不同车种的制动距离参考
- 格式:docx
- 大小:36.32 KB
- 文档页数:1
叉车制动距离检验方法探讨摘要:随着社会的发展,叉车制动距离是场(厂)内专用机动车辆安全技术条件的重要指标,也是安全技术规范TSGN0001-2017《场(厂)内专用机动车辆安全技术监察规程》(以下简称N0001)要求的检验项目。
N0001规定叉车制动性能应符合GB/T18849-2011《机动工业车辆制动器性能和零件强度》(以下简称GB/T18849)的要求。
其中GB/T18849对制动性能的定义为:“由与车辆制动初始速度有关的制动距离和/或制动力,以及将车辆保持在某一坡道上不动的能力来衡量”。
关键词:叉车制动;距离;检验方法引言随着物流运输业的迅速发展,叉车已成为工业装卸领域应用最广泛的特种设备。
叉车是一种十分典型的特种机电类设备,也是当下国内工业生产领域中的常用机械类型,应用时容易发生制动不同步的情况,可能会引起人员伤残情况,明显降低工业生产效率,使企业承受较大的经济损失。
为确保工业生产安全、稳定,检修人员应从多个方面解剖造成叉车制动不同步的原因,以完善相应的检验检测方案。
1叉车制动系统的工作原理在叉车实际作业中,当外力向下作用(驾驶员脚踩)制动踏板,使与制动踏板相连接的制动总泵的推杆向右移动,制动总泵中液压油产生压力,再经制动油管进入制动分泵。
在液压油的压力作用下,分泵的活塞及推杆向外移动,使制动蹄与制动毂接触,利用摩擦力产生制动作用。
当外力作用消除(驾驶员松开踏板),制动总泵活塞因回位弹簧的弹力而回位,使制动系统中的油压降低,制动蹄的回位弹簧使制动蹄脱离与制动毂的接触而回位,制动分泵内的油液流向总泵,即解除了制动作用。
2叉车制动不同步的成因分析2.1漏油漏油是造成叉车制动装置出现不同步情况的常见原因之一,其原因可能是叉车起升油缸油封与活塞杆之间的油封出现不同程度的破损,导致叉车漏油问题显著提升。
大量的生产实践表明,油缸内部的液压油为叉车系统行进的主要动力来源,如果油管发生漏油情况就会直接导致制动操作叉车时缺乏足够动力或叉车实际制动效率显著降低,最后出现叉车制动不同步的问题。
许多消费者在购车之前都会先关注车型的口碑,这是很实用的方法。
不过读懂参数可能更方便找到满足自身需求的车型。
在每款车型上市前后,汽车厂家都会配套公布该车一份完整的参数表。
虽然很多参数都仅仅是一个简单的数据,但就是这个简单的数据,要真正读懂也需要一些理性分析和研究。
这是因为有些参数具有非常明显的实际意义,有些参数则不然。
而且,同一组参数还可能让人产生混淆。
毕竟汽车的结构和各种标准非常复杂,非专业人士难以准确地理解参数的意义是无可厚非的。
为了更准确地挑选到满足自己的车型,有些汽车参数还是必须仔细了解。
以下就是最常接触到,也容易在解读时产生误差的十大汽车参数。
参数之一:发动机目前,车市在售的车型中,发动机类型主要有L形(直列分布)、V形(气缸分布呈一定夹角)两种,还有B形(水平对置)以及W形(气缸分布呈W形)等两种不常见的。
通常而言,L 型发动机绝大部分采用4缸设计,V型发动机为6缸及以上。
相比之下,L4油耗更小,V6动力更足。
此外,关于发动机的,还分为前置、中置和后置,以及前驱和后驱等。
现在绝大部分家轿采用了前置前驱方式,好处是减轻了车重,结构比较紧凑,动力传递效率高,燃油经济性好,并增强了操控稳定性和制动时的方向稳定性;但也有弊端,启动、加速或爬坡时,牵引力下降。
另外一种比较可能接触到的则是前置后躯。
这类车型的优势在于启动、加速或爬坡时驱动力更强,操纵性更好。
例如凯美瑞就属于L4前置前驱车型,新一代天籁2.5L属于V6前置前驱车型,而锐志2.5L则属于V6前置后躯车型。
参数之二:最大功率最大功率是关于发动机的动力参数之一。
简单地理解,功率越高,车辆的极速将越大。
很多消费者在购车之前都会对不同车型的最大功率进行比较,认为越高越好。
这没错,但存在片面性。
和最大功率相关的,还有一个非常重要的参数:发动机转速。
例如某款1.8L 发动机,最高功率达到103RW,但其前提条件是发动机转速必须达到每分钟6300转。
列车制动力计算1,紧急制动计算①列车总制动力 )(kN K B h h ∑=ϕ式中∑hK------全列车换算闸瓦压力的总和,kN ;h ϕ---换算摩擦系数;②列车单位制动力的计算公式 )/()(1000)(1000kN N gG P K g G P B b hh ∙+=∙+∙=∑ϕ其中)/()(kN N gG P Kh hϑ=∙+∑,则h h b ϕϑ∙=1000式中 G P +------------列车的质量,t ; h ϕ---换算摩擦系数; h ϑ------------------列车制动率;∑hK------全列车换算闸瓦压力的总和,kN ;2,列车常用制动计算 1≤=bb cc β 由此可得)/(1000kN N b b c h h c c βϑϕβ=∙=式中 c β-----常用制动系数cb -------列车单位制动力表1 常用制动系数 1p 为列车管空气压力列车管减压量r/kPa 50 60 70 80 90 100 110 120 130 140 150 160 170旅客列车kPap 6001=0.19 0.29 0.39 0.47 0.55 0.61 0.69 0.76 0.82 0.88 0.93 0.98 1.003,多种摩擦材料共存时列车制动力的计算同一列车中的机车,车辆可能采用不同材料的闸瓦或闸片,他们具有不同的换算摩擦系数列车总制动力应当是各种闸瓦的换算闸瓦压力与该种闸瓦的换算摩擦系数乘积的总和。
即))((kN 332211∑∑∑∑∑=∙∙∙+++=h h h h h h h h K K K K B ϕϕϕϕ式中,1h K ,1h ϕ代表机车的闸瓦制动,2h K ,2h ϕ代表车辆的闸瓦制动,3h K ,3h ϕ代表车辆的盘形制动,等等。
列车单位制动力 )/()(1000)()(1000kN N gG P K b h h h h ∑∑∑∙=∙+=ϑϕϕ。
机动车安全技术项目检测项目和标准限值一、引言机动车安全技术项目检测是保障道路交通安全的重要环节之一。
为了确保机动车在道路上的安全运行,各国都制定了相应的检测项目和标准限值。
本文将详细介绍机动车安全技术项目检测的相关内容,包括检测项目的分类、具体项目和标准限值的要求。
二、检测项目的分类机动车安全技术项目检测主要包括以下几个方面的内容:1. 动力系统检测:包括发动机性能检测、排放检测等。
发动机性能检测主要检测发动机的最大功率、最大扭矩、燃油消耗量等指标,以评估发动机的性能是否符合标准要求。
排放检测主要检测机动车尾气中的有害物质排放情况,如一氧化碳、碳氢化合物、氮氧化物等。
2. 制动系统检测:包括刹车性能检测、制动力分配检测等。
刹车性能检测主要通过测量制动距离、制动时间等指标,评估机动车制动系统的性能。
制动力分配检测主要检测前后轮制动力的分配情况,以确保制动系统的平衡性。
3. 灯光系统检测:包括远光灯、近光灯、示宽灯、制动灯等各种灯光的检测。
灯光系统检测主要评估机动车灯光的亮度、光束形状、光束方向等指标,以确保机动车在夜间行驶时具备良好的照明效果。
4. 车身结构检测:包括车身刚度检测、车身稳定性检测等。
车身刚度检测主要通过施加外力,测量车身的变形情况,以评估车身的刚度是否符合标准要求。
车身稳定性检测主要通过模拟紧急情况下的转向和制动操作,评估车身的稳定性。
三、具体项目和标准限值要求根据各国的法规和标准,机动车安全技术项目检测的具体项目和标准限值有所不同。
以下是一个示例,供参考:1. 发动机性能检测:- 最大功率:不低于100马力- 最大扭矩:不低于150牛·米- 燃油消耗量:不高于10升/100公里2. 排放检测:- 一氧化碳排放:不高于0.5%- 碳氢化合物排放:不高于200ppm- 氮氧化物排放:不高于100ppm3. 刹车性能检测:- 制动距离:不大于30米(在60km/h的速度下)- 制动时间:不大于2秒(从60km/h减速到0)4. 制动力分配检测:- 前后轮制动力分配比例:前轮50%,后轮50%5. 灯光系统检测:- 远光灯亮度:不低于1000流明- 近光灯亮度:不低于500流明- 示宽灯亮度:不低于50流明- 制动灯亮度:不低于200流明6. 车身刚度检测:- 车身变形量:不大于5毫米7. 车身稳定性检测:- 转向稳定性:转向角度变化不大于5度- 制动稳定性:制动距离变化不大于10%四、结论机动车安全技术项目检测项目和标准限值的要求是确保机动车在道路上安全运行的重要保障。
高铁的闭塞区间与行驶安全问题摘要随着社会的高度速发展,人们的出行方式也发生了翻天覆地的变化。
动车也越来越多进入的我们的生活,在追求更快速度的同时人们也更加关注交通工具的安全性问题。
尤其在动车追尾事故发生后,动车的安全问题成为关注的焦点。
铁路的闭塞区间设计的是否合理,与高铁行驶安全至关重要,因此,在本文中,我们以闭塞区间为切入点,以杭深线为例,考虑各种因素讨论高铁的安全问题。
针对第一问,本文首先以我国动车组的主要类型的数据作为参考,采用自动闭塞区间法,以高速列车行驶的制动距离为基础,再结合四显示制式建立计算闭塞区间的模型,分别可得列车CRH1、CRH2、CRH3、CRH5闭塞区间长度为2418米、3335米、4300米、3647米。
为避免制动距离较短的列车的能力浪费及其运行效率的发挥,对于速度等级进行划分,并通过牵引计算分析以达到最优的速度等级划分,分别可得列车CRH1、CRH2、CRH3、CRH5最优速度划分临界为141.4/km h。
km h、176.8/km h、176.8/km h、212.2/针对第二问,要求我们基于闭塞区间对高铁进行安全评估,由于闭塞区间的长度直接影响了动车之间的追踪时间间隔,合理的追踪时间间隔是确定发车间隔时间的主要因素,我们首先以闭塞区间长度为切入点建立物理追踪模型,求解出安全行车下的最小发车时间间隔为12分钟,再通过与杭深线上各站的发车时间间隔进行对比,得出对杭深高铁安全性评估的结论。
针对第三问,基于问题二所求得的最小安全间隔时间,根据8月16日前后高铁发车时刻数据进行分析,判断两日中存在不安全相邻列次的列车组数,并算出当天车次组中的不安全率,进行比较分析出8月16日后比8月16日前安全性提高了20.9%。
我们认为,影响高铁安全的因素较多,在高铁安全系统中,各因素之间的关系又是极其错综复杂的,所以向其职能部门提出相应的建议,从而提高安全性。
关键词:闭塞区间安全间隔时间物理追及相遇模型1.问题的重述2011年7月23日晚上20点30分左右,甬温线永嘉站至温州南站间,北京南至福州D301次列车与杭州至福州南D3115次列车发生追尾事故。
汽车刹车距离标准汽车刹车距离是指车辆在发生紧急制动时,从驾驶员发现危险并踩下刹车踏板到车辆完全停下来所需的距离。
它是衡量汽车制动性能的重要指标,对行车安全至关重要。
汽车刹车距离受到多种因素的影响,包括车辆的速度、路面的情况、刹车系统的性能等。
在不同的国家和地区,针对汽车刹车距离都有相应的标准规定,以确保车辆在紧急情况下能够及时停下来,避免事故的发生。
首先,汽车的速度是影响刹车距离的关键因素之一。
根据物理学的原理,汽车的刹车距离与车速成正比,即车速越快,刹车距离就越长。
因此,在不同的国家和地区,都会规定不同的限速标准,并且在高速公路、城市道路等不同路段都会有相应的限速要求,以确保车辆在行驶过程中能够保持安全的速度,从而减少刹车距离,提高行车安全性。
其次,路面的情况也会对汽车刹车距离产生影响。
如果路面潮湿或者是结冰雪等恶劣天气条件下,车辆的制动性能会受到一定的影响,刹车距离会相应增加。
因此,在这种情况下,驾驶员需要更加谨慎,保持车速适中,并且及时调整行驶方式,以降低事故的发生概率。
另外,刹车系统的性能也是决定刹车距离的重要因素。
汽车的刹车系统包括制动片、制动盘、制动液等多个部件,它们的性能直接影响着车辆的制动效果。
因此,定期检查和维护刹车系统,及时更换磨损严重的制动片和制动盘,保证制动液的清洁和充足,对于减少刹车距离,提高行车安全至关重要。
总的来说,汽车刹车距离标准是保障行车安全的重要指标,它受到车速、路面情况和刹车系统性能等多种因素的影响。
为了确保车辆在紧急情况下能够及时停下来,避免事故的发生,驾驶员需要严格遵守交通规则,保持车辆在安全的速度范围内行驶,并且定期检查和维护刹车系统,以提高车辆的制动性能。
只有这样,才能有效减少事故的发生,保障行车安全。
二、车体设计部分本车体设计参考手册主要收集敞车、平车、漏斗车、罐车方面的常用资料,其它车种的资料有待于今后增补充实。
1 车体设计参数(见表1)表1 车体设计参数底架中梁内侧距/ mm350 中间垫板处/mm33012+- 前后从板座两冲击面间的距离/mm62503- 上心盘下平面至上旁承下平面之距离间隙旁承/mm66 弹性旁承/mm76 制动主管两端部中心与车钩中心线的左右水平距离13型车钩/mm365 17型车钩/mm365、390、457 折角塞门软管接口中心与车钩水平中心线的垂直距离/mm30~60 折角塞门中心与钩舌内侧面连接线的前后水平距离/mm350 解钩链松余量/mm45~55 车钩高度(空车)/mm880±10 平车相邻柱插中心距离/mm≤2000 链式手制动机制动轴中心线与车钩中心线的左右水平距离/mm490~500 脚蹬距轨面高度(空车)/mmMax500 Min430 NSW 手制动轮中心与踏板上平面距离(AAR 标准)/mm标准(30″)762 最大(40″)1016 最小(25″)635 普通手制动轮顶面与踏板上平面距离/mm (平车除外)950~1050 手制动轮外面与端板之距离/mm (棚车、敞车)≥80 两扶手间距离/mm350~4502 车体与转向架相关位置的确定车体的高度尺寸是按空车时标注的,车体各部的高度取决于转向架下心盘(包括磨耗盘)面的高度,由下心盘高减去车体自重使转向架弹簧下沉量,就是车体上心盘下平面的高度。
据此算出车体各部高度尺寸。
采用弹性旁承的转向架时,车体上心盘下平面至上旁承下平面的垂直距离由转向架下心盘面至弹性旁承的距离来确定。
根据铁运[2000]12号文《关于加快既有铁路货车120km/h提速改造的通知》,上心盘下平面至上旁承下平面的距离为:敞车、棚车7642+-mm ,罐车76mm ±1mm ,平车76mm ±2mm ,现新设计车一般采用76mm ±2mm 。
中华人民共和国机动车制动检验规范(试行)正文:---------------------------------------------------------------------------------------------------------------------------------------------------- 交通部关于颁发《中华人民共和国机动车制动检验规范》(试行)的通知(80)交公路字259号各省、市、自治区交通局(厅),北京、上海、天津市公安局:为了确保行车安全,提高运输效率,适应四化建设的需要,我部委托交通科学研究院负责机动车制动检验规范的试验工作。
经过两年多的试验,提出了机动车制动检验规范初步方案,并广泛征求有关方面的意见,于去年七月召开了审查会议,又加修改,现随文颁发试行,望认真贯彻执行。
在执行过程中,如有问题和意见,请随时函告我部。
附件:中华人民共和国机动车制动检验规范一九八0年二月四日中华人民共和国机动车制动检验规范(试行)第一章总则第一条为保障行车安全,提高运输效率,适应交通运输现代化的需要,特制订本规范。
第二条本规范适用于汽车(包括于汽车带挂车和半挂车)、无轨电车、特种汽车、二、三轮摩托车和方向盘式拖拉机带挂车等机动车辆,对手扶式拖拉机的制动装置也提出了适当要求。
第三条机动车的制动装置及制动性能,必须符合本规范的有关要求。
对于汽车、无轨电车和牵引车带半挂车的制动性能要求,根据其总重量按小、中、大三种车型分别规定(详见表一和表二)。
第四条本规范由交通监理部门和公安交通管理部门负责监督、贯彻执行。
第二章制动装置第五条通行城镇街道和公路的机动车以及出厂的新车,必须装有行车和停车制动装置。
挂车和半挂车(包括新出厂的)必须装有行车制动装置。
两轴挂车至少在后轴两轮上装有行车制动装置。
手扶拖拉机拖带的挂车也必须装有可靠的制动装置。
制动装置应保持技术状况良好,操纵轻便,完整可靠。
不同车种的制动距离参考
以下是不同车种的制动距离参考:
1. 汽车:一般情况下,汽车的制动距离为25米到35米左右。
但是,汽车的具体制动距离还受到多种因素的影响,如路面状况、车辆速度、刹车系统的性能等。
2. 自行车:自行车的制动距离相对较短,大约为5米左右。
但是,自行车的刹车系统也会受到多种因素的影响,如刹车系统的性能、轮胎的摩擦系数等。
3. 摩托车:摩托车的制动距离往往比汽车短,大约为20米左右。
但是,摩托车也需要考虑多种因素,如车辆型号、车速、路面情况等。
4. 卡车:卡车的制动距离相对较长,可能达到50米以上。
这
主要是因为卡车的质量较大、惯性较大,需要更长的距离才能停下来。
需要注意的是,以上数据仅供参考,实际情况可能会有所不同,具体要根据实际情况进行判断。