原子核原子核
- 格式:doc
- 大小:160.50 KB
- 文档页数:5
原子的组成与结构梳理在我们所处的这个奇妙的物质世界里,原子是构成万物的基本单位。
从微小的尘埃到浩瀚的星辰,从我们呼吸的空气到日常所接触的各种物质,无一不是由原子所组成。
那么,原子究竟是由什么构成的?它的内部结构又是怎样的呢?让我们一起来梳理一下。
首先,我们来了解一下原子的中心部分——原子核。
原子核位于原子的核心位置,体积非常小,但却集中了原子绝大部分的质量。
原子核由质子和中子组成。
质子带有一个正电荷,它的质量大约是 16726×10⁻²⁷千克。
不同元素的原子,其质子数是不同的。
而质子数的多少,决定了原子所属的元素种类。
比如,氢原子的原子核中只有一个质子,而氧原子的原子核中则有 8 个质子。
中子的质量与质子相近,大约也是 16749×10⁻²⁷千克,但中子呈电中性,不带电荷。
在原子核中,质子数和中子数不一定相等。
有些原子的质子数和中子数相同,而有些原子的中子数会多于质子数。
接下来,我们说一说围绕原子核运动的电子。
电子带有一个负电荷,其质量相比质子和中子要小得多,大约只有 91094×10⁻³¹千克。
电子在原子核外以极高的速度运动,它们的运动轨迹并不是像行星绕太阳那样有固定的轨道,而是在一定的区域内出现的概率不同,形成所谓的“电子云”。
电子在原子中的分布是有规律的。
根据不同的能级,电子分层排布。
离原子核越近的电子层,能量越低;离原子核越远的电子层,能量越高。
原子的结构可以用原子序数来描述。
原子序数等于质子数。
例如,碳的原子序数是 6,这就意味着碳原子有 6 个质子。
在中性原子中,质子数等于电子数,所以碳原子也有 6 个电子。
原子的大小通常用原子半径来衡量。
原子半径的大小取决于原子核对外层电子的吸引作用以及电子之间的排斥作用。
一般来说,同一周期的元素,从左到右原子半径逐渐减小;同一主族的元素,从上到下原子半径逐渐增大。
原子的质量主要集中在原子核上。
原子和原子核 ——知识介绍一.原子结构(一)原子的核式结构人们认识原子有复杂结构是从1897年汤姆生发现电子开始的。
汤姆生通过研究对阴极射线的分析发现了电子,从而知道,电子是原子的组成部分,为了保持原子的电中性,除了带负电的电子外,还必须有等量的正电荷。
因此汤姆生提出了“葡萄干面包”模型:正电荷部分连续分布于整个原子,电子镶在其中。
1909年卢瑟福在α粒子散射实验中,以α粒子轰击重金属箔发现:大多数α粒子穿过薄膜后的散射角很小,但还有八千分之一的α粒子,散射角超过了900,有些甚至被弹回来,散射角几乎达到1800。
1911年卢瑟福提出了原子核式结构模型:在原子的中心有一个很小的核称为原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核高速旋转。
从α粒子散射实验的数据可以估计出原子核的大小约为10-15——10-14米,原子半径大约为10-10米。
原子核式结构模型较好的解释了α粒子散射实验现象,也说明了汤姆生的“葡萄干面包”模型是错误的。
(二)玻尔的氢原子理论1.1.巴耳末公式1885年,瑞士物理学家巴耳末首先发现氢原子光谱中可见光区的四条谱线的波长,可用一经验公式来表示: )121(122n R -=λ n =3,4,5……式中λ为波长,R =1.0967758×10 7米-1称为里德伯恒量,上式称为巴耳末公式。
2.2.里德伯公式1889年,里德伯发现氢原子光谱德所有谱线波长可用一个普通的经验公式表示出来:)11(122n m R -=λ式中n=m+1,m+2,m+3……,上式称为里德伯公式。
对于每一个m ,上式可构成一个光谱系: m=1,n=2,3,4……赖曼系(紫外区)m=2,n=3,4,5……巴尔末系(可见光区)m=3,n=4,5,6……帕邢系(红外区)m=4,n=5,6,7……布喇开系(远红外区)3.3.玻尔的氢原子理论卢瑟福的原子核式结构模型能成功地解释α粒子散射实验,但无法解释原子的稳定性和原子光谱是明线光谱等问题。
帮助学生理解原子与核的结构与性质原子与核的结构与性质原子与核是物质世界的基本组成部分,它们的结构与性质对于学生理解化学、物理等科学知识至关重要。
本文将从原子与核的结构、原子的性质、核的性质等方面进行探讨,以帮助学生深入理解这一重要概念。
一、原子的结构原子是物质的基本单位,由原子核和电子壳层构成。
原子核位于原子的中心,由质子和中子组成。
质子带有正电荷,中子不带电荷。
电子壳层围绕原子核运动,电子带有负电荷,平衡了原子核的正电荷。
在原子结构中,质子和中子集中在原子核中,而电子则围绕核运动。
原子核带有正电荷,而整体原子带有零净电荷。
二、原子的性质原子的性质包括原子半径、原子质量、原子的化学性质等。
1. 原子半径: 原子半径指的是原子核与最外层电子轨道的距离。
原子半径主要由原子核的质子数以及电子的排布方式决定。
原子半径随着电子层次增加而增加,同一周期内,原子半径由左至右逐渐减小。
2. 原子质量: 原子质量由原子核中质子数和中子数之和决定。
质子和中子的相对质量均为1,而电子的质量可忽略不计。
原子质量主要用来标识不同元素。
3. 原子的化学性质: 原子的化学性质取决于原子核中的质子和不同电子层次之间的电子结构。
电子层次的不同排布方式决定了元素的化学性质,例如反应活性和元素化合价等。
三、核的结构与性质核是原子的重要组成部分,它决定了原子的质量、核能等重要性质。
1. 核子: 核子是原子核中的基本组成单位,包括质子和中子。
核子质量相对较大,质子带有正电荷,中子不带电。
质子数目决定了元素的种类,即不同元素的原子核中质子数不同。
2. 质子数与核能: 核能是核结构的重要性质,与核中的质子数密切相关。
在同位素中,质子数增加,核能增大。
3. 同位素与同位素变化: 同位素指的是原子核中质子数相同、中子数不同的核种。
同位素变化包括α衰变、β衰变和γ射线等,这些变化反映了原子核的不稳定性。
四、原子核与放射性放射性是原子核的一种特殊性质,放射性元素的核能不稳定,会自发地发生核衰变过程,放出辐射。
化学九年级上册知识点原子在化学的世界中,原子是构成一切物质的基本单位。
对于九年级的学生来说,理解原子的基本概念和相关知识点是非常重要的。
本文将从原子的结构、原子的组成以及原子的性质等方面详细介绍九年级上册化学中关于原子的知识。
一、原子的结构原子是物质的最小单位,由原子核和电子云组成。
原子核位于原子的中心,由带电的质子和不带电的中子组成。
电子云则是环绕原子核运动的带负电荷的粒子。
原子的结构可以用以下公式表示:原子 = 质子 + 中子 + 电子。
1.1 原子核原子核是原子的中心部分,由带正电的质子和不带电的中子组成。
质子的质量约为1.67 × 10^-27千克,电荷为+1。
质子的数量决定了元素的原子序数,也就是元素周期表中的序号。
中子的质量与质子相近,但不带电。
1.2 电子云电子云是环绕原子核的带电粒子的区域。
电子的质量非常轻,约为9.11 × 10^-31千克,电荷为-1。
电子云并不是一个轨道,而是一个模糊的区域,表示了电子的可能位置。
电子云的分布与能级有关,能级越低,电子云越接近原子核。
二、原子的组成原子由带电的质子和不带电的中子组成原子核,周围环绕着带负电荷的电子。
这些组成部分的数量决定了原子的特性。
2.1 质子数质子数决定了原子的元素。
不同的元素具有不同数量的质子。
例如,氧原子的质子数为8,铁原子的质子数为26。
我们可以通过查看元素周期表来确定不同元素的质子数。
2.2 中子数中子数是指原子核中不带电的粒子的数量。
相同元素的不同同位素具有不同数量的中子。
例如,氧的同位素有氧-16和氧-17,分别具有8个和9个中子。
2.3 原子序数原子序数即为元素周期表中的序号,它等于原子核中的质子数。
原子序数决定了元素的特性和元素在周期表中的位置。
例如,氧的原子序数为8,铁的原子序数为26。
三、原子的性质原子具有一系列的性质,包括原子的尺寸、原子的质量以及原子的化学活性等。
3.1 原子的尺寸原子的尺寸极小,约为0.1纳米(1纳米等于10^-9米)。
高中物理原子与原子核知识点总结必修三原子、原子核这一章虽然不是重点;但是高考选择题也会涉及到;其实只要记住模型和方程式;就不会在做题上出错;下面的一些总结希望对大家有所帮助.卢瑟福根据α粒子散射实验提出了原子的核式结构学说;玻尔把量子说引入到核式结构模型之中;建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的;发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程..整个知识体系;可归结为:两模型原子的核式结构模型、波尔原子模型;六子电子、质子、中子、正电子、粒子、光子;四变衰变、人工转变、裂变、聚变;两方程核反应方程、质能方程..4条守恒定律电荷数守恒、质量数守恒、能量守恒、动量守恒贯串全章..1.汤姆生模型枣糕模型汤姆生发现电子;使人们认识到原子有复杂结构..从而打开原子的大门.2.卢瑟福的核式结构模型行星式模型卢瑟福α粒子散射实验装置;现象;从而总结出核式结构学说α粒子散射实验是用α粒子轰击金箔;实验现象:结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进;但是有少数α粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上..卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核;叫原子核;原子的全部正电荷和几乎全部质量都集中在原子核里;带负电的电子在核外空间运动..由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m..而核式结构又与经典的电磁理论发生矛盾:①原子是否稳定;②其发出的光谱是否连续3.玻尔模型引入量子理论;量子化就是不连续性;整数n叫量子数玻尔补充三条假设⑴定态--原子只能处于一系列不连续的能量状态称为定态;电子虽然绕核运转;但不会向外辐射能量..本假设是针对原子稳定性提出的⑵跃迁--原子从一种定态跃迁到另一种定态;要辐射或吸收一定频率的光子其能量由两定态的能量差决定本假设针对线状谱提出辐射吸收光子的能量为hf=E初-E末氢原子跃迁的光谱线问题一群氢原子可能辐射的光谱线条数为 ..大量处于n激发态原子跃迁到基态时的所有辐射方式⑶能量和轨道量子化----定态不连续;能量和轨道也不连续;即原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应;原子的定态是不连续的;因此电子的可能轨道分布也是不连续的针对原子核式模型提出;是能级假设的补充氢原子的激发态和基态的能量最小与核外电子轨道半径间的关系是:说明氢原子跃迁① 轨道量子化r n=n2r1n=1;2.3…r1=0.53×10-10m=-13.6eV能量量子化:E1②③氢原子跃迁时应明确:一个氢原子直接跃迁向高能级跃迁;吸收光子一般光子某一频率光子一群氢原子各种可能跃迁向低能级跃迁放出光子可见光子一系列频率光子④氢原子吸收光子时——要么全部吸收光子能量;要么不吸收光子1光子能量大于电子跃迁到无穷远处电离需要的能量时;该光子可被吸收..即:光子和原于作用而使原子电离2光子能量小于电子跃迁到无穷远处电离需要的能量时;则只有能量等于两个能级差的光子才能被吸收..受跃迁条件限:只适用于光于和原于作用使原于在各定态之间跃迁的情况..⑤氢原子吸收外来电子能量时——可以部分吸收外来碰撞电子的能量实物粒子作用而使原子激发..因此;能量大于某两个能级差的电子均可被氢原子吸收;从而使氢原子跃迁..E51=13.06 E41=12.75 E31=12.09 E21=10.2;有规律可依E52=2.86 E42=2.55 E32=1.89; E53=0.97 E43=0.66; E54=0.31⑶玻尔理论的局限性..由于引进了量子理论轨道量子化和能量量子化;玻尔理论成功地解释了氢光谱的规律..但由于它保留了过多的经典物理理论牛顿第二定律、向心力、库仑力等;所以在解释其他原子的光谱上都遇到很大的困难..氢原子在n能级的动能、势能;总能量的关系是:EP=-2EK;E=EK+EP=-EK..类似于卫星模型由高能级到低能级时;动能增加;势能降低;且势能的降低量是动能增加量的2倍;故总能量负值降低..量子数1.天然放射现象的发现;使人们认识到原子核也有复杂结构..核变化从贝克勒耳发现天然放射现象开始衰变用电磁场研究:2.各种放射线的性质比较三种射线在匀强磁场、匀强电场、正交电场和磁场中的偏转情况比较:四种核反应类型衰变;人工核转变;重核裂变;轻核骤变⑴衰变:α衰变:实质:核内α衰变形成外切同方向旋;β衰变:实质:核内的中子转变成了质子和中子β衰变形成内切相反方向旋;且大圆为α、β粒子径迹..+β衰变:核内γ衰变:原子核处于较高能级;辐射光子后跃迁到低能级..⑵人工转变:发现质子的核反应卢瑟福用α粒子轰击氮核;并预言中子的存在发现中子的核反应查德威克钋产生的α射线轰击铍人工制造放射性同位素正电子的发现约里奥居里和伊丽芙居里夫妇α粒子轰击铝箔⑶重核的裂变:在一定条件下超过临界体积;裂变反应会连续不断地进行下去;这就是链式反应..⑷轻核的聚变:需要几百万度高温;所以又叫热核反应所有核反应的反应前后都遵守:质量数守恒、电荷数守恒..注意:质量并不守恒..核能计算方法有三:①由△m单位为“kg”计算;②由△E=931.5△m△m 单位为“u”计算;③借助动量守恒和能量守恒计算..2.半衰期放射性元素的原子核有半数发生衰变所需的时间叫半衰期..对大量原子核的统计规律计算式为: N表示核的个数 ;此式也可以演变成或 ;式中m表示放射性物质的质量;n 表示单位时间内放出的射线粒子数..以上各式左边的量都表示时间t后的剩余量..半衰期由核内部本身的因素决定;与物理和化学状态无关、同位素等重要概念放射性标志3.放射性同位素的应用⑴利用其射线:α射线电离性强;用于使空气电离;将静电泄出;从而消除有害静电..γ射线贯穿性强;可用于金属探伤;也可用于治疗恶性肿瘤..各种射线均可使DNA发生突变;可用于生物工程;基因工程..⑵作为示踪原子..用于研究农作物化肥需求情况;诊断甲状腺疾病的类型;研究生物大分子结构及其功能..⑶进行考古研究..利用放射性同位素碳14;判定出土木质文物的产生年代..一般都使用人工制造的放射性同位素种类齐全;各种元素都有人工制造的放射性同位..半衰期短;废料容易处理..可制成各种形状;强度容易控制..高考对本章的考查:以α粒子散射实验、原子光谱为实验基础的卢瑟福原子核式结构学说和玻尔原子理论;各种核变化和与之相关的核反应方程、核能计算等..在核反应中遵循电荷数守恒和质量数守恒;在微观世界中动量守恒定律同样适用..。
原子分子离子质子电子的区别原子由原子核和在原子核和带负电的电子组成。
(原子核一般由带正电荷的质子和不带电的中子构成。
)量子是一个比拟广泛的概念~应该是指量子力学中研究的各种粒子 ,包括质子 ,中子 ,电子⋯⋯粒子也是比拟广泛的概~泛指各种微粒。
离子是带电微粒~因为量子,粒子X围太大,没法比拟。
能确定大小的最小的是电子吧~1、分子是保持物质化学性质的最小粒子〔原子、离子也能保持物质的化学性质〕。
原子是化学变化中的最小粒子。
例如:保持氯气化学性质的最小粒子是D〔氯分子〕〔 A 、Cl B 、Cl- C 、2Cl D 、 Cl2 〕。
保持CO2 化学性质的最小粒子是 CO2 分子;保持水银的化学性质的最小粒子是汞原子。
在电解水这一变化中的最小粒子是氢原子和氧原子。
原子中:核电荷数〔带正电〕=质子数 =核外电子数相对原子质量 =质子数 +中子数原子是由原子核和核外电子构成的,原子核是由质子和中子构成的,构成原子的三种粒子是:质子〔正电〕、中子〔不带电〕、电子〔带负电〕。
一切原子都有质子、中子和电子吗?〔错!一般的氢原子无中子〕。
某原子的相对原子质量=某原子的质量 /C 原子质量的1/12 。
相对原子质量的单位是“1,〞它是一个比值。
相对分子质量的单位是“1。
〞由于原子核所带电量和核外电子的电量相等,电性相反,因此整个原子不显电性〔即电中性〕。
2、①由同种元素组成的纯洁物叫单质〔由一种元素组成的物质不一定是单质,也可能是混合物,但一定不可能是化合物。
〕②由一种分子构成的物质一定是纯洁物,纯洁物不一定是由一种分子构成的。
③由不同种元素组成的纯洁物一定是化合物;由不同种元素组成的物质不一定是化合物,但化合物一定是由不同种元素组成的。
纯洁物与混合物的区别是物质的种类不同。
单质和化合物的区别是元素的种类不同。
④由两种元素组成的,其中一种是氧元素的化合物叫氧化物。
氧化物一定是含氧化合物,但含氧化合物不一定是氧化物。
《原子的结构》知识点在我们探索物质世界的奥秘时,原子是一个非常关键的概念。
了解原子的结构,对于理解化学、物理等学科的众多现象和规律至关重要。
原子,这个构成物质的基本单位,就如同一个小小的微观世界。
它虽然微小,但却有着极其复杂而又精巧的结构。
首先,原子由位于中心的原子核和围绕原子核运动的电子组成。
原子核带正电荷,而电子带负电荷。
原子核又由质子和中子构成。
质子带正电,中子不带电。
质子的数量决定了原子的种类,我们将其称为原子序数。
比如,氢原子的原子核内只有一个质子,而氧原子的原子核内有 8 个质子。
中子的数量则会影响原子的质量。
同一元素的不同原子,如果中子数不同,就被称为同位素。
例如,氢有氕、氘、氚三种同位素,氕原子核内只有1 个质子,没有中子;氘原子核内有1 个质子和1 个中子;氚原子核内有 1 个质子和 2 个中子。
原子核虽然体积很小,但却集中了原子几乎全部的质量。
如果把原子比作一个巨大的体育场,原子核就如同场中央的一只小蚂蚁,而电子则在广阔的“场地”上高速运动。
电子围绕原子核运动的轨道并不是随意的,而是具有一定的规律。
根据量子力学的理论,电子处于不同的能级上。
这些能级就像是台阶,电子只能在特定的能级上存在。
当原子吸收能量时,电子会从低能级跃迁到高能级;而当原子释放能量时,电子则会从高能级回到低能级,同时释放出光子。
这就是许多物质能够发光、发热的原因。
电子的分布遵循一定的规则。
第一层最多容纳 2 个电子,第二层最多容纳 8 个电子,第三层最多容纳 18 个电子,依此类推。
最外层电子的数量决定了原子的化学性质。
例如,钠原子的最外层只有 1 个电子,化学性质非常活泼,容易失去这个电子形成带正电的钠离子;而氯原子最外层有 7 个电子,容易得到 1 个电子形成带负电的氯离子。
原子的结构还与元素周期表有着密切的关系。
元素周期表按照原子序数递增的顺序排列元素,同时反映了元素原子的电子排布规律。
同一周期的元素,从左到右,原子核外电子层数相同,最外层电子数逐渐增加;同一主族的元素,从上到下,最外层电子数相同,电子层数逐渐增多。
原子核和原子的关系咱们来聊聊个挺有意思的话题,那就是原子核和原子的关系。
你想象一下,如果咱们把世界缩小成个微观的小宇宙,那么原子就像是这个宇宙里的小小星球,而原子核呢,就是星球上那个最硬核、最有分量的“心脏”。
首先啊,咱们得明白啥是原子。
原子嘛,简单说就是构成咱们身边万物的小小单位,无论是水里的氢原子,还是空气里的氧原子,甚至是咱们身体里的各种元素原子,它们都是这个宇宙里不可或缺的小角色。
原子虽小,但五脏俱全,它有自己的小天地,里头藏着不少秘密呢。
再来说说原子核,这家伙可是原子的心脏地带,也是原子最重要的部分。
原子核里住着一群带正电的质子,它们就像是原子核里的“老大”,掌控着整个地盘。
有时候,原子核里还会住上几个不带电的中子,它们就像是和事佬,让质子们别老是打架。
不过啊,这些质子和中子都挤在原子核那一点点地方,密度大得吓人,就像是一群人在挤地铁早高峰,但人家挤得可有序了,不是乱来的。
原子核和原子的关系,就像是城市里的市中心和整个城市的关系。
市中心是城市的心脏,各种重要的机构、建筑都集中在那里,虽然只占城市的一小部分,但却对整个城市有着举足轻重的影响。
原子核也是这样,虽然它只是原子的一小部分,但却掌控着原子的命运。
你知道吗?原子核和原子之间还有一道神秘的“护城河”,那就是电子云。
电子云里的电子们就像是一群快乐的舞者,围绕着原子核这个中心舞台翩翩起舞。
它们虽然不带电,但却通过一种叫做“电磁力”的神秘力量,和原子核保持着微妙的平衡。
这种平衡让原子能够稳定存在,也让咱们的世界能够如此多姿多彩。
说到这儿,你可能会想,原子核和原子这么重要,那它们对咱们的生活有啥影响呢?嘿,影响可大了去了!从咱们呼吸的空气、喝的水,到咱们用的手机、电脑,甚至是咱们的身体本身,都是由原子和原子核构成的。
没有它们,咱们这个世界可就啥都没了。
所以啊,虽然原子核和原子看起来那么微小、那么不起眼,但它们却是咱们这个世界不可或缺的基石。
原子和原子核
一、原子结构:
1、电子的发现和汤姆生的原子模型:
(1)电子的发现:
1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。
电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。
(2)汤姆生的原子模型:
1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。
2、α粒子散射实验和原子核结构模型
(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成
①装置:
②现象:
a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。
b. 有少数α粒子发生较大角度的偏转
c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。
(2)原子的核式结构模型:
由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。
如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发
生明显改变。
散射实验现象证明,原子中正电荷不是均匀分布在原子中的。
1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间
绕核旋转。
原子核半径小于10-14m,原子轨道半径约10-10m。
3、玻尔的原子模型
(1)原子核式结构模型与经典电磁理论的矛盾(两方面)
a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发
射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。
b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变
小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱
是线状光谱事实相矛盾。
(2)玻尔理论
上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克
的能量量了化的概念,提了三个假设:
①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然
做加速运动,但并不向外在辐射能量,这些状态叫定态。
②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸
收一定频率的光子,光子的能量由这两个定态的能量差决定,即hv=E2-E1
③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。
原子的能量不连续因而电子可能轨道的分布也是不连续的。
即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道
半径跟电了动量mv的乘积等于h/2π的整数倍,即mvr n h
n
==
2123
π
、、……
n为正整数,称量数数
(3)玻尔的氢子模型:
①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。
)
氢原子中电子在第几条可能轨道上运动时,氢原子的能量E n,和电子轨道半径r n分别为:
E E n
r n r n
n n =
=
⎫
⎬
⎪
⎭⎪
=
1
2
1
123
、、……
其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。
即:E1=-13.6ev,
r1=0.53×10-10m(以电子距原子核无穷远时电势能为零计算)
②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。
按能量的大小用图开像的表示出来即能级图。
其中n =1的定态称为基态。
n =2以上的定态,称为激发态。
二、原子核 1、天然放射现象
(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看
不见的射线。
这种射线可穿透黑纸而使照相底片感光。
放射性:物质能发射出上述射线的性质称放射性
放射性元素:具有放射性的元素称放射性元
素
天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象
天然放射现象:表明原子核存在精细结构,
是可以再分的
(2)放射线的成份和性质:用电场和磁场来
研究放射性元素射出的射线,在电场中轨迹,如图(1):
2、原子核的衰变:
(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电
γ射线是伴随αβ、衰变放射出来的高频光子流
在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电
子,即:
(2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。
一放射性元素,测得质量为m,半衰期为T ,经时间t 后,剩余未衰变的放射性元素的质量为m
m m t T
o =
2/
3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使
原子核发生转变。
(1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。
7
142481711
N He O H +→+
(2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。
4、原子核的组成和放射性同位素
(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子 在原子核中: 质子数等于电荷数
核子数等于质量数 中子数等于质量数减电荷数
(2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放
射性的同位素叫放射性同位素。
正电子的发现:用α粒子轰击铝时,发生核反应。
发生+β衰变,放出正电子
三、核能: 1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。
例如:
2、质能方程:爱因斯坦提出物体的质量和能量的关系:
E mc =2——质能方程
3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的
反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。
吸收或放出的能量,与质量变化的关系为:∆∆E
mc =2
例:计算∆∆m kg E ==⨯=-1166061027μ.?的质量相当的能量
()
()()
∆∆E m c J ev mev =⋅=⨯⨯⨯=⨯=⨯=--2
278
2
10916606102997910149241009315109315.....
为了计算方便以后在计算核能时我们用以下两种方法
方法一:若已知条件中∆m 以千克作单位给出,用以下公式计算
∆∆E m c =⋅2
公式中单位:∆∆m kg C m s E J ——;/;=
方法二:若已知条件中∆m 以μ作单位给出,用以下公式计算 ()∆E Dm Mev m =⨯9315./
公式中单位:Dm kg —; ∆E
=Mev
4、释放核能的途径——裂变和聚变 (1)裂变反应:
①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。
例如:
②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。
链式反应的条件:a b ))裂变物质的体积,超过临界体积有中子进入裂变物质⎧⎨⎩
③裂变时平均每个核子放能约1Mev 能量
1kg
全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量
(2)聚变反应:
①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。
例如:12
13
24
01
176H H He n Mev +→++. ②平均每个核子放出3Mev 的能量 ③聚变反应的条件;几百万摄氏度的高温。