2011年高考数学专题讲义:数列求和
- 格式:doc
- 大小:625.00 KB
- 文档页数:7
2011年高考数学难点最后突破专题讲义13难点13 数列的通项与求和数列是函数概念的继续和延伸,数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项。
通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法.●难点磁场(★★★★★)设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)写出数列{a n }的前3项.(2)求数列{a n }的通项公式(写出推证过程)(3)令b n =)(2111+++n n n n a a a a(n ∈N *),求lim ∞→n (b 1+b 2+b 3+…+b n -n ).●案例探究[例1]已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x )=(x -1)2,且a 1=f (d -1),a 3=f (d +1),b 1=f (q +1),b 3=f (q -1),(1)求数列{a n }和{b n }的通项公式;(2)设数列{c n }的前n 项和为S n ,对一切n ∈N *,都有nn c c b c b c +++ 2111=a n +1成立,求lim∞→n nn S S 212+. 命题意图:本题主要考查等差、等比数列的通项公式及前n 项和公式、数列的极限,以及运算能力和综合分析问题的能力.属★★★★★级题目.知识依托:本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n 项和,实质上是该数列前n 项和与数列{a n }的关系,借助通项与前n 项和的关系求解c n 是该条件转化的突破口.错解分析:本题两问环环相扣,(1)问是基础,但解方程求基本量a 1、b 1、d 、q ,计算不准易出错;(2)问中对条件的正确认识和转化是关键.技巧与方法:本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数列{d n },运用和与通项的关系求出d n ,丝丝入扣.解:(1)∵a 1=f (d -1)=(d -2)2,a 3=f (d +1)=d 2, ∴a 3-a 1=d 2-(d -2)2=2d ,∵d =2,∴a n =a 1+(n -1)d =2(n -1);又b 1=f (q +1)=q 2,b 3=f (q -1)=(q -2)2,∴2213)2(qq b b -==q 2,由q ∈R ,且q ≠1,得q =-2, ∴b n =b ·q n -1=4·(-2)n -1(2)令nnb c =d n ,则d 1+d 2+…+d n =a n +1,(n ∈N *), ∴d n =a n +1-a n =2, ∴n n b c =2,即c n =2·b n =8·(-2)n -1;∴S n =38[1-(-2)n ]. ∴2lim ,1)21(2)21()2(1)2(121222212212-=--+-=----=+∞→++n n n n n nn n n S SS S[例2]设A n 为数列{a n }的前n 项和,A n =23(a n -1),数列{b n }的通项公式为b n =4n +3; (1)求数列{a n }的通项公式;(2)把数列{a n }与{b n }的公共项按从小到大的顺序排成一个新的数列,证明:数列{d n }的通项公式为d n =32n +1;(3)设数列{d n }的第n 项是数列{b n }中的第r 项,B r 为数列{b n }的前r 项的和;D n 为数列{d n }的前n 项和,T n =B r -D n ,求lim∞→n 4)(n na T . 命题意图:本题考查数列的通项公式及前n 项和公式及其相互关系;集合的相关概念,数列极限,以及逻辑推理能力.知识依托:利用项与和的关系求a n 是本题的先决;(2)问中探寻{a n }与{b n }的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最基本的知识点.错解分析:待证通项d n =32n +1与a n 的共同点易被忽视而寸步难行;注意不到r 与n 的关系,使T n 中既含有n ,又含有r ,会使所求的极限模糊不清.技巧与方法:(1)问中项与和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出n 与r 的关系,正确表示B r ,问题便可迎刃而解.解:(1)由A n =23(a n -1),可知A n +1=23(a n +1-1), ∴a n +1-a n =23 (a n +1-a n ),即n n a a 1+=3,而a 1=A 1=23(a 1-1),得a 1=3,所以数列是以3为首项,公比为3的等比数列,数列{a n }的通项公式a n =3n .(2)∵32n +1=3·32n =3·(4-1)2n =3·[42n +C 12n ·42n -1(-1)+…+C 122-n n ·4·(-1)+(-1)2n]=4n +3,∴32n +1∈{b n }.而数32n =(4-1)2n =42n +C 12n ·42n -1·(-1)+…+C 122-n n ·4·(-1)+(-1)2n =(4k +1), ∴32n ∉{b n },而数列{a n }={a 2n +1}∪{a 2n },∴d n =32n +1. (3)由32n +1=4·r +3,可知r =43312-+n ,∴B r =)19(827)91(9127,273433)52(2)347(1212-=-⋅-=+⋅-=+=++++nn n n n D r r r r ,89)(lim ,3)(,433811389)19(827821349444241212=∴=+⋅-⋅=---⋅+=-=∴∞→++n n n n n n n nn n n r n a T a D B T ●锦囊妙计1.数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同.因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性.2.数列{a n }前n 项和S n 与通项a n 的关系式:a n =⎩⎨⎧≥-=-2,1,11n S S n S n n3.求通项常用方法①作新数列法.作等差数列与等比数列.②累差叠加法.最基本形式是:a n =(a n -a n -1+(a n -1+a n -2)+…+(a 2-a 1)+a 1. ③归纳、猜想法.4.数列前n 项和常用求法 ①重要公式1+2+…+n =21n (n +1) 12+22+…+n 2=61n (n +1)(2n +1)13+23+…+n 3=(1+2+…+n )2=41n 2(n +1)2②等差数列中S m +n =S m +S n +mnd ,等比数列中S m +n =S n +q n S m =S m +q m S n .③裂项求和:将数列的通项分成两个式子的代数和,即a n =f (n +1)-f (n ),然后累加时抵消中间的许多项.应掌握以下常见的裂项:等)!1(1!1)!1(1,C C C ,ctg2ctg 2sin 1,!)!1(!,111)1(111+-=+-=-=-+=⋅+-=++-n n n ααn n n n n n n n rn r n n nα④错项相消法 ⑤并项求和法数列通项与和的方法多种多样,要视具体情形选用合适方法. ●歼灭难点训练 一、填空题1.(★★★★★)设z n =(21i -)n,(n ∈N *),记S n =|z 2-z 1|+|z 3-z 2|+…+|z n +1-z n |,则lim ∞→n S n =_________.2.(★★★★★)作边长为a 的正三角形的内切圆,在这个圆内作新的内接正三角形,在新的正三角形内再作内切圆,如此继续下去,所有这些圆的周长之和及面积之和分别为_________.二、解答题3.(★★★★)数列{a n }满足a 1=2,对于任意的n ∈N *都有a n >0,且(n +1)a n 2+a n ·a n +1-na n +12=0,又知数列{b n }的通项为b n =2n -1+1.(1)求数列{a n }的通项a n 及它的前n 项和S n ; (2)求数列{b n }的前n 项和T n ;(3)猜想S n 与T n 的大小关系,并说明理由.4.(★★★★)数列{a n }中,a 1=8,a 4=2且满足a n +2=2a n +1-a n ,(n ∈N *). (1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n ;(3)设b n =)12(1n a n -(n ∈N *),T n =b 1+b 2+……+b n (n ∈N *),是否存在最大的整数m ,使得对任意n ∈N *均有T n >32m成立?若存在,求出m 的值;若不存在,说明理由. 5.(★★★★★)设数列{a n }的前n 项和为S n ,且S n =(m +1)-ma n .对任意正整数n 都成立,其中m 为常数,且m <-1.(1)求证:{a n }是等比数列;(2)设数列{a n }的公比q =f (m ),数列{b n }满足:b 1=31a 1,b n =f (b n -1)(n ≥2,n ∈N *).试问当m 为何值时,)(3lim )lg (lim 13221n n n n n n b b b b b b a b -∞→∞→+++=⋅ 成立?6.(★★★★★)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (1)求数列{b n }的通项b n ; (2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1),记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论. 7.(★★★★★)设数列{a n }的首项a 1=1,前n 项和S n 满足关系式:3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4…).(1)求证:数列{a n }是等比数列;(2)设数列{a n }的公比为f (t ),作数列{b n },使b 1=1,b n =f (11-n b )(n =2,3,4…),求数列{b n }的通项b n ;(3)求和:b 1b 2-b 2b 3+b 3b 4-…+b 2n -1b 2n -b 2n b 2n +1.参考答案难点磁场解析:(1)由题意,当n =1时,有11222S a =+,S 1=a 1, ∴11222a a =+,解得a 1=2.当n =2时,有22222S a =+,S 2=a 1+a 2,将a 1=2代入,整理得(a 2-2)2=16,由a 2>0,解得a 2=6.当n =3时,有33222S a =+,S 3=a 1+a 2+a 3,将a 1=2,a 2=6代入,整理得(a 3-2)2=64,由a 3>0,解得a 3=10.故该数列的前3项为2,6,10.(2)解法一:由(1)猜想数列{a n }.有通项公式a n =4n -2.下面用数学归纳法证明{a n }的通项公式是a n =4n -2,(n ∈N *).①当n =1时,因为4×1-2=2,,又在(1)中已求出a 1=2,所以上述结论成立.②假设当n =k 时,结论成立,即有a k =4k -2,由题意,有k k S a 222=+,将a k =4k -2.代入上式,解得2k =k S 2,得S k =2k 2,由题意,有11222++=+k k S a ,S k +1=S k +a k +1,将S k =2k 2代入得(221++k a )2=2(a k +1+2k 2),整理得a k +12-4a k +1+4-16k 2=0,由a k +1>0,解得a k +1=2+4k ,所以a k +1=2+4k =4(k +1)-2,即当n =k +1时,上述结论成立.根据①②,上述结论对所有的自然数n ∈N *成立.解法二:由题意知n n S a 222=+,(n ∈N *).整理得,S n =81(a n +2)2,由此得S n +1=81(a n +1+2)2,∴a n +1=S n +1-S n =81[(a n +1+2)2-(a n +2)2].整理得(a n +1+a n )(a n +1-a n -4)=0,由题意知a n +1+a n ≠0,∴a n +1-a n =4,即数列{a n }为等差数列,其中a 1=2,公差d =4.∴a n =a 1+(n -1)d =2+4(n -1),即通项公式为a n =4n -2.解法三:由已知得n n S a 222=+,(n ∈N *)①,所以有11222++=+n n S a ②,由②式得11222++=+-n n n S S S ,整理得S n +1-22·1+n S +2-S n =0,解得n n S S ±=+21,由于数列{a n }为正项数列,而2,211>+∴=+n n S S S ,因而n n S S +=+21,即{S n }是以21=S 为首项,以2为公差的等差数列.所以n S =2+(n -1)2=2n ,S n =2n 2,故a n =⎩⎨⎧≥-=-=-)2(,24)1(,21n n S S n n n 即a n =4n -2(n ∈N *).(3)令c n =b n -1,则c n =)2(2111-+++n n n n a a a a.1)1211(lim )(lim ,1211)121121()5131()311(,121121)]11212()11212[(21212121=+-=-+++∴+-=+--++-+-=+++=-++++--=-+-+--+=∞→∞→n n b b b n n n c c c n b b b n n n n n n n n n nn 歼灭难点训练一、,)22(|)21()21(|||:.1111+++=---=-=n n n n n n i i z z c 设解析22)22(1221])22(1[2121--=--=+++=∴nn n n c c c S 221222221lim +=+=-=∴∞→n n S 答案:1+22 2.解析:由题意所有正三角形的边长构成等比数列{a n },可得a n =12-n a ,正三角形的内切圆构成等比数列{r n },可得r n =12163-n a ,∴这些圆的周长之和c =lim ∞→n 2π(r 1+r 2+…+r n )=233π a 2, 面积之和S =lim ∞→n π(n 2+r 22+…+r n 2)=9πa 2 答案:周长之和233πa ,面积之和9πa 2二、3.解:(1)可解得11+=+n na a n n ,从而a n =2n ,有S n =n 2+n , (2)T n =2n +n -1.(3)T n -S n =2n -n 2-1,验证可知,n =1时,T 1=S 1,n =2时T 2<S 2;n =3时,T 3<S 3;n =4时,T 4<S 4;n =5时,T 5>S 5;n =6时T 6>S 6.猜想当n ≥5时,T n >S n ,即2n >n 2+1可用数学归纳法证明(略).4.解:(1)由a n +2=2a n +1-a n ⇒a n +2-a n +1=a n +1-a n 可知{a n }成等差数列,d =1414--a a =-2,∴a n =10-2n . (2)由a n =10-2n ≥0可得n ≤5,当n ≤5时,S n =-n 2+9n ,当n >5时,S n =n 2-9n +40,故S n =⎪⎩⎪⎨⎧>+-≤≤+-540951 922n n n n n n(3)b n =)111(21)22(1)12(1+-=+=-n n n n a n n)1(2)]111()3121()211[(2121+=+-++-+-=+++=∴n nn n b b b T n n ;要使T n >32m 总成立,需32m<T 1=41成立,即m <8且m ∈Z ,故适合条件的m 的最大值为7.5.解:(1)由已知S n +1=(m +1)-ma n +1S n =(m +1)-ma n ②,由①-②,得a n +1=ma n -ma n +1,即(m +1)a n +1=ma n 对任意正整数n 都成立.∵m 为常数,且m <-1∴11+=+m ma a n n ,即{1+n n a a }为等比数列. (2)当n =1时,a 1=m +1-ma 1,∴a 1=1,从而b 1=31. 由(1)知q =f (m )=1+m m,∴b n =f (b n -1)=111+--n n b b (n ∈N *,且n ≥2)∴1111-+=n n b b ,即1111=--n n b b ,∴{n b 1}为等差数列.∴nb 1=3+(n -1)=n +2, 21+=∴n b n (n ∈N *). 910,101,11lg 1)211151414131(3lim )(3lim ,1lg ]1lg 21[lim )lg (lim ,)1(132211-=∴=+∴=+=+-+++-+-=++++=++-=⋅∴+=∞→-∞→∞→∞→-m m m m m n n b b b b b b m mm m n n a b m m a n n n n n n n n n n 由题意知而 6.解:(1)设数列{b n }的公差为d ,由题意得:⎪⎩⎪⎨⎧=-+=1452)110(1010111d b b 解得b 1=1,d =3, ∴b n =3n -2.(2)由b n =3n -2,知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n ) =log a [(1+1)(1+41)…(1+231-n )],31log a b n +1=log a 313+n . 因此要比较S n 与31log a b n +1的大小,可先比较(1+1)(1+41)…(1+231-n )与313+n 的大小,取n =1时,有(1+1)>3113+⋅取n =2时,有(1+1)(1+41)>3123+⋅… 由此推测(1+1)(1+41)…(1+231-n )>313+n①若①式成立,则由对数函数性质可判定:当a >1时,S n >31log a b n +1, ② 当0<a <1时,S n <31log a b n +1,③下面用数学归纳法证明①式. (ⅰ)当n =1时,已验证①式成立. (ⅱ)假设当n =k 时(k ≥1),①式成立,即:313)2311()411)(11(+>-+++k k .那么当n =k +1时,333322223323331)1(3)1311)(2311()411)(11(1)1(343)23(1313,0)13(49)13()13)(43()23(]43[)]23(1313[).23(1313)1311(13)2)1(311)(2311()411)(11(++>++-+++++=+>+++∴>++=+++-+=+-++++++=+++>-++-+++k k k k k k k k k k k k k k k k k k k k k k k k k 因而这就是说①式当n =k +1时也成立.由(ⅰ)(ⅱ)可知①式对任何正整数n 都成立. 由此证得: 当a >1时,S n >31log a b n +1;当0<a <1时,S n <31log a b n +1.7.解:(1)由S 1=a 1=1,S 2=1+a 2,得3t (1+a 2)-(2t +3)=3t . ∴a 2=tt a a t t 332,33212+=+. 又3tS n -(2t +3)S n -1=3t ,① 3tS n -1-(2t +3)S n -2=3t②①-②得3ta n -(2t +3)a n -1=0. ∴t t a a n n 3321+=-,n =2,3,4…,所以{a n }是一个首项为1公比为tt 332+的等比数列; (2)由f (t )=t t 332+=t132+,得b n =f (11-n b )=32+b n -1.可见{b n }是一个首项为1,公差为32的等差数列.于是b n =1+32(n -1)=312+n ; (3)由b n =312+n ,可知{b 2n -1}和{b 2n }是首项分别为1和35,公差均为34的等差数列,于是b 2n =314+n ,∴b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n b 2n +1=b 2(b 1-b 3)+b 4(b 3-b 5)+…+b 2n (b 2n -1-b 2n +1) =-34 (b 2+b 4+…+b 2n )=-34·21n (35+314+n )=-94 (2n 2+3n )。
2011届高考数学数列11数列(附高考预测)一、本知识结构:二、重点知识回顾1.数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.(4)与的关系:.2.等差数列和等比数列的比较(1)定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列.(2)递推公式:.(3)通项公式:.(4)性质等差数列的主要性质:①单调性:时为递增数列,时为递减数列,时为常数列.②若,则.特别地,当时,有.③.④成等差数列.等比数列的主要性质:①单调性:当或时,为递增数列;当,或时,为递减数列;当时,为摆动数列;当时,为常数列.②若,则.特别地,若,则.③.④,…,当时为等比数列;当时,若为偶数,不是等比数列.若为奇数,是公比为的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质例1 (2008深圳模拟)已知数列(1)求数列的通项公式;(2)求数列解:(1)当;、当,、(2)令当;当综上,点评:本题考查了数列的前n项与数列的通项公式之间的关系,特别要注意n=1时情况,在解题时经常会忘记。
第二问要分情况讨论,体现了分类讨论的数学思想.例2、(2008广东双合中学)已知等差数列的前n项和为,且,数列是等比数列,(其中)(I)求数列和的通项公式;(II)记解:(I)公差为d,则设等比数列的公比为,(II)作差:点评:本题考查了等差数列与等比数列的基本知识,第二问,求前n 项和的解法,要抓住它的结特征,一个等差数列与一个等比数列之积,乘以2后变成另外的一个式子,体现了数学的转化思想。
考点二:求数列的通项与求和例3(2008江苏)将全体正整数排成一个三角形数阵:按照以上排列的规律,第行()从左向右的第3个数为解:前n-1 行共有正整数1+2+…+(n-1)个,即个,因此第n 行第3 个数是全体正整数中第+3个,即为.点评:本小题考查归纳推理和等差数列求和公式,难点在于求出数列的通项,解决此题需要一定的观察能力和逻辑推理能力。
2011年高考数学难点、重点、易错点突破精讲精练专题02数列的求和及应用【名师导航】数列是高中数学的重要内容,又是学习高等数学的基础.高考对本章的考查比较全面,等差数列、等比数列的考查每年都不会遗漏.一般情况下都是一个客观题和一个解答题,分值占整个试卷的10%左右.这几年的高考通过选择题,填空题来着重对三基进行考查,涉及到的知识主要有:等差(比)数列的性质. 通过解答题着重对观察、归纳、抽象等解决问题的基本方法进行考查,其中涉及到方程、不等式、函数思想方法的应用等,综合性比较强,但难度略有下降。
客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目。
有关数列题的命题趋势(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点(2)数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。
复习建议:“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果【高考目标定位】数列求和1、考纲点击(1)熟练掌握等差数列、等比数列的前n项和公式;(2)掌握非等差数列、等比数列求和的几种常见方法。
2、热点提示(1)以考查等差数列、等比数列的求和公式为主,同时考查转化的思想;(2)对非等差数列、等比数列的求和,主要考查学生的观察能力、分析问题与解决问题的能力以及计算能力;(3)数列求和常与函数、方程、不等式等诸多知识联系在一起,以它复杂多变、综合性强、解法灵活等特征而成为高考的中档题或压轴题。
2011届高考数学数列的前n项和13教案7数列的前n项和(2)一、课前检测1.在数列{an}中,an=1n+1+2n+1+…+nn+1,又bn=2an•an+1,求数列{bn}的前n项的和.解:由已知得:an=1n+1(1+2+3+…+n)=n2,bn=2n2•n+12=8(1n-1n+1)∴数列{bn}的前n项和为Sn=8(1-12)+(12-13)+(13-14)+…+(1n-1n+1)]=8(1-1n+1)=8nn+1.2.已知在各项不为零的数列中,。
(1)求数列的通项;(2)若数列满足,数列的前项的和为,求解:(1)依题意,,故可将整理得:所以即,上式也成立,所以(2)二、知识梳理(一)前n项和公式Sn的定义:Sn=a1+a2+…an。
(二)数列求和的方法(共8种)5.错位相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,转化为等比数列求和。
如:等比数列的前n项和就是用此法推导的.解读:6.累加(乘)法解读:7.并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求。
解读:8.其它方法:归纳、猜想、证明;周期数列的求和等等。
解读:三、典型例题分析题型1错位相减法例1求数列前n项的和.解:由题可知{}的通项是等差数列{2n}的通项与等比数列{}的通项之积设①②(设制错位)①-②得(错位相减)∴变式训练1(2010•昌平模拟)设数列{an}满足a1+3a2+32a3+…+3n-1an=n3,n∈N*.(1)求数列{an}的通项公式;(2)设bn=nan,求数列{bn}的前n项和Sn.解:(1)∵a1+3a2+32a3+…+3n-1an=n3,①∴当n≥2时,a1+3a2+32a3+…+3n-2an-1=n-13.②①-②得3n-1an=13,an=13n.在①中,令n=1,得a1=13,适合an=13n,∴an=13n.(2)∵bn=nan,∴bn=n3n.∴Sn=3+2×32+3×33+…+n3n,③∴3Sn=32+2×33+3×34+…+n3n+1.④④-③得2Sn=n3n+1-(3+32+33+…+3n),即2Sn=n3n+1-3(1-3n)1-3,∴Sn=(2n-1)3n+14+34.小结与拓展:题型2并项求和法例2求=1002-992+982-972+…+22-12解:=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5050.变式训练2数列{(-1)n•n}的前2010项的和S2010为(D)A.-2010B.-1005C.2010D.1005解:S2010=-1+2-3+4-5+…+2008-2009+2010=(2-1)+(4-3)+(6-5)+…+(2010-2009)=1005.小结与拓展:题型3累加(乘)法及其它方法:归纳、猜想、证明;周期数列的求和等等例3(1)求之和.(2)已知各项均为正数的数列{an}的前n项的乘积等于Tn=(n∈N*),,则数列{bn}的前n项和Sn中最大的一项是(D)A.S6B.S5C.S4D.S3解:(1)由于(找通项及特征)∴=(分组求和)===(2)D.变式训练3(1)(2009福州八中)已知数列则,。
2011年广东省高考数学二轮专题讲解 ——数列的递推关系与数列求和一、主要知识点1.递推公式是给出数列的一种方法.递推公式与通项公式的相互导出,或以递推公式研究数列的性质是递推数列中两类常见的问题。
数列的递推式是数列的另一种表达形式。
由递推关系探求数列的通项是高考的热点.要注重叠加、叠乘、迭代等解题技巧的训练。
已知递推数列求通项公式的常规方法如下:(1)已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
(2)已知)(21n f a a a n =⋅⋅⋅ 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
(3)若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥。
(4)已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅ (2)n ≥。
(5)已知递推关系求n a ,用构造法(构造等差、等比数列)。
特别地:①形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
②形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项。
2.数列求和的问题需要根据数列特点选择解决方法,必须掌握常用的数列求和方法: 例如:(1)公式法:①等差数列求和公式;②等比数列求和公式;(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和;(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法);(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法);(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和;(6)通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和; 但数列求和往往和其他知识综合在一起,综合性较强。
数列求通项公式与求和(Shmily.东)一、通项公式二、数列求和补充:22 2233(1)(21)(1)2,264n n n n nn n+++ +++=+++=2311典型例题一.通项类型 形如)(1n f a a n n =-+型 累加法:(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+.(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,)2(23f a a =- )1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n+++-+-=-即:∑-=+=111)(n k nk f a a .为了书写方便,也可用横式来写:2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---=1)1()2()2()1(a f f n f n f ++++-+- .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
例4.已知数列}{n a 中, 0>na 且)(21nn n a na S +=,求数列}{n a 的通项公式. 解:由已知)(21n n na n a S +=得)(2111---+-=n n n n n S S nS S S ,化简有n S S n n=--212,由类型(1)有n S S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n,又0>n a ,2)1(2+=n n s n ,则2)1(2)1(2--+=n n n n a nPS :形如)(1n f a a n n =++型(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;(2)若f(n)为n 的函数(非常数)时,可通过构造转化为)(1n f a a n n =-+型,通过累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.例1. 数列{n a }满足01=a ,n a a n n 21=++,求数列{a n}的通项公式.分析 1:构造 转化为)(1n f a a n n =-+型解法1:令n n n a b )1(-=则n a a a a b b n n n n n n n n n n 2)1()()1()1()1(111111⋅-=+-=---=-++++++.2≥n 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=⨯⋅-=--⋅-=--⋅-=-----012)1()2(2)1()1(2)1(112121211a b b b n b b n b b n n n n n n各式相加:[]1)1(2)1()2()1()1()1(2231⋅-+⋅-++--+--=- n n b n n n当n 为偶数时,n n n b n=⎥⎦⎤⎢⎣⎡-⋅-+-=22)1()1(2.此时n b a n n ==当n 为奇数时,1)21(2+-=--=n n b n 此时n na b -=,所以1-=n a n .故⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n 解法2: na a n n 21=++∴2≥n 时,)1(21-=+-n a a n n ,两式相减得:211=--+n n a a .∴,,,,531 a a a 构成以1a ,为首项,以2为公差的等差数列; ,,,,642 a a a 构成以2a ,为首项,以2为公差的等差数列∴22)1(112-=-+=-k d k a a k k d k a a k 2)1(22=-+=.∴⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n评注:结果要还原成n 的表达式.例2.(2005江西卷)已知数列{a n }的前n 项和S n 满足S n -S n -2=3,23,1),3()21(211-==≥--S S n n 且求数列{a n}的通项公式. 解:方法一:因为),3()21(31112≥-⋅=++=-----n a a a a S S n n n n n n n 所以以下同例1,略答案 ⎪⎪⎩⎪⎪⎨⎧⋅+-⋅-=--.,)21(34,,)21(3411为偶数为奇数n n a n n n类型 . 形如)(1n f a a nn =+型 累乘法 (1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法. 由)(1n f a a n n =+得 2≥n 时,)1(1-=-n f a an n ,∴112211a a aa a a a a n n n n n ⋅⋅⋅⋅=--- =f(n)f(n-1)1)1(a f ⋅⋅ . 例1.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2, 3,…),则它的通项公式是n a =________. 解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+n n na a , 即11+=+n na a n n ∴2≥n 时,nn a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1.评注:本题是关于n a 和1+n a 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到n a 与1+n a 的更为明显的关系式,从而求出n a . 例2.已知1,111->-+=+a n na a n n ,求数列{a n}的通项公式.解:因为,11-+=+n na a n n 所以,11n na a n n +=++故),1(11+=++n n a n a 又因为11->a ,即011>+a ,所以由上式可知01>+na ,所以n a a n n =+++111,故由累乘法得)1(11111111*********+⋅++⋅++⋅⋅++⋅++=+---a a a a a a a a a a n n n n n=)1()!1()1(12)2()1(11+⋅-=+⋅⋅⋅⋅-⋅-a n a n n所以=na )1()!1(1+⋅-a n -1. 评注:本题解题的关键是把原来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1形式,进而应用累乘法求出数列的通项公式. PS.形如)(1n f a a n n =⋅+型(1)若p a a n n =⋅+1(p 为常数),则数列{n a }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;(2)若f(n)为n 的函数(非常数)时,可通过逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项.例1. 已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列的通项公式.注:同上例类似,略. 类型 形如0(,1≠+=+c d ca a n n ,其中a a =1)型 构造辅助数列(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列; (3)若01≠≠且d c时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c c dλ 所以有:)1(11-+=-+-c da c c d a n n 因此数列⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列, 所以 11)1(1-⋅-+=-+n nc c da c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 规律:将递推关系d ca a n n +=+1化为)1(11-+=-++c d a c c d a n n ,构造成公比为c 的等比数列}1{-+c da n 从而求得通项公式)1(1111-++-=-+c d a c c d a n n 有时我们从递推关系d ca a n n +=+1中把n 换成n-1有d ca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a n n n -=-+,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.例1.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a . 分析:两边直接加上1-c d,构造新的等比数列。