专题二 第2讲
- 格式:doc
- 大小:347.00 KB
- 文档页数:15
第一部分 专题二 第2讲基础题——知识基础打牢1. (多选)(2022·广东汕头二模)科学家常在云室中加入铅板以降低运动粒子的速度.图示为物理学家安德森拍下的正电子在云室中运动的径迹,已知图示云室加垂直纸面方向的匀强磁场,由图可以判定( BC )A .匀强磁场方向向外B .正电子由上而下穿过铅板C .正电子在铅板上、下磁场中运动角速度相同D .正电子在铅板上、下磁场运动中动量大小相等【解析】 正电子在匀强磁场中,洛伦兹力提供向心力,则有qvB =m v 2r 解得r =mv qB,由于正电子经过铅板后速度会减小,可知正电子经过铅板后的轨迹半径减小,从图中可以看出正电子在铅板上方轨迹半径比下方轨迹半径大,故正电子由上而下穿过铅板,由左手定则判断匀强磁场方向向里,A 错误,B 正确;正电子经过铅板后速度会减小,则正电子经过铅板后动量减小,正电子在铅板上、下磁场运动中动量大小不相等,D 错误;正电子在磁场中做圆周运动的角速度为ω=v r =qBm可知正电子在铅板上、下磁场中运动角速度相同,C 正确.故选BC.2. (多选)(2022·重庆八中模拟)2022北京冬奥会期间,校园陆地冰壶也在积极的参与中.如图所示,某次投掷时,冰壶A 以速度v =3 m/s 与冰壶B 发生正碰,碰撞前后的速度均在同一直线上,若A 、B 的质量均为1 kg ,则下列说法正确的是( CD )A .碰撞后A 的速度可能为2 m/sB .碰撞后B 的速度可能为1 m/sC .碰撞后A 不可能反向运动D .碰撞后B 的速度可能为2.5 m/s【解析】 设A 、B 的质量为m ,若发生弹性碰撞,根据动量守恒得mv =mv A +mv B ,根据机械能守恒得12mv 2=12mv 2A +12mv 2B ,解得A 、B 的速度分别为v A =0,v B =v =3 m/s ,若发生完全非弹性碰撞,则mv =(m +m )v 共,解得A 、B 的共同速度为v 共=1.5 m/s ,所以碰撞后A 、B 球的速度范围分别为0~1.5 m/s,1.5 m/s ~3 m/s ,故选CD.3. (2022·广东汕头二模)汕头市属于台风频发地区,图示为风级(0~12)风速对照表.假设不同风级的风迎面垂直吹向某一广告牌,且吹到广告牌后速度立刻减小为零,则“12级”风对广告牌的最大作用力约为“4级”风对广告牌最小作用力的( A )C .27倍D .9倍【解析】 设空气的密度为ρ,广告牌的横截面积为S ,经过Δt 时间撞击在广告牌上的空气质量为Δm =ρΔV =ρSv Δt ,根据动量定理可得F Δt =Δmv ,解得F =ρSv 2,根据牛顿第三定律可知,风对广告牌作用力为F ′=F =ρSv 2∝v 2,则“12级”风对广告牌的最大作用力与“4级”风对广告牌最小作用力的比值为F 12′F 4′=36.925.52≈45,故选A.4. (2022·江苏连云港模拟)离子发动机是利用电场加速离子形成高速离子流而产生推力的航天发动机,这种发动机适用于航天器的姿态控制、位置保持等.某航天器质量M ,单个离子质量m ,带电量q ,加速电场的电压为U ,高速离子形成的等效电流强度为I ,根据以上信息计算该航天器发动机产生的推力为( B )A .I mU qB .I 2mUqC .I3mUqD .I5mUq【解析】 对离子,根据动能定理有qU =12mv 2,解得v =2qUm,根据电流的定义式则有I =Q Δt =Nq Δt ,对离子,根据动量定理有F ·Δt =Nmv ,解得F =Nmv Δt =mvIq=I 2Um q,根据牛顿第三定律,推进器获得的推力大小为F ′=I2Umq,故B 正确,A 、C 、D 错误.5. (多选)(2022·湖南长郡中学月考)如图所示,质量为m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量也为m 的小球从距A 点正上方h 0高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为h 02(不计空气阻力).则下列说法错误的是( ACD )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为RC .小球从B 点离开小车不会再落回轨道内D .小球从B 点离开小车后又会从B 点落回轨道,再次恰好到达A 点时速度为零不会从A 点冲出【解析】 小球与小车组成的系统在水平方向不受外力,所以只是系统水平方向动量守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,m2R -x t =m xt解得x =R ,故B 正确;由于小球第二次在车中滚动时,对应位置的速度减小,因此小车给小球的弹力变小,摩擦力变小,克服摩擦力做的功小于12mgh 0,因此小球一定能从A 点冲出,故D 错误;小球与小车组成的系统水平方向上动量守恒,则知小球由B 点离开小车时水平方向动量为零,小球与小车水平方向速度均为零,小球离开小车后竖直上抛运动,最后又从B 点落回,故C 错误.故选ACD.6. (多选)(2022·湖南长沙二模)如图所示一平板车A 质量为2m ,静止于光滑水平面上,其右端与竖直固定挡板相距为L .小物块B 的质量为m ,以大小为v 0的初速度从平板车左端开始向右滑行,一段时间后车与挡板发生碰撞,已知车碰撞挡板时间极短,碰撞前后瞬间的速度大小不变但方向相反.A 、B 之间的动摩擦因数为μ,平板车A 表面足够长,物块B 总不能到平板车的右端,重力加速度大小为g .L 为何值,车与挡板能发生3次及以上的碰撞( CD )A .L =v20μgB .L =v2032μgC .L =v2065μgD .L =v2096μg【解析】 在车与挡板碰撞前,有mv 0=2mv A +mv B ,如果L 为某个值L 1,使A 与挡板能发生二次碰撞,从A 开始运动到与挡板第一次碰撞前瞬间,对A 由动能定理可得μmgL 1=12·2mv 2A ,设A 第二次与挡板碰撞前瞬间A 、B 的速度大小分别为v A ′、v B ′,从A 与挡板第一次碰撞后瞬间到第二次碰撞前瞬间,由动量守恒定律可得mv B -2mv A =2mv A ′+mv B ′且第二次碰撞前,A 、B 未达到共同速度,A 在这段时间内先向左后向右运动,加速度保持不变,根据匀变速直线运动的对称性可知v A ′=v A ,A 与挡板第二次碰撞后经一段时间后A 、B 同时停止运动,即mv B ′-2mv A ′=0,联立解得L 1=v2064μg ,车与挡板能发生3次及以上的碰撞的条件L <v 2064μg,故C 、D 可能,A 、B 不可能.7. (多选)(2022·江西贵溪二模)如图所示,在光滑水平面上放置一个质量为M 的滑块,滑块的一侧是一个14弧形凹槽OAB ,凹槽半径为R ,A 点切线水平,另有一个质量为m (m >M )的小球以速度v 0从A 点冲上凹槽,重力加速度大小为g ,不计摩擦.下列说法中正确的是( AB )A .当v 0=2gR 时,小球不可能到达B 点B .当v 0=2gR 时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大C .如果小球的速度足够大,小球将从滑块的左侧离开滑块后落到水平面上D .当v 0=gR 时,小球返回A 点后可能做自由落体运动【解析】 当小球能够恰好到达B 点时,设小球和滑块达到共同速度v ,根据动量守恒定律有mv 0=(m +M )v ,根据机械能守恒定律有12mv 20=12(m +M )v 2+mgR ,联立以上两式解得v 0=2M +mMgR >2gR ,所以当v 0=2gR 时,小球不能到达B 点,A 正确;当v 0=2gR 时,小球未到达B 点,小球从进入凹槽至最高点的过程中,小球对滑块的作用力始终做正功,所以滑块的动能一直增大,B 正确;如果小球的初速度足够大,小球将从B 点冲出,由于B 点的切线方向竖直,小球离开滑块时,二者水平方向的速度相同,小球相对滑块做竖直上抛运动,最后将从B 再次进入凹槽,最后从滑块的右侧离开,C 错误;当v 0=gR 时,小球再次回到凹槽底部时的速度为v 1,凹槽的速度为v 2,根据系统机械能守恒和水平方向动量守恒可得12mv 20=12mv 21+12Mv 22,mv 0=mv 1+Mv 2,解得v 1=m -M m +M v 0,因为m >M ,则可知v 1=m -M m +M v 0>0,小球返回A 点后做平抛运动,而不是自由落体运动,D 错误.故选AB.应用题——强化学以致用8. (多选)(2022·重庆二诊)喷丸处理是一种表面强化工艺,即使用丸粒轰击工件表面,提升工件疲劳强度的冷加工工艺.用于提高零件机械强度以及耐磨性、抗疲劳性和耐腐蚀性等.某款喷丸发射器采用离心的方式发射喷丸,转轮直径为530 mm ,角速度为230 rad/s ,喷丸离开转轮时的速度与转轮上最大线速度相同.喷丸撞击到器件表面后发生反弹,碰撞后垂直器件方向的动能变为碰撞前动能的81%,沿器件表面方向的速度不变.一粒喷丸的质量为3.3×10-5kg ,若喷丸与器件的作用时间相同,且不计喷丸重力,则关于图甲、乙所示的两种喷射方式的说法正确的是( AD )A .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.06 JB .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.12 JC .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶1D .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶ 3【解析】 喷丸离开转轮时的速度与转轮上最大线速度相同,转轮上线速度的最大值为v =ωr =60.95 m/s ,则喷丸发出过程喷丸发射器对喷丸做的功约为W =12mv 2≈0.06 J,选项A 正确,B 错误;结合题述可知,喷丸碰撞后垂直器件表面的速度大小变为碰撞前的90%,设喷丸速度为v ,垂直喷射时有F 1=0.9mv --mvt,以60°角喷射时,有F 2=0.9×32mv -⎝ ⎛⎭⎪⎫-32mv t,解得F 1F 2=23,选项C 错误,D 正确.故选AD.9. (多选)(2022·河北衡水四调)质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块1、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( BCD )A .木块1相对木板静止前,木板是静止不动的B .木块1的最小速度是12v 0C .木块2的最小速度是56v 0D .木块3从开始运动到相对木板静止时对地位移是4v 2μg【解析】 木块1在木板上向右减速运动,该过程木板向右做加速运动,当木块1与木板速度相等时相对木板静止,由此可知,木块1相对静止前木板向右做加速运动,故A 错误;木块与木板组成的系统所受合外力为零,当木块1与木板共速时木板的速度最小,设木块与木板间的摩擦力为f ,则木块1的加速度a 1=f m 做匀减速运动,而木板a =3f 3m =fm做匀加速运动,则v 1=v 0-a 1t =at ,v 1=12v 0,故B 正确;设木块2的最小速度为v 2,此时木块2与木板刚刚共速,木块2此时速度的变量为2v 0-v 2,则木块3此时速度为3v 0-(2v 0-v 2)=v 0+v 2,由动量守恒定律得:m (v 0+2v 0+3v 0)=5mv 2+m (v 0+v 2),解得v 2=56v 0,故C 正确;木块与木板组成的系统动量守恒,以向右为正方向,木块3相对木板静止过程,由动量守恒定律得m (v 0+2v 0+3v 0)=(3m +3m )v 3,解得v 3=v 0,对木块3,由动能定理得-μmgx =12mv 23-12m (3v 0)2,解得x =4v20μg,故D 正确.故选BCD.10. (2022·辽宁沈阳二模)如图(a),质量分别为m A 、m B 的A 、B 两物体用轻弹簧连接构成一个系统,外力F 作用在A 上,系统静止在光滑水平面上(B 靠墙面),此时弹簧形变量为x .撤去外力并开始计时,A 、B 两物体运动的a t 图像如图(b)所示,S 1表示0到t 1时间内A的a t 图线与坐标轴所围面积大小,S 2、S 3分别表示t 1到t 2时间内A 、B 的a t 图线与坐标轴所围面积大小.A 在t 1时刻的速度为v 0.下列说法正确的是( C )A .m A <mB B .S 1+S 2=S 3C .0到t 1时间内,墙对B 的冲量大小等于m A v 0D .B 运动后,弹簧的最大形变量等于x【解析】 a t 图线与坐标轴所围图形的面积大小等于物体速度的变化量,因t =0时刻A 的速度为零,t 1时刻A 的速度大小v 0=S 1,t 2时刻A 的速度大小v A =S 1-S 2,B 的速度大小v B=S3,由图(b)所示图像可知,t1时刻A的加速度为零,此时弹簧恢复原长,B开始离开墙壁,到t2时刻两者加速度均达到最大,弹簧伸长量达到最大,此时两者速度相同,即v A=v B,则S1-S2=S3,t1到t2时间内,A与B组成的系统动量守恒,取向右为正方向,由动量守恒定律得m A v0=(m A+m B)v A,联立解得m A∶m B=S3∶S2,由图知S3>S2,所以m A>m B,故A、B错误;撤去外力后A受到的合力等于弹簧的弹力,0到t1时间内,对A,由动量定理可知,合力即弹簧弹力对A的冲量大小I=m A v0,弹簧对A与对B的弹力大小相等、方向相反、作用时间相等,因此弹簧对B的冲量大小与对A的冲量大小相等、方向相反,即弹簧对B的冲量大小I弹簧=m A v0,对B,以向右为正方向,由动量定理得I墙壁-I弹簧=0,解得,墙对B的冲量大小I墙壁=m A v0,方向水平向右,故C正确;B运动后,当A、B速度相等时弹簧形变量(伸长量或压缩量)最大,此时A、B的速度不为零,A、B的动能不为零,由能量守恒定律可知,B运动后弹簧形变量最大时A、B的动能与弹簧的弹性势能之和与撤去外力时弹簧的弹性势能相等,则B 运动后弹簧形变量最大时弹簧弹性势能小于撤去外力时弹簧的弹性势能,即B运动后弹簧形变量最大时弹簧的形变量小于撤去外力时弹簧的形变量x,故D错误.11. (2022·山东押题练)2022年北京冬奥会自由式滑雪女子大跳台决赛中,中国选手谷爱凌以188.25分的成绩获得金牌.北京冬奥会报道中利用“Al+8K”技术,把全新的“时间切片”特技效果首次运用在8K直播中,更精准清晰地抓拍运动员比赛精彩瞬间,给观众带来全新的视觉体验.将谷爱凌视为质点,其轨迹视为一段抛物线图.图(a)是“时间切片”特技的图片,图(b)是谷爱凌从3 m高跳台斜向上冲出的运动示意图,图(c)是谷爱凌在空中运动时离跳台底部所在水平面的高度y随时间t变化的图线.已知t=1 s时,图线所对应的切线斜率为4(单位:m/s),重力加速度g取10 m/s2,忽略空气阻力.(1)求谷爱凌冲出跳台时竖直速度的大小;(2)求谷爱凌离跳台底部所在水平面的最大高度;(3)若谷爱凌从空中落到跳台底部所在水平地面时与地面的碰撞时间Δt=0.4 s,经缓冲没有脱离地面,水平速度不受影响,求碰撞过程中谷爱凌受到地面的平均作用力大小与自身重力大小的比值.【答案】(1)14 m/s (2)12.8 m (3)5【解析】(1)运动员竖直方向做匀减速直线运动,有v y=v y0-gty t 图线斜率表示竖直分速度,t =1 s 时v y =4 m/s解得谷爱凌冲出跳台时的竖直分速度v y 0=14 m/s 谷爱凌冲出跳台时竖直速度的大小为14 m/s.(2)最高点竖直分速度为0,竖直方向做匀减速直线运动,设离开跳台可以上升h 高度,则0-v 2y 0=-2gh代入数据解得h =9.8 m 跳台离地面高度y 0=3 m解得离跳台底部所在水平面的最大高度为y =h +y 0=12.8 m.(3)谷爱凌落到跳台底部所在水平面的竖直分速度大小v yt =2gy =16 m/s落在水平地面时,在竖直方向上,运动员受重力和水平地面的作用力,水平方向速度不变,以竖直向上为正方向,由动量定理得(F -mg )Δt =0-(-mv yt )代入数据解得Fmg=5.12. (2021·浙江6月选考)如图所示,水平地面上有一高H =0.4 m 的水平台面,台面上竖直放置倾角θ=37°的粗糙直轨道AB 、水平光滑直轨道BC 、四分之一圆周光滑细圆管道CD 和半圆形光滑轨道DEF ,它们平滑连接,其中管道CD 的半径r =0.1 m 、圆心在O 1点,轨道DEF 的半径R =0.2 m 、圆心在O 2点,O 1、D 、O 2和F 点均处在同一水平线上.小滑块从轨道AB 上距台面高为h 的P 点由静止下滑,与静止在轨道BC 上等质量的小球发生弹性碰撞,碰后小球经管道CD 、轨道DEF 从F 点竖直向下运动,与正下方固定在直杆上的三棱柱G 碰撞,碰后速度方向水平向右,大小与碰前相同,最终落在地面上Q 点.已知小滑块与轨道AB 间的动摩擦因数μ=112,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.(1)若小滑块的初始高度h =0.9 m ,求小滑块到达B 点时速度v 0的大小; (2)若小球能完成整个运动过程,求h 的最小值h min ;(3)若小球恰好能过最高点E ,且三棱柱G 的位置上下可调,求落地点Q 与F 点的水平距离x 的最大值x max .【答案】 (1)4 m/s (2)0.45 m (3)0.8 m【解析】 (1)小滑块在AB 轨道上运动,根据动能定理得mgh -μmg cos θ·hsin θ=12mv 20,解得v 0=4 m/s.(2)小滑块与小球碰撞后动量守恒,机械能守恒,因此有mv 0min =mv 块+mv 球min ,12mv 20min =12mv 2块+12mv 2球min , 解得v 块=0,v 球min =v 0min ,小球沿CDEF 轨道运动,在最高点可得mg =m v 2E minR,从C 点到E 点由机械能守恒可得 12mv 2E min +mg (R +r )=12mv 2球min , 由(1)问可知,小滑块提供给小球的初速度v 0min =43gh min ,解得h min =0.45 m.(3)设F 点到G 点的距离为y ,小球从E 点到G 点的运动,由动能定理得mg (R +y )=12mv2G -12mv 2E min , 由平抛运动可得x =v G t ,H +r -y =12gt 2,联立可得水平距离为x =20.5-y0.3+y ,由数学知识可得当0.5-y =0.3+y ,x 取最大值,最大值为x max =0.8 m.。
第2讲三角变换与解三角形【高考考情解读】 1.从近几年的考情来看,对于三角恒等变换,高考命题以公式的基本运用、计算为主,其中与角所在范围、三角函数的性质、三角形等知识结合为命题的热点;解三角形与其他知识以及生活中的实际问题联系紧密,有利于考查考生的各种能力,因而成了高考命题的一大热点.2.分析近年考情可知,命题一般为1~2题,其中,选择(填空)题多为低档题,解答题则一般为与其他知识(尤其是三角函数、向量)交汇的综合题或实际应用题,难度中等.1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β.(2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α.(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)tan 2α=2tan α1-tan2α.3.三角恒等式的证明方法(1)从等式的一边推导变形到另一边,一般是化繁为简.(2)等式的两边同时变形为同一个式子.(3)将式子变形后再证明.4.正弦定理asin A=bsin B=csin C=2R(2R为△ABC外接圆的直径).变形:a=2R sin A,b=2R sin B,c=2R sin C.sin A=a2R,sin B=b2R,sin C=c2R.a∶b∶c=sin A∶sin B∶sin C.5.余弦定理a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B , a 2+b 2-c 2=2ab cos C . 6. 面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .7. 解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.考点一 三角变换例1 (2013·广东)已知函数f (x )=2cos ⎝⎛⎭⎫x -π12,x ∈R . (1)求f ⎝⎛⎭⎫-π6的值; (2)若cos θ=35,θ∈⎝⎛⎭⎫3π2,2π,求f ⎝⎛⎭⎫2θ+π3. 解 (1)f ⎝⎛⎭⎫-π6=2cos ⎝⎛⎭⎫-π6-π12 =2cos ⎝⎛⎭⎫-π4=2cos π4=1. (2)f ⎝⎛⎭⎫2θ+π3=2cos ⎝⎛⎭⎫2θ+π3-π12=2cos ⎝⎛⎭⎫2θ+π4 =cos 2θ-sin 2θ,又cos θ=35,θ∈⎝⎛⎭⎫3π2,2π,∴sin θ=-45, ∴sin 2θ=2sin θcos θ=-2425,cos 2θ=2cos 2 θ-1=-725,∴f ⎝⎛⎭⎫2θ+π3=cos 2θ-sin 2θ=-725+2425=1725.当已知条件中的角与所求角不同时,需要通过“拆”、“配”等方法实现角的转化,一般是寻求它们的和、差、倍、半关系,再通过三角变换得出所要求的结果.化简常用技巧:①常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等;②项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等; ③降次与升次:正用二倍角公式升次,逆用二倍角公式降次; ④弦、切互化:一般是切化弦.(1)(2013·四川)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.(2)(2012·江苏)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 答案 (1)3 (2)17250解析 (1)∵sin 2α=-sin α,∴sin α(2cos α+1)=0, 又α∈⎝⎛⎭⎫π2,π,∴sin α≠0,2cos α+1=0 即cos α=-12,sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3.(2)∵α为锐角且cos ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+π6=35. ∴sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =sin 2⎝⎛⎭⎫α+π6cos π4-cos 2⎝⎛⎭⎫α+π6sin π4 =2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6-22⎣⎡⎦⎤2cos 2⎝⎛⎭⎫α+π6-1 =2×35×45-22⎣⎡⎦⎤2×⎝⎛⎭⎫452-1 =12225-7250=17250. 考点二 正、余弦定理例2 (2013·课标全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 解 (1)由已知及正弦定理得 sin A =sin B cos C +sin C sin B ,①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .②由①②和C ∈(0,π)得sin B =cos B . 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2, 当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.三角形问题的求解一般是从两个角度,即从“角”或从“边”进行转化突破,实现“边”或“角”的统一,问题便可突破. 几种常见变形:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin A ,b =2R sin B ,c =2R sin C ,其中R 为△ABC 外接圆的半径; (3)sin(A +B )=sin C ,cos(A +B )=-cos C .设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且(2b -3c )cos A=3a cos C . (1)求角A 的大小;(2)若角B =π6,BC 边上的中线AM 的长为7,求△ABC 的面积.解 (1)∵(2b -3c )cos A =3a cos C , ∴(2sin B -3sin C )cos A =3sin A cos C . 即2sin B cos A =3sin A cos C +3sin C cos A . ∴2sin B cos A =3sin B . ∵sin B ≠0,∴cos A =32, ∵0<A <π,∴A =π6.(2)由(1)知A =B =π6,所以AC =BC ,C =2π3,设AC =x ,则MC =12x .又AM =7,在△AMC 中,由余弦定理得AC 2+MC 2-2AC ·MC cos C =AM 2,即x 2+⎝⎛⎭⎫x 22-2x ·x 2·cos 120°=(7)2,解得x =2, 故S △ABC =12x 2sin 2π3= 3.考点三 正、余弦定理的实际应用例3 (2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35.(1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C =513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B,得 AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50), 由于0≤t ≤1 040130,即0≤t ≤8,故当t =3537 min 时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B, 得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过 3 min ,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.在南沙某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60°的C 处,12时20分测得船在海岛北偏西60°的B 处, 12时40分轮船到达位于海岛正西方且距海岛5 km 的E 港口,如 果轮船始终匀速直线前进,问船速为多少?解 由题意,得轮船从C 到B 用时80分钟,从B 到E 用时20分钟. 又船始终匀速前进,所以BC =4EB . 设EB =x ,则BC =4x .由已知,得∠BAE =30°,∠EAC =150°. 在△AEC 中,由正弦定理,得EC sin ∠EAC =AEsin C,所以sin C =AE ·sin ∠EAC EC =5sin 150°5x =12x .在△ABC 中,由正弦定理,得BC sin 120°=ABsin C,∴AB =BC ·sin Csin 120°=4x ·12x 32=433.在△ABE 中,由余弦定理,得BE 2=AB 2+AE 2-2AB ·AE ·cos 30° =163+25-2×433×5×32=313, 故BE =313. 所以船速v =BEt =31313=93(km/h).所以该船的速度为93 km/h.1. 求解恒等变换的基本思路一角二名三结构,即用化归转化思想“去异求同”的过程,具体分析如下:(1)首先观察角与角之间的关系,注意角的一些常用变换形式,角的变换是三角函数变换的核心.(2)其次看函数名称之间的关系,通常“切化弦”. (3)再次观察代数式的结构特点. 2. 解三角形的两个关键点(1)正、余弦定理是实现三角形中边角互化的依据,注意定理的灵活变形,如a =2R sin A ,sin A =a2R (其中2R 为三角形外接圆的直径),a 2+b 2-c 2=2ab cos C 等,灵活根据条件求解三角形中的边与角.(2)三角形的有关性质在解三角形问题中起着重要的作用,如利用“三角形的内角和等于π”和诱导公式可得到sin(A +B )=sin C ,sin A +B 2=cos C2等,利用“大边对大角”可以解决解三角形中的增解问题等.1. 在△ABC 中,已知tanA +B2=sin C ,给出以下四个结论: ①tan Atan B=1; ②1<sin A +sin B ≤2; ③sin 2A +cos 2B =1; ④cos 2A +cos 2B =sin 2C .其中一定正确的是 ( )A .①③B .②③C .①④D .②④答案 D解析 依题意,tan A +B2=sinA +B 2cosA +B2=2sin A +B 2cos A +B22cos2A +B 2=sin (A +B )1+cos (A +B ) =sin C1+cos (A +B )=sin C .∵sin C ≠0,∴1+cos(A +B )=1,cos(A +B )=0. ∵0<A +B <π,∴A +B =π2,即△ABC 是以角C 为直角的直角三角形. 对于①,由tan Atan B =1,得tan A =tan B ,即A =B ,不一定成立,故①不正确; 对于②,∵A +B =π2,∴sin A +sin B =sin A +cos A =2sin(A +π4),∴1<sin A +sin B ≤2,故②正确; 对于③,∵A +B =π2,∴sin 2A +cos 2B =sin 2A +sin 2A =2sin 2A , 其值不确定,故③不正确; 对于④,∵A +B =π2,∴cos 2A +cos 2B =cos 2A +sin 2A =1=sin 2C ,故④正确. 2. 已知函数f (x )=3sin x 4cos x 4+cos 2x4.(1)若f (x )=1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足a cos C +12c =b ,求f (B )的取值范围.解 (1)f (x )=3sin x 4cos x 4+cos 2x4=32sin x 2+12cos x 2+12=sin ⎝⎛⎭⎫x 2+π6+12. 由f (x )=1,可得sin ⎝⎛⎭⎫x 2+π6=12.cos ⎝⎛⎭⎫2π3-x =cos[π-(π3+x )]=-cos(π3+x ) =2sin 2(x 2+π6)-1=-12.(2)由a cos C +12c =b ,得a ·a 2+b 2-c 22ab +12c =b ,即b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0,π),所以A =π3,B +C =2π3,所以0<B <2π3,所以π6<B 2+π6<π2,所以f (B )=sin ⎝⎛⎭⎫B 2+π6+12∈⎝⎛⎭⎫1,32.(推荐时间:60分钟)一、选择题1. 设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( )A.2525B.255C.2525或255D.55或525答案 A解析 根据α、β都是锐角,且cos α=55,sin 2α+cos 2α=1, 得sin α=255⇒π4<α<π2,又∵sin(α+β)=35,∴cos(α+β)=-45.又cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α=2525,故选A. 2. 已知cos ⎝⎛⎭⎫α-π6+sin α=453,则sin ⎝⎛⎭⎫α+7π6的值是( )A .-235B.235C .-45D.45答案 C解析 ∵cos ⎝⎛⎭⎫α-π6+sin α=453, ∴32cos α+32sin α=453, 3⎝⎛⎭⎫12cos α+32sin α=453,3sin ⎝⎛⎭⎫π6+α=453,∴sin ⎝⎛⎭⎫π6+α=45, sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫π6+α=-45. 3. (2013·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cosA =12b ,且a >b ,则∠B 等于( )A.π6B.π3C.2π3 D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,依正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.4. 锐角三角形ABC 中,若C =2B ,则ABAC的范围是( )A .(0,2)B .(2,2)C .(2,3)D .(3,2)答案 C解析 设△ABC 三内角A 、B 、C 所对的边长分别为a 、b 、c , 则有AB AC =c b =sin C sin B =sin 2B sin B =2cos B .又∵C =2B <π2,∴B <π4.又A =π-(B +C )=π-3B <π2,∴B >π6,即π6<B <π4,∴22<cos B <32,2<2cos B < 3. 5. 已知△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且tan B =2-3a 2-b 2+c2,BC →·BA →=12,则tan B 等于( )A.32B.3-1 C .2D .2- 3答案 D解析 由题意得,BC →·BA →=|BC →|·|BA →|cos B =ac cos B =12,即cos B =12ac ,由余弦定理,得cos B =a 2+c 2-b 22ac =12ac ⇒a 2+c 2-b 2=1,所以tan B =2-3a 2-b 2+c 2=2-3,故选D.6. (2013·重庆)4cos 50°-tan 40°等于( )A. 2B.2+32C. 3 D .22-1答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3.二、填空题7. (2013·福建)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为______.答案3解析 sin ∠BAC =sin(π2+∠BAD )=cos ∠BAD ,∴cos ∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.8. (2013·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________. 答案2π3解析 由已知条件和正弦定理得:3a =5b ,且b +c =2a , 则a =5b 3,c =2a -b =7b 3cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3.9. 已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=________. 答案 -255解析 由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0,可得sin α=-1010.故2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.10.在△ABC 中,C =60°,AB =3,AB 边上的高为43,则AC +BC =________.答案11解析 依题意,利用三角形面积相等有: 12AB ×h =12AC ×BC ·sin 60°, ∴12×3×43=12AC ×BC ·sin 60°, ∴AC ×BC =83.利用余弦定理可知cos 60°=AC 2+BC 2-AB 22AC ×BC ,∴cos 60°=AC 2+BC 2-32×83,解得:AC 2+BC 2=173.又∵(AC +BC )2=AC 2+BC 2+2AC ×BC =173+163=11, ∴AC +BC =11. 三、解答题11.已知函数f (x )=sin(2x -π6)+2cos 2x -1(x ∈R ).(1)求f (x )的单调递增区间;(2)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=12,2a =b +c ,bc=18,求a 的值.解 (1)f (x )=sin(2x -π6)+2cos 2x -1=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎫2x +π6. 令2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ),即f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ).(2)由f (A )=12,得sin(2A +π6)=12.∵π6<2A +π6<2π+π6,∴2A +π6=5π6. ∴A =π3.由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc . 又2a =b +c ,bc =18,∴a 2=4a 2-3×18,即a 2=18,a =3 2.12.(2013·四川)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cos B -sin(A-B )sin B +cos(A +C )=-35.(1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影.解 (1)由2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,即cos(A -B )cos B -sin(A -B )sin B =-35.则cos(A -B +B )=-35,即cos A =-35.(2)由cos A =-35,0<A <π,得sin A =45,由正弦定理,有a sin A =b sin B ,所以,sin B =b sin A a =22. 由题意知a >b ,则A >B ,故B =π4,根据余弦定理,有(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1或c =-7(舍去).故向量BA →在BC →方向上的投影为|BA →|cos B =22.13.(2013·福建)如图,在等腰直角△OPQ 中,∠POQ =90°,OP =22,点M 在线段PQ 上, (1)若OM =5,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时, △OMN 的面积最小?并求出面积的最小值.解 (1)在△OMP 中,∠OPM =45°,OM =5,OP =22, 由余弦定理得,OM 2=OP 2+MP 2-2×OP ×MP ×cos 45°, 得MP 2-4MP +3=0, 解得MP =1或MP =3. (2)设∠POM =α,0°≤α≤60°,在△OMP 中,由正弦定理,得OM sin ∠OPM =OPsin ∠OMP ,所以OM =OP sin 45°sin (45°+α),同理ON =OP sin 45°sin (75°+α).故S △OMN =12×OM ×ON ×sin ∠MON=14×OP 2sin 245°sin (45°+α)sin (75°+α)=1sin (45°+α)sin (45°+α+30°)=1sin (45°+α)[32sin (45°+α)+12cos (45°+α)]=132sin 2(45°+α)+12sin (45°+α)cos (45°+α)=134[1-cos (90°+2α)]+14sin (90°+2α) =134+34sin 2α+14cos 2α =134+12sin (2α+30°). 因为0°≤α≤60°,30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)取最大值1,此时△OMN 的面积取到最小值,即∠POM =30°时,△OMN 的面积的最小值为8-4 3.。