞壁和植物的细胞壁中。
甲壳素也存在自然界中的低等植物菌类,藻类的细细胞,被科学界誉为“第六生命要素”。
1)节肢动物,主要包括甲壳纲,如虾、蟹等,含甲壳素20%-30%,高的达到58%-85%;其次是昆虫纲,如蝗、蝶、蚊、蚕等的壳中含甲壳素20%-60%;多足纲,如蜈蚣等。
2)软体动物,主要包括双神经纲,如石鳖,蜗牛等;足纲,如乌贼,鹦鹉等;壳素含量为3%-26%。
3)环节动物,包括原环虫纲,如角蜗牛;足纲,如沙蚕,蚯蚓;的含甲壳素极少,但有的高达20%-30%。
4)原生动物,包括鞭毛虫纲,如椎体虫;肉足纲,如变形虫;纤毛虫纲,如草履虫。
5)肛肠动物,钵水母和珊瑚海。
6)海藻,主要是绿藻。
7)真菌,包括子囊菌,担子菌,藻菌等,含甲壳素从微量到45%,只要少数的真菌如Olmycetes和Trichomycetes不含甲壳素。
8)动物的关节,蹄,足等坚硬的部分,也存在甲壳素。
甲壳素∕壳聚糖及衍生物在水处理中的应用摘要:甲壳素具吸附及螯合性,可以和重金属离子形成错合物,再加上其生物可分解特性,不致于造成二次公害,因此为一良好的环境友好型水处理材料。
本文主要介绍了甲壳素∕壳聚糖及衍生物在水处理中的应用研究进展。
关键词: 壳聚糖;螯合; 水处理一.壳聚糖简介甲壳质是1811年由法国学者布拉克诺(Braconno)发现,1823年由欧吉尔(odier)从甲壳动物外壳中提取,并命名为CHITIN,译名为几丁质。
外观及性质:淡米黄色至白色,溶于浓盐酸/磷酸/硫酸/乙酸,不溶于碱及其它有机溶剂,也不溶于水。
甲壳质的脱乙酰基衍生物(Chitosan derivatives)可溶于水。
甲壳素具有抗癌抑制癌、瘤细胞转移,提高人体免疫力及护肝解毒作用。
尤其适用于糖尿病、肝肾病、高血压、肥胖等症,有利于预防癌细胞病变和辅助放化疗治疗肿瘤疾病。
因此,甲壳素/壳聚糖越来越多地被国内外研究者所重视,对它的研究也日益深入,现在,甲壳素/壳聚糖的应用领域已覆盖环保、食品、生物医用材料、生物农药等诸多方面。
甲壳素的化学名称为(1,4)-2-乙酰氨基-2-脱氧-β-D-葡萄糖,是线型多糖类聚合物,简称为N-乙酰-D-葡糖胺。
二.1、壳聚糖的制备壳聚糖是许多低等动物,特别是节肢类动物(如昆虫、甲壳类动物等)外壳的主要成分,主要以无机盐及蛋白质结合形式存在.但其中尤以虾蟹壳中含量最高,因此通常以是虾蟹壳为原料。
(1)传统工艺[1]以虾蟹壳为原料,常温下用稀释盐酸分解无机盐,用稀碱脱除蛋白质得甲壳素,甲壳素再经浓碱脱乙酰基得壳聚糖。
其简易流程如下:虾蟹壳——清洗、去杂质、烘干(加稀HCL)——脱无机盐(加稀NaOH)——脱蛋白质(加浓NaOH)——脱乙酰基——烘干得壳聚糖壳聚糖的主要质量指标是粘度及胺基含量,在制备壳聚糖过程中,用稀盐酸分解虾蟹壳无机盐的同时,壳聚堂的链也会发生不同程度的水解作用,因此在分解无机盐的过程中盐酸的浓度、处理时间及温度对壳聚糖制品的粘度、胺基含量均有影响。
甲壳素和壳聚糖综述摘要:生物相容性好、可降解、对组织和细胞无毒副作用的生物材料一直是生物医学领域研究的热点。
壳聚糖(2-氨基2-去氧β-D葡聚糖)是甲壳素脱乙酰得到的天然多糖中唯一的碱性多糖,具有很多优良的特性。
本文就甲壳素和壳聚糖的结构、性质、制备及功效进行了综述。
关键字:甲壳素和壳聚糖;结构;性质;制备;功效甲壳素又名几丁质,是自然界中含量仅次于纤维素的一种多糖,同时也是地球上数量最大的含氮有机化合物,其在自然界中主要存在于节肢动物、软体动物、环节动物、原生动物、腔肠动物、海藻及真菌等中,另外在动物的关节、蹄足的坚硬部分,动物肌肉与骨结合处,以及低等植物中均发现有甲壳素的存在。
壳聚糖是甲壳素脱去大部分乙酰基后的产物是甲壳素最为重要的衍生物。
自从1811 年,法国科学家H.Braconnnot发现甲壳素以来,甲壳素逐渐被认识与利用。
近年来,国内外相关的研究日趋活跃,甲壳素和壳聚糖已被现代科学称之为继糖、蛋白质、脂肪、维生素、矿物质等五大生命要素之后的第六生命要素。
1 结构及理化性质1.1结构[1]甲壳素是一种天然高分子化合物,其学名是β-(1→4)-2-乙酰氨基-2-脱氧-D-葡萄糖,是由N-乙酰氨基葡萄糖以β-1,4糖苷键缩合而成的。
如果把此结构式中糖基上的N-乙酰基大部分去掉的话,就成为甲壳素最为重要的衍生物壳聚糖。
1.2 理化性质1.2.1 物理性质甲壳素是白色或灰白色无定形、半透明固体,相对分子质量因原料不同而有数十万至数百万,不溶于水、稀酸、稀碱、浓碱、一般有机溶剂,可溶于浓的盐酸、硫酸、磷酸和无水甲酸,但同时主链发生降解。
壳聚糖是白色无定型、半透明、略有珍珠光泽的固体,因原料不同和制备方法不同,相对分子质量也从数十万至数百万不等,不溶于水、碱溶液、稀的硫酸和磷酸,可溶于稀的盐酸、硝酸等无机酸和大多数有机酸,生成粘稠、透明的壳聚糖盐胶溶液,其粘度与温度、PH有关,而其溶解性与脱乙酰度有密切相关[2]。
甲壳素和壳聚糖 The pony was revised in January 2021备注第7章甲壳素和壳聚糖甲壳素和壳聚糖的结构、性能甲壳素的存在状态与提取方法甲壳素与壳聚糖的改性甲壳素与壳聚糖及其改性产物的应用掌握甲壳素和壳聚糖的基本结构和反应性能了解甲壳素和壳聚糖的结构改性和应用甲壳素和壳聚糖的结构、性能甲壳素的发现与命名1、1811年温热的稀碱溶液反复处理蘑菇,提取甲壳素,命名Fungine,真菌纤维素。
2、1823年甲壳类昆虫翅鞘中分离,命名Chitin3、4、1878年从Chitin水解反应液中检出氨基葡萄糖和乙酸5、1894年进一步证明Chitin中含有氨基葡萄糖,后来研究证明,Chitin是由N-乙酰基葡萄糖缩聚而成的。
二、结构特征研究证实,甲壳素与其他多糖一样,其分子链也是螺旋形,XRD照片给出的螺距为,一个螺旋平面由6个糖残基组成。
测定方法:红外、核磁共振三、壳聚糖的主要特性1. 不能完全溶解于水和碱溶液中,但可溶于稀酸(pH<6),游离氨基质子化促进溶解。
溶于稀酸呈黏稠状,在稀酸中壳聚糖的β-1,4糖苷键会慢慢水解,生成低相对分子质量的壳聚糖。
2. 壳聚糖在溶液中是带正电荷多聚电解质,具有很强的吸附性。
3. 壳聚糖的溶解性与脱乙酰度、相对分子质量、黏度有关,脱乙酰度越高,相对分子质量越小,越易溶于水.4. 壳聚糖具有很好的吸附性、成膜性、通透性、成纤性、吸湿性和保湿性N-脱乙酰度和黏度(平均分子量)是壳聚糖的两项主要性能指标脱乙酰度(1)脱乙酰度(.)的高低,直接关系到它在稀酸中的溶解能力、黏度、离子交换能力、絮凝性能和与氨基有关的化学反应能力。
(2)测定的方法有酸碱滴定法、电位滴定法、氢溴酸盐法、胶体滴定法、苦味酸分光光度法、UV、IR法等5、黏度黏度反应了高分子物质的分子量大小,在壳聚糖的生产上,常用旋转黏度计来测定其黏度,这是表观黏度,其数值可大体反映出壳聚糖分子量的大小。
甲壳素及壳聚糖在纺织工业中的应用1 概述甲壳素(Chitin)又名甲壳质、几丁质等,是一种丰富的自然资源,每年生物合成近10亿吨之多,是继纤维素之后地球上最丰富的天然有机物。
甲壳素的结构与纤维素极其相似,是一种天然多糖,可命名为(l,4)-2-乙酸氨基-2-脱氧-β-D-葡萄糖。
甲壳素兼有高等动物组织中胶原质和高等植物组织中纤维素两者的生物功能,对动、植物都具有良好的适应性,同时还具有生物可降解性和口服无毒性,因此近年来它已成为一种用途广泛的新型材料。
壳聚糖(Chitosan)是甲壳素脱乙酸化的产物,能溶于低酸度的水溶液中,因其含有游离氨基,能结合酸分子,故具有许多特殊的物理化学性质和生物功能。
壳聚精是甲壳素最重要的衍生物,是甲壳素脱乙酸度达到70%以上的产物,也是迄今为止发现的唯一天然碱性多糖,具有无毒性、可生物降解性、良好的生物兼容性等特性。
另外,壳聚糖分子中存有大量的氨基和羟基,可以通过化学反应在其上引入各种功能性基团进行化学修饰作为低等动物组织中的纤维成分,所以表现出了极高的应用价值和广泛的发展前景,是一种新型的多功能织物整理剂,在印染、抗折皱、防毡缩、抗菌和纤维滤嘴等方面应用广泛。
此外,将甲壳素或壳聚糖纺成纤维,进而加工成外科用的可吸收手术缝合线、伤口敷料、人造皮肤等医用材料则是近年来科学家们研究的重要课题。
2 在纺织领域中的应用壳聚糖具有许多天然的优良性质,如吸湿透气性、反应活性、生物活性、吸附性、粘合性、抗菌性等,人们利用这些性能来提高棉、毛、丝绸等天然纤维织物的染色、抗菌、防皱、防缩等性能,并可应用于纺织领域的污水处理。
2.1 手术缝合线用壳聚糖纤维制成的缝合线,在预定时间内有很强的抗张强度,在血清、尿、胆汁、胰液中能保持良好的强度,在体内有良好的适应性,尤其是经过一定时间,壳聚糖缝合线能被溶菌西每解,被人体自行吸收。
因此,当伤口愈合后,不必再拆线。
理想的外科缝合线应满足:愈合前与组织兼容;愈合时所有缝合线不拆除,逐渐被人体吸收而消失;缝合线不破坏愈合。