核壳型苯乙烯-丙烯酸酯共聚乳液的制备研究
- 格式:pdf
- 大小:260.56 KB
- 文档页数:3
苯乙烯、丙烯酸正丁酯复合乳液聚合一、实验目的1、通过苯乙烯、丙烯酸正丁酯复合乳液聚合,了解复合乳液聚合的特点,比较一般乳液聚合、种子乳液聚合和复合乳液聚合的优缺点。
2、掌握制备核/壳结构复合聚合物乳液的方法和对聚合物进行改进的方法和途经。
二、实验目的合成复合聚合物乳液的方法实际上是种子乳液聚合(或多阶段乳液聚合),即首先通过一般乳液聚合制备第一单体的聚合物乳液作为种子乳液(核聚合),然后在种子乳液存在下,加入第二单体继续聚合(壳聚合),这样就形成了以第一单体的聚合物为核,第二单体的聚合物为壳的核/壳结果的复合聚合乳液——乳胶型互为贯穿聚合物的网络,复合乳液聚合与种子乳液聚合的差别在于前者是采用不同种的单体,后者采用同种单体。
如果以苯乙烯(St)为主单体,同时加入少量的丙烯酸(AA)单体进行核聚合,而以丙烯酸正丁酯(n-BA)为单体,同时加入少量的丙烯酸(AA)单体进行壳聚合,即得到以聚苯乙烯为核、聚丙烯酸正丁酯为壳的核/壳结构的复合聚合物乳液。
在第一阶段聚合中合成的聚苯乙烯乳胶粒作为种子,再加入第二单体丙烯酸正丁酯、引发剂过硫酸钾和少量乳化剂进行第二阶段乳液聚合时,此时的聚合机理按接枝涂层理论机理进行。
即单体n-BA富集在种子乳胶粒PS的周围,PS乳胶粒成为n-BA单体的聚合主要场所,所生成的聚合物Pn-BA富集在PS 的周围形成以PS为核Pn-BA为壳的核/壳结构聚合物,且核壳之间存在着PS-Pn-BA接枝共聚物,理想情况下不生成新的乳胶粒。
由于在聚合过程中形成了少量的PS-Pn-BA接枝共聚物使得核/壳结构的复合聚合物的性能优于任何一个均聚物PS或Pn-BA和PS-Pn-BA无规共聚物的性能。
如耐水性能、耐溶剂性能、软化点、弹性和机械强度等均有大幅度提高。
特别是用于外墙涂料的基料,其最低成膜温度(FMT)、玻璃化温度(Tg)低、附着力好、耐水性能好、光泽度高、大大改进了夏季回粘性,从而提高了涂料的性能并延长了施工期。
核壳型丙烯酸树脂乳液的制备及性能研究核壳型丙烯酸树脂乳液的制备及性能研究摘要:随着人们对环境友好型涂料需求的增加,核壳型丙烯酸树脂乳液成为一种备受关注的新型涂料。
本文以乳液聚合法制备核壳型丙烯酸树脂乳液,并通过对其性能的研究,探究其在涂料领域中的应用潜力。
实验结果表明,通过调节反应条件、控制聚合过程中的温度、添加剂以及稳定剂的使用等因素,可以获得粒径均一、稳定性好的核壳型丙烯酸树脂乳液。
其在性能方面具有优异的悬浮稳定性、高红外反射率以及较好的耐候性能等特点,表现出良好的应用前景。
关键词:核壳型丙烯酸树脂乳液,制备,性能研究,涂料 1. 引言核壳型丙烯酸树脂乳液是一种以聚合物颗粒为基础材料的分散体系,具有颗粒均匀、粒径可调、悬浮稳定性好等特点。
与传统有机溶剂型涂料相比,核壳型丙烯酸树脂乳液不含有机溶剂,具有环境友好、可回收利用等优势。
因此,核壳型丙烯酸树脂乳液在涂料领域具有广泛的应用前景。
2. 实验方法2.1 材料准备本实验所用原料为丙烯酸、乙二醇丙烯酸酯、丙烯腈等,同时添加表面活性剂和稳定剂。
2.2 核壳型丙烯酸树脂乳液制备将所需原料按照一定比例加入反应釜中,控制反应温度和时间,利用乳液聚合法制备核壳型丙烯酸树脂乳液。
2.3 性能测试采用粒径分析仪测定乳液的粒径分布情况,利用红外光谱仪分析乳液的光学性能,通过耐候性测试和悬浮稳定性测试评估乳液的耐候性和悬浮稳定性。
3. 结果与讨论3.1 核壳型丙烯酸树脂乳液的制备通过实验探究了反应温度、反应时间、添加剂比例以及稳定剂用量等因素对核壳型丙烯酸树脂乳液制备的影响。
结果显示,在适宜的反应条件下,并且添加适量的表面活性剂和稳定剂,可以获得粒径分布均匀、稳定性好的核壳型丙烯酸树脂乳液。
3.2 核壳型丙烯酸树脂乳液的性能研究粒径分析结果表明,制备的核壳型丙烯酸树脂乳液粒径分布在100~300nm之间,粒径较小且分布均匀。
红外光谱分析结果显示,核壳型丙烯酸树脂乳液在红外光谱范围内具有较高的反射率,表明其具有良好的红外反射性能。
合肥工业大学
硕士学位论文
核壳型改性丙烯酸酯乳液的制备及性能
姓名:李崇学
申请学位级别:硕士
专业:材料学
指导教师:宋秋生
mm
锄。
1处为si.osi的反对称伸缩振动吸收峰弱峰。
这是由于vTB0s含量较少,697和792cm.1处为si_c键的伸缩振动吸收峰,1728cm-1处为酯基特征吸收峰,且在1600~1700cm"1处未发现双链伸缩振动吸收峰。
红外光谱分析表明,合成的聚合物包含MMA、
BA、St、VTEOS四种单体单元。
渡戴km‘
图2-1桉壳共聚物的FT-IR光谱
m舢^nB佻,mⅥ∞s=20,10,65巧
2)核壳聚合物的TEM观察
通过种子乳液聚合法制造核壳乳液,只有当壳单体的聚合完全发生在种子微粒子上时,才能形成核壳结构。
否则,就会形成新的粒子,制成的乳液中就会包含大量仅由壳单体聚合而成的微粒子,也就不能称其为核壳乳液。
可以说,聚合过程是否有新粒子产生是衡量能否制成核壳乳液的标准。
众所周知,采用种子乳液聚合法、控制好乳化剂的加入量以及合理的聚合工艺条件,是制造核壳聚合物乳液的必备条件。
通过透射电镜(1EM)观察。
图2-2是乳液微粒子的透射电镜(TEM)照片。
由图2.2可以清楚的看到,合成的乳液具有明显的核壳结构。
图2-2乳液镦粒子的TEM照片(放大倍数7×101)。
“核-壳”型丙烯酸乳液聚合物的制备及其应用性能研究王国军(北京东方亚科力化工科技有限公司研究中心,北京101149)摘要:采用乳液聚合制备了一系列丙烯酸类“核-壳”聚合物,通过分子设计改变核与壳单体组成考察对聚合物综合性能的影响,以及非极性增塑剂DOP和极性增塑剂TCP对其溶胶和凝胶性能的影响。
研究显示:选用玻璃化温度较高的P i-BMA作为聚合物的核层,MMA/MAA共聚物作为壳层,其溶胶和凝胶性能明显优于其它“核-壳”聚合物,该“核-壳”聚合物在汽车工业中具有广阔的应用前景。
关键词:“核-壳”乳液聚合;溶胶;凝胶;储存稳定性“核-壳”乳液聚合物是由不同性质的两种或多种单体在一定条件下按阶段聚合(即种子聚合或多阶段聚合),使乳胶颗粒内部的内侧和外侧分别富集不同的成分,通过核和壳的不同组合,得到一系列不同形态的乳胶粒子;该方法赋予核/壳不同的功能,获得具有一般无规共聚物、机械共混物难以实现的优异性能[1-3]。
当前“核-壳”乳液聚合物以优异、独特的性能在粘接领域得到广泛的应用[4-6];但“核-壳”结构固体粉末聚合物的应用报道很少。
本文采用乳液聚合方法合成出一系列具有核壳结构的丙烯酸类聚合物,与增塑剂、填料等添加剂共混制备溶胶,在高温烘培工艺下溶胶转变成凝胶,同时兼顾溶胶的储存稳定性和凝胶的物理机械性能,最终在金属部件表面形成一层坚韧的保护膜,具有防震、防腐、隔热、抗石击等物理机械性能,在汽车工业中具有广阔的应用前景[7]。
1 试验部分1.1 原料甲基丙烯酸甲酯(MMA),丙烯酸正丁酯(BA),甲基丙烯酸正丁酯(nBMA),甲基丙烯酸异丁酯(iBMA),甲基丙烯酸(MAA),化学纯,英国Inoes Acrylics公司;过硫酸钾(KPS),分析纯,韩国大井化金株式会社;琥珀酸二辛酯亚硫酸钠(乳化剂AOT),荷兰Cytec工业公司;硫酸镁,分析纯,韩国大井化金株式会社;邻苯二甲酸二辛酯(DOP),三甲酚磷酸酯(TCP),工业级,韩国东洋化学工业株式会社;超细碳酸钙填充剂,韩国LG化学株式会社。
实验24 苯乙烯—丙烯酸酯乳液的制备一、实验目的1.学习乳液聚合的原理;2.学习聚苯乙烯乳液的合成方法;3.掌握聚苯乙烯和聚丙烯酸酯的红外特征峰;4.利用热失重分析仪(TGA )研究共聚物的热稳定性;5.掌握凝胶渗透色谱仪(GPC )的原理、使用和数据处理。
二、实验原理苯乙烯-丙烯酸酯(苯丙)乳液是苯乙烯(St )、丙烯酸酯类、丙烯酸类的多元共聚物的简称,是一大类容易制备、性能优良、应用广泛且符合环保要求的聚合物乳液[1]。
单体是形成聚合物的基础,决定着其乳液产品的物理、化学及机械性能。
合成苯丙乳液的共聚单体中,苯乙烯、甲基丙烯酸甲酯等为硬单体,赋予乳胶膜内聚力而使其具有一定的硬度、耐磨性和结构强度;丙烯酸丁酯、丙烯酸乙酯等为软单体,赋予乳胶膜以一定的柔韧性和耐久性。
丙烯酸为功能性单体,可提高附着力、润湿性和乳液稳定性,并赋予乳液一定的反应特性,如亲水性、交联性等。
除了丙烯酸以外,功能性单体还有丙烯酰胺、N-羟甲基丙烯酰胺、丙烯氰等[2, 3]。
苯丙乳液是用苯乙烯部分或全部代替纯丙烯酸酯系乳液中的甲基丙烯酸甲酯(MMA)的一种共聚乳液。
由于纯丙烯酸酯聚合物分子链中含有极性酯基,其耐水性较差,胶膜吸水后易发白;在一定条件下酯基还会分解而影响产品性能。
另外,丙烯酸酯聚合物特别是线性聚合物容易高温发粘,耐沾污性下降,低温变脆,韧性变差,即所谓“低脆高粘”,其耐热性也较差,高温下易泛黄。
St 与MMA 的均聚物T g 相近,采用St 替代部分MMA ,在共聚物中引入苯乙烯链段,可有效提高胶膜的耐水性、耐碱性、抗污性和抗粉化性;同时刚性苯环抑制了聚合物分子的运动,从而可提高聚合物的硬度和耐热性。
此外,引入St 还使成本大为降低[4]。
单体的组成,特别是硬单体与软单体的比例,会使苯丙乳液的许多性能发生变化,其中最主要的是乳胶膜的硬度和乳液的最低成膜温度会有显著的变化。
共聚单体的组成与所得的玻璃化温度g T 的关系如式(1)所示:3121231...i g g g g giw w w w T T T T T (1) 式中,i w 为共聚物中各单体的质量分数,g T 为共聚物玻璃化温度(单位为K ),gi T 为共聚物中各单体的均聚物的玻璃化温度。
丙烯酸酯乳液的制备实验报告聚丙烯酸共聚物乳液。
一般以丙烯酸甲酯等丙烯酸低酯有机物为主要单体,与丙烯腈、苯乙烯、马来酸二丁酯、甲基丙烯酸酯、氯乙烯、偏二氯乙烯或醋酸乙烯酯共聚而成。
有时,功能单体如(甲基)丙烯酸、马来酸、富马酸、(甲基)丙烯酰胺等。
以赋予聚合物乳液一些特殊的性能。
例如,有时为了提高聚合物乳液的拉伸强度和粘结强度等力学性能,需要通过交联反应,使得线性乳液聚合物形成三维网络结构,最常用的办法就是引入含有交联基团的单体,如N-羟甲基丙烯酰胺、二乙烯基苯、衣康酸单丁酯等;有时也可通过加入新型材料对其均聚或共聚改性,获得同等效果。
丙烯酸乳液作为胶黏剂使用,与其他粘合剂相比,在耐候及耐老化方面特别优异,且粘接强度高,耐水性好,弹性大,断裂伸长率高,因此被广泛应用于压敏胶、织物印染胶、静电植绒胶、纸品胶等。
分类及制备[1]根据聚合单体的不同,丙烯酸乳液可分为以下几类:纯丙、苯丙、醋丙、硅丙、氯丙乳液。
下面依次介绍。
1. 纯丙乳液纯丙乳液的聚合单体都是丙烯酸类单体,通过乳液均聚或共聚得到。
纯丙乳液的制备有三种工艺。
(1)半连续工艺:把所有的水、乳化剂和引发剂投入反应器中,如果有助剂也一并加入,搅拌升温,达到聚合温度时,向反应器中匀速地滴加预先投置在加料装置中的混合单体;加料完毕后,适当升温,并保温1-2h,然后降温至室温,调节体系pH值,出料。
(2)种子聚合法:将一定量的水、乳化剂、助剂和少量单体投入反应器中作为初始加料,搅拌,升温至聚合温度;加入引发剂引发反应,再匀速地滴加剩余的单体和引发剂;全部加料完毕后,适当升温,再保温1-2h,降至室温后调节pH值,出料。
(3)预乳化法:将全部的单体、乳化剂、引发剂、助剂和80%水加入反应器中,在室温下快速的搅拌0.5h,以至完全乳化;然后将20%的水和一部分预乳液加入反应器中,并搅拌;升温至聚合温度,反应0.5-1.0h后滴加余下的预乳化液,在3h内滴完;反应1-2h,降至室温后调节pH值,出料。