主轴驱动及控制
- 格式:ppt
- 大小:120.57 KB
- 文档页数:34
主轴工作原理
主轴工作原理指的是机械主轴在加工过程中的运转方式和工作原理。
通常情况下,主轴由电机驱动,通过传动装置将电机的旋转转矩传递给刀具或工件,实现机械加工的目的。
主轴的工作原理可以分为以下几个步骤:
1. 电机传动:主轴通常由一台电机驱动,电机的旋转转矩通过传动装置(如齿轮、皮带等)传递给主轴。
电机的选型需要根据加工需求和主轴的负载情况来确定。
2. 主轴转速调节:主轴的转速通常需要根据不同的加工需求进行调节。
通过电机的调速装置,可以改变电机的转速,从而改变主轴的转速。
不同材料和工件形状的加工通常需要不同的转速。
3. 刀具/工件夹持:主轴上需要安装刀具或夹持工件,刀具通常用于切削或切割材料,而工件则是待加工的物体。
刀具和工件的夹持方式有很多种,例如刀柄与主轴用柔性杆夹持、工件用夹具夹紧等。
4. 旋转运动:当电机启动后,主轴开始进行旋转运动。
通过电机和传动装置的配合,主轴可以以一定的转速和转矩运转,以满足加工的需求。
总之,主轴的工作原理是由电机提供动力,通过传动装置传递给刀具或工件,从而实现加工过程中的旋转运动。
不同的加工
需求会对主轴的转速、负载等工作参数提出不同的要求,因此需要选择合适的电机和传动装置,以及适当的刀具与工件夹持方式。
数控机床主轴驱动变频控制一、前言数控机床是传统机床向智能化方向发展的结果,其操作简单、精度高、效率高等特点,使得其在现代制造业中大有用处。
数控机床中的主轴驱动控制是其中的一个重要环节,其精度和可靠性对整个机床的操作效果有着至关重要的作用。
本篇文档将主要介绍数控机床主轴驱动变频控制相关知识。
二、数控机床主轴驱动变频控制的原理数控机床的主轴驱动控制系统主要是由相关电气元件组成的变频器控制系统。
变频器就是将市电通过整流、滤波、逆变后输出一定的频率、电压并控制电机转速的电子装置。
在数控机床的主轴驱动系统中,变频器通过对电机控制进行电压和频率的调整,来实现主轴的旋转,进而控制其转速和输出功率。
变频器输出的频率、电压均可调整,因此可以通过控制变频器的输出,来实现对主轴的速度调节。
电气控制系统通过实时监测机床运行状态、主轴运行状态、机床速度、主轴转速等信息,根据预先设定的运转条件,通过控制变频器输出的电压、频率实现对机床的工作状态并实现对主轴的速度调节。
三、数控机床主轴驱动变频控制的优点与传统机床的主轴驱动方式相比,数控机床主轴驱动变频控制有诸多优点,主要体现在以下几个方面:1.可调性强:通过对变频器的控制,可以实现精确的主轴转速调节,可以满足不同需求的工件加工。
2.精度高:由于采用了电气控制系统,可以实现主轴转速的精确控制,进而实现加工精度的提高。
3.效率高:数控机床主轴驱动变频控制由于能够实现电气控制,减少了机械传动过程中的机械损耗,因此其效率远高于传统机床主轴驱动方式。
4.运转平稳:变频器可以调节输出电压和频率,可以进一步实现对主轴转速的控制,从而实现机床运转的平稳。
四、数控机床主轴驱动变频控制的应用数控机床主轴驱动变频控制技术的应用相当广泛,可以应用于各种数控机床类型,包括数控车床、数控加工中心、数控铣床等。
特别是在高速、高精度、高效率的加工应用中,其优势更加明显。
五、数控机床主轴驱动变频控制的维护和保养为了确保数控机床主轴驱动变频控制系统的长期稳定运行,必须进行日常的维护和保养。
机床数控系统的组成机床数控系统是现代机床的核心技术之一,它由多个组成部分构成,共同实现对机床的自动化控制和加工操作。
本文将从硬件和软件两个方面介绍机床数控系统的组成。
一、硬件组成1.主轴驱动系统:主轴驱动系统是机床数控系统的核心部分,它负责控制主轴的转速和运动方向。
主轴驱动系统通常由伺服电机、减速器、编码器等组成,通过对电机的控制,实现对主轴的精确控制。
2.进给驱动系统:进给驱动系统用于控制工件在加工过程中的运动轴向,包括直线进给轴和旋转进给轴。
直线进给轴通常由伺服电机、滚珠丝杠等组成,用于控制工件的直线运动;旋转进给轴通常由伺服电机、齿轮传动等组成,用于控制工件的旋转运动。
3.运动控制卡:运动控制卡是机床数控系统的核心控制器,它负责接收数控指令,并将其转换为电信号,通过与主轴驱动系统和进给驱动系统的配合,实现对机床的精确控制。
运动控制卡通常具备高速数据处理能力和多个输入输出接口,以满足机床复杂加工过程的控制需求。
4.传感器:传感器是机床数控系统的重要组成部分,用于实时监测机床的运行状态和工件加工过程中的各种参数。
常见的传感器包括位置传感器、力传感器、温度传感器等,它们通过与运动控制卡的连接,将采集到的数据反馈给数控系统,以实现对机床的自动化调节和控制。
5.人机界面:人机界面是机床数控系统与操作人员之间的交互界面,用于输入加工参数、监视加工过程和显示加工结果等。
人机界面通常由触摸屏、键盘、显示器等组成,操作人员可以通过它们与数控系统进行交互,并实时了解机床的工作状态。
二、软件组成1.数控系统软件:数控系统软件是机床数控系统的核心程序,它负责解释和执行数控指令,控制机床的运动和加工过程。
数控系统软件通常由操作系统、驱动程序、插补算法等组成,它们共同实现对机床的高精度控制和加工操作。
2.加工程序:加工程序是机床数控系统的另一重要组成部分,它是由一系列数控指令组成的程序,用于描述工件的加工路径和加工过程。
主轴驱动系统常见故障及处理数控机床的主轴驱动系统也就是主传动系统,它的性能直接决定了加工工件的表面质量,因此,在数控机床的维修和维护中,主轴驱动系统显得很重要。
5.1 主轴驱动系统概述主轴驱动系统也叫主传动系统,是在系统中完成主运动的动力装置部分。
主轴驱动系统通过该传动机构转变成主轴上安装的刀具或工件的切削力矩和切削速度,配合进给运动,加工出理想的零件。
它是零件加工的成型运动之一,它的精度对零件的加工精度有较大的影响。
5.1.1 数控机床对主轴驱动系统的要求机床的主轴驱动和进给驱动有较大的差别。
机床主轴的工作运动通常是旋转运动,不像进给驱动需要丝杠或其它直线运动装置作往复运动。
数控机床通常通过主轴的回转与进给轴的进给实现刀具与工件的快速的相对切削运动。
在20纪60-70年代,数控机床的主轴一般采用三相感应电动机配上多级齿轮变速箱实现有级变速的驱动方式。
随着刀具技术、生产技术、加工工艺以及生产效率的不断发展,上述传统的主轴驱动已不能满足生产的需要。
现代数控机床对主轴传动提出了更高的要求:(1)调速范围宽并实现无极调速为保证加工时选用合适的切削用量,以获得最佳的生产率、加工精度和表面质量。
特别对于具有自动换刀功能的数控加工中心,为适应各种刀具、工序和各种材料的加工要求,对主轴的调速范围要求更高,要求主轴能在较宽的转速范围内根据数控系统的指令自动实现无级调速,并减少中间传动环节,简化主轴箱。
目前主轴驱动装置的恒转矩调速范围已可达1∶100,恒功率调速范围也可达1∶30,一般过载1.5倍时可持续工作达到30min。
主轴变速分为有级变速、无级变速和分段无级变速三种形式,其中有级变速仅用于经济型数控机床,大多数数控机床均采用无级变速或分段无级变速。
在无级变速中,变频调速主轴一般用于普及型数控机床,交流伺服主轴则用于中、高档数控机床。
(2)恒功率范围要宽主轴在全速范围内均能提供切削所需功率,并尽可能在全速范围内提供主轴电动机的最大功率。
摘要本文介绍了采用数控车床的主轴驱动中变频控制的系统结构与运行模式,并简述了无速度传感器的矢量变频器的基本应用。
关键词:矢量控制变频器数控车床目录摘要 (3)第1章变频器矢量控制阐述 (3)第2章数控车床主轴变频的系统结构与运行模式 (3)2.1 主轴变频控制的基本原理 (3)2.2 主轴变频控制的系统构成 (4)第3章无速度传感器的矢量控制变频器 (4)3.1 主轴变频器的基本选型 (4)3.2 无速度传感器的矢量变频器 (5)3.3 矢量控制中的电机参数辨识 (5)3.4 数控车床主轴变频矢量控制的功能设置 (6)第4章结束语 (6)致谢 (7)参考文献 (8)数控车床的主轴驱动变频控制系统第1章变频器矢量控制阐述70年代西门子工程师F.Blaschke首先提出异步电机矢量控制理论来解决交流电机转矩控制问题。
矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
矢量控制算法已被广泛地应用在siemens,AB,GE,Fuji等国际化大公司变频器上。
采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。
由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器。
第三章主轴驱动系统相关知识王晶武汉华中数控对主轴传动系统的要求主轴驱动系统就是在系统中完成主运动(旋转运动)的动力装置部分。
它带动工件或刀具作相应的旋转运动,从而能配合进给运动,加工出理想的零件。
1、调速范围宽为保证加工时选用合适的切削用量,以获得最佳的生产率、加工精度和表面质量,特别对于具有自动换刀功能的数控加工中心,为适应各种刀具、工序和材料的加工要求,对主轴的调速范围提出了更高的要求,要求主轴能在较宽的转速范围内根据数控系统的指令自动实现无级调速,并减少中间传动环节。
武汉华中数控2、恒功率范围要宽要求主轴在调速范围内均能提供所需的切削功率,并尽可能在调速范围内提供主轴电机的最大功率。
由于主轴电机与驱动装置的限制,主轴在低速段均为恒转矩输出。
为满足数控机床低速、强力切削的需要,常采用分段无级变速的方法(即在低速段采用机械减速装置),以扩大输出转矩。
3、具有四象限驱动能力要求主轴在正、反向转动时均可进行自动加、减速控制,并且加、减速时间要短。
武汉华中数控4、具有位置控制能力即进给功能(C 轴功能)和定向功能(准停功能),以满足加工中心自动换刀、刚性攻丝、螺纹切削以及车削中心的某些加工工艺的需要。
类型:变频主轴、伺服主轴、电主轴调速方式有级调速:异步电机+变速箱+主轴无级调速异步电机+变频器+主轴伺服电机+伺服驱动器+主轴电主轴武汉华中数控对电机知识的回顾三相异步电机结构1、定子:由机座、定子铁心、定子绕组组成:定子铁心:由厚0.5mm的硅钢片冲叠而成,铁心内开有均布的槽,嵌放定子绕组。
定子绕组:由完全相同的三个绕组组成,空间互差120度2、转子:由转轴、转子铁心、转子绕组组成:转子铁心:由厚0.5mm的硅钢片冲叠而成,铁心内开有均布的槽,嵌放转子绕组、或浇铸铝。
转子绕组:分绕线式绕组、鼠笼式绕组武汉华中数控三相绕线式异步电动机结构图武汉华中数控三相鼠笼式异步电动机结构图武汉华中数控三相异步电动机的工作原理n N ST f n 1f 电机定子装有三相对称绕组,通入三相对称电流时,在电机的气隙内产生产生一个以同步转速n 1旋转的磁场。
主轴驱动通过主轴m代码控制主轴联锁功能的原理主轴驱动通过主轴M代码控制主轴联锁功能的原理主要基于计算机数控系统(CNC)与主轴驱动器之间的通讯和控制。
下面将简要描述这个原理:1.计算机数控系统(CNC):CNC是现代数控机床的核心部分,它负责接收和处理来自操作员或自动编程软件的指令,然后输出这些指令到机床的各个部分,包括主轴驱动器。
2.M代码:M代码是CNC编程中的一种指令,用于控制机床的各种辅助功能,如主轴的启动、停止、换向等。
3.主轴驱动器:主轴驱动器是连接主轴电机和CNC系统的设备。
它接收CNC系统的指令,控制主轴电机的运动,从而实现主轴的旋转。
4.联锁功能:联锁功能是一种安全措施,用于防止机床在某些条件下运行,以避免潜在的危害。
例如,当刀具没有正确安装或卡盘未关闭时,机床可能不会启动。
5.控制原理:当CNC系统接收到M代码时,它会根据代码的内容向主轴驱动器发送相应的指令。
例如,当M03(启动主轴)被接收到,CNC系统将发送一个信号到主轴驱动器,使主轴电机开始旋转。
同时,为了确保主轴的正确和安全运行,CNC系统可能会通过主轴驱动器发送额外的信号或参数。
例如,当检测到主轴的异常速度或扭矩时,CNC系统可能会发送一个停止信号到主轴驱动器,使主轴电机立即停止。
此外,一些高级的主轴驱动器还具有与CNC系统之间的通讯功能,可以实时反馈主轴的状态信息,如转速、扭矩等。
这样,CNC系统可以根据这些信息调整主轴的运行状态,确保加工过程的稳定和安全。
总的来说,通过M代码控制主轴联锁功能是基于CNC系统、主轴驱动器和主轴电机之间的紧密配合和通讯实现的。
这种配合确保了机床在各种条件下的正确和安全运行。
数控机床主轴系统工作原理数控机床主轴系统是数控机床的核心部件之一,其工作原理是整个数控加工过程中的关键环节。
主轴系统的工作原理涉及到机床主轴的转动、传动方式、速度调节、加工精度控制等多个方面。
下面将详细介绍数控机床主轴系统的工作原理。
一、主轴的转动方式数控机床主轴一般采用电机驱动,其转动方式主要包括直流电机驱动、交流电机驱动和伺服电机驱动。
直流电机驱动主轴工作原理是通过直流电机产生磁场,通过电磁感应产生转矩来驱动主轴转动;交流电机驱动主轴则通过变频器调节电机的频率和电流,控制电机的转速,从而驱动主轴转动;伺服电机驱动主轴则是通过对电机进行闭环控制,实现高精度、高速度的转动。
二、主轴传动方式主轴传动方式主要包括皮带传动、齿轮传动和直联传动。
皮带传动简单、便于调节,但传动效率较低;齿轮传动传动效率高,但噪音大;直联传动是直接将电机轴与主轴连接,传动效率高,但需要考虑刚性和平衡性。
三、主轴速度调节数控机床主轴的速度调节是通过电机的转速和传动方式来实现的。
对于直流电机和交流电机,可以通过调节电机的输入电流和频率来控制转速;而对于伺服电机,则可以通过伺服控制系统实现对主轴速度的精确控制。
四、加工精度控制在数控机床主轴系统中,加工精度的控制是至关重要的。
主轴系统的动态特性、转动平稳性及轴向和径向刚度等参数都会直接影响到加工的精度。
在主轴系统设计中,需要考虑轴承选型、润滑方式、主轴动平衡、温升控制等因素,以确保加工精度的稳定性和精度。
五、主轴保护系统为了确保主轴系统的安全运行,常常需要配置主轴保护系统,例如过载保护、温升保护、振动监测等。
这些保护系统可以及时发现主轴系统的异常情况,并采取相应的保护措施,以避免主轴系统受损或加工质量受影响。
数控机床主轴系统的工作原理涉及到电机驱动、传动方式、速度调节、加工精度控制和保护系统等多个方面。
在数控加工中,主轴系统的稳定性和精度将直接影响到加工质量和效率,因此对主轴系统的设计和调试需要十分重视。
数控机床主轴驱动变频控制数控机床是以计算机技术和数控技术为基础的高精度机床,其主轴是重要的动力部件,主轴的驱动直接影响到加工效率和加工质量。
传统机床主轴驱动通常采用电动机和机械传动,但无法满足数控机床高速、高精度、轻快、稳定的要求。
因此,数控机床主轴驱动采用变频控制技术,已成为现代数控机床的发展趋势之一。
1. 变频控制技术简介变频控制是指通过改变电源频率来控制电机转速的技术,可以有效提高电机运行效率、降低能耗、延长机器寿命、减少机器噪音和振动等。
变频调速系统由电源、整流器、滤波器、逆变器、电机等组成,通过对逆变器输出频率、电压、电流等参数的调节,实现对电机的精确控制,从而达到理想的速度和负载要求。
2. 数控机床主轴驱动变频控制系统设计数控机床主轴驱动变频控制系统包括功率部分和控制部分。
功率部分主要由电机、电容器、混波器、逆变器、滤波器组成;控制部分主要由控制器、编码器、触摸屏、通信模块、接口电路等组成。
(1) 电机选择首先要确定数控机床主轴使用的电机类型和功率。
大多数数控机床采用交流永磁同步电机或交流无刷电机作为主轴电机,其优点是具有稳定、高效、精度高和可控性强等特点。
在选择电机时,应该根据机床的加工工艺、精度和产量等需求来确定电机型号和功率。
(2) 逆变器设计逆变器是数控机床主轴变频控制系统的核心部件,其主要功能是将直流电源变成交流电源,并根据控制信号输出不同的频率、电压、电流等,以控制电机转速和负载。
在设计时应该确定逆变器的大小、频率、输出电压、电流、控制方式等参数,以充分满足机床的技术要求。
(3) 控制器选择控制器是数控机床主轴变频控制系统的重要部件。
它接受编码器等输入信号,根据控制程序计算要输出的电机控制信号,并将其传递给逆变器,以实现精确的转速和负载控制。
在选择控制器时,应该根据机床的加工需求和控制要求,选择性能稳定可靠、精度高的控制器。
(4) 触摸屏设计触摸屏是数控机床主轴变频控制系统的操作界面,其主要功能是提供人机交互的接口,方便操作员进行参数设置、调整和监测。
车床主轴的工作原理
车床主轴是车床的主要工作部件之一,负责带动工件在车床上进行旋转加工。
工作原理如下:
1. 主轴传动原理:车床主轴采用电机驱动,通过传动装置(如皮带、齿轮等)将电机的动力传递给主轴,使之旋转。
传动装置的选择根据主轴的工作要求和车床的设计而定。
2. 主轴支承原理:为了确保主轴能够平稳旋转并承受加工时的轴向和径向力,主轴通常由轴承支承。
轴承通常分为前后两组,分别承受轴向和径向力,以保证主轴旋转平稳、精度稳定。
3. 主轴速度控制原理:主轴的转速可以通过控制电机的转速来实现。
车床上通常配备有变频器或步进电机控制系统,通过调整电机的频率或步进电机的脉冲信号来实现主轴转速的调节。
通过电子控制系统,可以实现主轴转速的精确控制。
4. 刀具夹持原理:主轴上通常配备有刀架或刀塔,用于夹持刀具进行加工。
刀具可以是刀片、钻头、铣刀等。
夹持方式有多种,如机械卡盘、弹簧夹紧装置等,用于保证刀具与主轴的牢固连接,以实现高速、高负荷的加工。
5. 主轴冷却原理:主轴在高速运转时,会产生较多的热量,需要进行散热和冷却。
车床主轴通常配备有冷却系统,通过内部循环冷却润滑液或外部喷水冷却等方式,降低主轴的温度,保持加工的稳定性和精度。
总之,车床主轴通过电机驱动,通过传动装置带动主轴旋转。
轴承支承保证主轴平稳旋转并承受加工力。
转速可通过电机控制实现。
刀具由主轴夹持,进行加工。
同时,主轴还需要进行冷却,以保证加工的稳定性。