中考数学压轴题分类练习动点等腰三角形专题042932
- 格式:docx
- 大小:183.42 KB
- 文档页数:6
.中考热点3——等腰三角形分类讨论等腰三角形的分类讨论题多见于初三各级各类模拟考试甚至中考的压轴题中,由于这类题目都与图形运动有关,需要学生具有一定的想象能力、分析能力和运算能力,而这正是学生最缺乏的,理清这类题目的解题思路和解题策略将会等到在中考中获得高分的重要砝码。
等腰三角形分类讨论的解题思路粗分有两种,第一种:用含有字母的代数式分别表示等腰三角形的三条边,后用三条线段依次相等建立方程后求解,第二种:分别作出三种等腰三角形条件下图形,利用等腰三角形的有关性质和题目中的条件进行合理的转化后建立方程求解。
下面就常见的题型进行分析、归纳 典型例题【例1】如图,在Rt △ABC 中,∠C =90°,54sin =B ,AC =4;D 是BC 的延长线上的一个动点,∠EDA =∠B ,AE ∥BC .(1)找出图中的相似三角形,并加以证明;(2)设CD =x ,AE =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当△ADE 为等腰三角形时,求AE 的长. 【思路分析】思路一:用含有x 或者y 的代数式来表示等腰三角形的三条边长AD 、DE 、AE 三条线段依次相等建立方程后求解,显然AE 和DE 边都不方便用含含有x 或者y 的代数式表示。
思路二:分别作出三种等腰三角形条件下图形,利用第(1)题中证明的△ABD ∽△EDA 将等腰的条件转化到△ABD 中进行求解,最后带入定义域检验。
解:(1)∵AE ∥BC ∴∠EAD =∠ADB ,∠EDA =∠B ∴△ABD ∽△EDA (2)∵△ABD ∽△EDA ∴AEADAD BD =∴yx x x 1616322+=++即3162++=x x y 0>x(3)情况一:当AE =AD 时AD =BD 即3162+=+x x67=x 情况二:DE =AE 时AB =AD ,AC ⊥BD BC =CD 即3=x情况三:AD =DE 时AB =BD 即53=+x2=x点评:将等腰三角形的条件进行适当转化,计算过程大大简化,既节约时间又提高正确率E.【例2】已知直线1l 的解析式63+=x y ,直线1l 与x 轴、y 轴分别交于点A 、B ,直线2l 经过B 、C 两点,点C 的坐标为)0,8(.又知点P 在x 轴上从点A 向点C 移动,点Q 在直线2l 上从点C 向点B 移动.点P 、Q 同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒(100<<t ) (1)求直线2l 的解析式(2)当t 为何值时,△PCQ 是等腰三角形【思路分析】在直角坐标系中对等腰三角形进行讨论,依然遵循两大基本思路此题中PC 、QC 两条边长都方便用含有t 的代数式表示,而PQ 不易表示,将等腰三角形PQ =QC 和PC =PQ 两种情况,通过添加底边上的高转化为直角三角形,再用锐角三角比和相似三角形的方法进行求解则较易求得结果。
因动点产生的等腰三角形问题例1(2011年湖州市中考第24题)如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 所经过的路径长为54π.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当P A =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =.第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2(2011年盐城市中考第28题)如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标; (2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8AP RA C P P O RCO R A S S SS=--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P在OC上运动时的情形,0≤t<4.如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,42AB=,所以OB>AB.因此∠OAB>∠AOB>∠B.如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.因此∠AQP=45°保持不变,∠P AQ越来越大,所以只存在∠APQ=∠AQP的情况.此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.我们再来讨论P在CA上运动时的情形,4≤t<7.在△APQ中,3cos5A∠=为定值,7AP t=-,5520333AQ OA OQ OA OR t=-=-=-.如图5,当AP=AQ时,解方程520733t t-=-,得418t=.如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]t t t-=---,得5t=.如7,当P A=PQ时,那么12cosAQAAP∠=.因此2cosAQ AP A=⋅∠.解方程52032(7)335t t-=-⨯,得22643t=.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.例3(2010年上海市闸北区中考模拟第25题)如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N 分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1满分解答(1)如图2,图3,作NQ⊥x轴,垂足为Q.设点M、N的运动时间为t秒.在Rt△ANQ中,AN=5t,NQ=4t,AQ=3t.在图2中,QO=6-3t,MQ=10-5t,所以MN∶NP=MQ∶QO=5∶3.在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-. (Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=.(Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况. ②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4(2010年南通市中考第27题)如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m=,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例5(2009年重庆市中考第26题)已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1 图2满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y . (2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56. 如图2,过点M 作MN ⊥AB ,垂足为N ,那么DA DN FA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF =2GO . (3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。
中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练四:与等腰三角形相关的压轴题(附答案)方法提炼:1、设出点坐标,利用等腰三角形的性质求边长;2、当所给定长未说明是等腰三角形的底还是腰时,需分情况讨论:①当定长为腰,找已知直线上满足条件的点时,以定长的某一端点为圆心,以定长为半径画弧,若所画弧与已知直线有交点且交点不是定长的另一端点时,交点即为所求的点;若所画弧与已知直线无交点或交点是定长的另一端点时,满足条件的点不存在;②当定长为底边时,作出定长的垂直平分线,若作出的垂直平分线与已知直线有交点,则交点即为所求的点,若作出的垂直平分线与已知直线无交点,则满足条件的点不存在.用以上方法即可找出所有符合条件的点。
典例引领:例:如图,直线y=3x+3交x轴于点A,交y轴于点B,过A、B两点的抛物线交x轴于另一点C(3,0)。
(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由。
解:(1)抛物线的解析式为:y=-x2+2x+3(2)该抛物线的对称轴为x= 1。
设Q点坐标为(1,m)当AB=AQ时Q点坐标(1, 6),或(1,- 6);当BA= BQ时解得:m=0,m =6, Q点坐标为(1,0)或(1,6) 此点在直线AB上,不符合题意应舍去; 当QA=QB时解得:m=1,Q点坐标为(1,1).抛物线的对称轴上是存在着点Q(1, 6)、(1,- 6)、(1,0)、(1,1)跟踪训练:1.抛物线y=ax2﹣4ax+3a交x轴于点B、C两点,交y轴于点A,点D为抛物线的顶点,连接AB、AC,已知△ABC的面积为3.(1)求抛物线的解析式;(2)点P为抛物线对称轴右侧一点,点P的横坐标为m,过点P作PQ∥AC交y轴于点Q,AQ的长度为d,求d与m的函数关系式;(3)在(2)的条件下,当d=4时,作DN⊥y轴于点N,点G为抛物线上一点,AG交线段PD于点M,连接MN,若△AMN是以MN为底的等腰三角形,求点G的坐标.2.如图,抛物线y=﹣x2﹣x+c与x轴交于A,B两点,且点B的坐标为(3,0),与y 轴交于点C,连接AC,BC,点P是抛物线上在第二象限内的一个动点,点P的横坐标为a,过点P作x轴的垂线,交AC于点Q.(1)求A,C两点的坐标.(2)请用含a的代数式表示线段PQ的长,并求出a为何值时PQ取得最大值.(3)试探究在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PN⊥x轴于点N,交抛物线于点M,当△BCM面积最大时,求△BPN的周长.(3)在(2)的条件下,当△BCM面积最大时,在抛物线的对称轴上是否存在点Q,使△CNQ为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.4.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP 为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标.5.图1,抛物线与x轴交于A(﹣1,0),B(3,0),顶点为D(1,﹣4),点P为y轴上一动点.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P,使△BDP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,点在抛物线上,求的最小值.6.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.7.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0),B(1,0)两点,与y轴交于点C(0,﹣3),顶点为D,其对称轴与x轴交于点E.(1)求二次函数解析式;(2)连接AC,AD,CD,试判断△ADC的形状,并说明理由;(3)点P为第三象限内抛物线上一点,△APC的面积记为S,求S的最大值及此时点P 的坐标;(4)在线段AC上,是否存在点F,使△AEF为等腰三角形?若存在,直接写出点F的坐标;若不存在,请说明理由.8.抛物线y=ax2+bx+分别交x轴于点A(1,0),B(﹣3,0),交y轴于点C.抛物线的对称轴l与x轴相交于点D,直线AC与抛物线的对称轴l相交于点P.(1)请直接写出抛物线的解析式和点D的坐标;(2)如图1,点M为线段OC上的动点,点N为线段AC上的动点,且MN⊥AC,在点M,点N移动的过程中,DM+MC是否有最小值?如果有,请求出最小值;(3)以点C为旋转中心,将直线AC绕点C逆时针旋转,旋转角为α(0°<α≤90°),直线AC旋转时,与抛物线的对称轴l相交于点E,与抛物线的另一个交点为点Q.①如图2,当直线AC旋转到与直线BC重合时,判断线段PE、ED的数量关系?并说明理由;②当△CPQ为等腰三角形时,请直接写出点Q的坐标.9.如图,抛物线y=x2+bx+c与y轴交于点C,与x轴相交于A,B两点,点A的坐标为(2,0),点C的坐标为(0,﹣4).(1)求该抛物线的解析式;(2)点Q是线段BA上的一动点,点E为线段AC上一动点,若始终保持∠AQE=∠ABC,连接CQ,求△CQE的面积S关于点Q的横坐标m的函数关系式;(3)若点D为OB的中点,点M是线段BC上一点,当△OMD为等腰三角形时,直接写出点M的坐标.10.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△P AB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.11.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.12.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,且抛物线经过点D(2,3).(1)求这条抛物线的表达式;(2)将该抛物线向下平移,使得新抛物线的顶点G在x轴上.原抛物线上一点M平移后的对应点为点N,如果△AMN是以MN为底边的等腰三角形,求点N的坐标;(3)若点P为抛物线上第一象限内的动点,过点B作BE⊥OP,垂足为E,点Q为y轴上的一个动点,连接QE、QD,试求QE+QD的最小值.13.如图,菱形ABCD在平面直角坐标系中,边AB在x轴的负半轴上,点C在y轴的正半轴上,AB=10,tan∠DAB=,抛物线经过点B、C、D.(1)求抛物线的解析式;(2)直线EF与BC平行,与抛物线只有一个交点,求直线EF解析式;(3)抛物线对称轴上是否存在点P,使△PBC是以BC为腰的等腰三角形?若存在直接写出P点坐标,若不存在说明理由.参考答案1.分析:(1)y=ax2﹣4ax+3a交x轴于点B、C两点,交y轴于点A,则点B、C的坐标分别为:(1,0)、(3,0),点A(0,3a),△ABC的面积=AB×OA=3a=3,即可求解;(2)PQ平行线于AC直线,其表达式设为:y=﹣x+b,设点P(m,m2﹣4m+3)(m>2),将点P的坐标代入上式,即可求解;(3)d=4时,点P(4,3),设点G(n,n2﹣4n+3),直线PD的函数表达式为:y=2x ﹣5…①,直线AG的函数表达式为:y=(n﹣4)x+3…②,联立①②并解得:x=,故点M(,﹣5),AN=AM,即4+9=()2+(﹣8)2,即可求解.解:(1)y=ax2﹣4ax+3a交x轴于点B、C两点,交y轴于点A,则点B、C的坐标分别为:(1,0)、(3,0),点A(0,3a),△ABC的面积=AB×OA=3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3;(2)点A(0,3),点C(3,0),D(2,﹣1),则PQ平行线于AC直线,其表达式设为:y=﹣x+b,设点P(m,m2﹣4m+3)(m>2),将点P的坐标代入上式并解得:b=m2﹣3m﹣3,则d=AQ=|m2﹣3m|(m>2);(3)当d=4时,|m2﹣3m|=4,解得:m=4或﹣1(舍去﹣1),故点P(4,3),设点G(n,n2﹣4n+3),点D(2,﹣1),则点N(0,﹣1)同理可得:直线PD的函数表达式为:y=2x﹣5…①,直线AG的函数表达式为:y=(n﹣4)x+3…②,联立①②并解得:x=,故点M(,﹣5),点A(0,3)、点N(0,﹣1),AN=AM,即16=()2+(﹣8)2,解得:n=或4,故点G(,﹣)或(4,3).点评:本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形的性质、图形的面积计算等,其中(2),要注意分类求解,避免遗漏.2.分析:(1)将点B的坐标(3,0)代入抛物线解析式可得出c=4,解方程,得x1=3,x2=﹣4,则A(﹣4,0);(2)求出直线AC的解析式y=﹣x+4,设P(a,),则点Q(a,a+4),则PQ可用a表示,由二次函数的性质可求出PQ的最大值;(3)分BC=BQ、BC=CQ、CQ=BQ三种情况,分别列得出方程求解即可.解:(1)把点B的坐标(3,0)代入抛物线解析式得,,解得:c=4,令y=0,则,解得x1=3,x2=﹣4,∴A(﹣4,0),C(0,4);(2)∵A(﹣4,0),C(0,4),设直线AC的解析式为y=kx+b,∴,∴,∴直线AC的解析式y=x+4,点P的横坐标为a,P(a,),则点Q(a,a+4),∴PQ==,∵,∴a=﹣2时,PQ有最大值;(3)存在,理由:点A、B、C的坐标分别为(﹣4,0)、(3,0)、(0,4),则BC=5,AB=7,AC=4,∠OAC=∠OCA=45°,将点B、C的坐标代入一次函数表达式:y=mx+n并解得:,∴直线BC的解析式为y=﹣x+4,设BC的中点为H,由中点坐标公式可得H(),∴过BC的中点H且与直线BC垂直直线的表达式为:y=,①当BC=BQ时,如图1,∴BC=BQ=5,设:QM=AM=n,则BM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故点Q1(﹣1,3);②当BC=CQ时,如图1,∴CQ=5,则AQ=AC﹣CQ=4,∴,∴,③当CQ=BQ时,联立直线AC解析式y=x+4和y=,解得x=﹣(不合题意,舍去),综合以上可得点Q的坐标为:Q(﹣1,3)或().点评:主要考查了二次函数的解析式的求法,等腰三角形的判定与性质,二次函数的性质等知识点,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3.分析:(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)先求出直线BC的解析式,设P(x,﹣x+3),则M(x,﹣x2+2x+3),求出△BCM 面积的表达式,这是一个二次函数,求出其取最大值的条件;然后利用勾股定理可求出△BPN的周长;(3)由(2)可知N(),设Q(1,a),由两点间的距离公式可分别表示出CQ2,QN2,CN2,若△CNQ为等腰三角形,可分CQ=QN、CQ=CN、QN=CN三种情况考虑,由此可得到关于a的方程,解方程求出符合题意的坐标即可.解:(1)由题意可得:,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)设直线BC的解析式为:y=kx+b,则有:,解得:,∴直线BC的解析式为:y=﹣x+3.设P(x,﹣x+3),则M(x,﹣x2+2x+3),∴PM=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.∴S△BCM=S△PMC+S△PMB=(x B﹣x C)=,∴S△BCM==,∴当x=时,△BCM的面积最大.此时P(),∴PN=ON=,∴BN=OB﹣ON=3﹣=,在Rt△BPN中,由勾股定理得:PB=,C△BCN=BN+PN+PB=3+,∴当△BCM的面积最大时,△BPN的周长为3+;(3)由(2)知P点坐标为(),∴,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为x=1,设Q(1,a),∵C(0,3),N(),∴CQ2=12+(3﹣a)2,,,若△CNQ为等腰三角形,可分三种情况:当CQ=QN时,1+,解得:a=,∴点Q的坐标为(1,),当CQ=CN时,1+,解得:a=3,∴点Q的坐标为(1,3﹣),(1,3+),当QN=CN时,,解得:a=,∴点Q的坐标为(1,),(1﹣),综合以上可得点Q的坐标为(1,)或(1,3﹣)或(1,3+)或(1,)或(1,﹣).点评:本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、等腰三角形的性质及分类讨论思想等知识.把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.4.分析:(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,再设P(t,3﹣t),即可得D(t,﹣t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;(3)如图2,构造BG与x轴成30°角,将MB转化为线段M到BG的距离,从而可知C、M、N、B′在同一条直线上时,CN+MN+MB取最小值,根据CG的长和∠CGB =60°即可求出最小值.根据直线BG求出直线CB′解析式,即求出MN坐标.解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,把A(﹣1,0),C(0,3)代入解析式得,∴,解得b=2,c=3.故该抛物线解析式为:y=﹣x2+2x+3.(2)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,则,解得:,故直线BC的解析式为y=﹣x+3;∴设P(t,3﹣t),∴D(t,﹣t2+2t+3),∴PD=(﹣t2+2t+3)﹣(3﹣t)=﹣t2+3t,∵OB=OC=3,∴△BOC是等腰直角三角形,∴∠OCB=45°,当CD=PC时,则∠CPD=∠CDP,∵PD∥y轴,∴∠CPD=∠OCB=45°,∴∠CDP=45°,∴∠PCD=90°,∴直线CD的解析式为y=x+3,解得或,∴D(1,4),此时P(1,2);当CD=PD时,则∠DCP=∠CPD=45°,∴∠CDP=90°,∴CD∥x轴,∴D点的纵坐标为3,代入y=﹣x2+2x+3得,3=﹣x2+2x+3,解得x=0或x=2,此时P(2,1);当PC=PD时,∵PC=t,∴t=﹣t2+3t,解得t=0或t=3﹣,此时P(3﹣,);综上,当△CDP为等腰三角形时,点P的坐标为(1,2)或(2,1)或(3﹣,).(3)CN+MN+MB的最小值为,N坐标为(1,3﹣),M坐标为(,0).理由如下:如图,取G点坐标为(0,﹣),连接BG,∵B(3,0),∴直线BG解析式为:y=,∴tan∠GBO=,∴∠GBO=30°,过M点作MB′⊥BG,∴,∴CN+MN+MB=CN+MN+B′M,∴CN+MN+MB取最小值时,C、M、N、B′在同一条直线上,即CB′⊥BG,设直线CB′解析式为,∵C(0,3)故直线CB′解析式为为,∵抛物线的顶点为E坐标为(1,4),EF⊥x轴,N在EF、CB′上,∴N坐标为(1,3﹣),M(m,0)是x轴一个动点,也是CB′与x轴交点,∴M(,0).∵CG=3+,∠CGB=60°,∴CB′=CG sin∠CGB=(3+)×=,综上所述:CN+MN+MB的最小值为,N坐标为(1,3﹣),M坐标为(,0).点评:此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.5.分析:(1)由已知抛物线顶点D可设抛物线顶点式,再把点A代入即求得二次项系数a 的值.(2)由点B、D坐标可求BD的长.设点P坐标为(0,t),用t表示BP2,DP2.对BP =BD、DP=BD、BP=DP三种情况进行分类讨论计算,解方程求得t的值并讨论是否合理.(3)由点B、C坐标可得∠BCO=45°,所以过点P作BC垂线段PQ即构造出等腰直角△PQC,可得PQ=PC,故有MP+PC=MP+PQ.过点M作BC的垂线段MH,根据垂线段最短性质,可知当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH 最小,即需求MH的长.连接MB、MC构造△BCM,利用y轴分成△BCD与△CDM求面积和即得到△BCM面积,再由S△BCM=BC•MH即求得MH的长.解:(1)∵抛物线顶点为D(1,﹣4)∴设顶点式为y=a(x﹣1)2﹣4∵A(﹣1,0)在抛物线上∴4a﹣4=0,解得:a=1∴抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3(2)在y轴的负半轴上存在点P,使△BDP是等腰三角形.∵B(3,0),D(1,﹣4)∴BD2=(3﹣1)2+(0+4)2=20设y轴负半轴的点P坐标为(0,t)(t<0)∴BP2=32+t2,DP2=12+(t+4)2①若BP=BD,则9+t2=20解得:t1=(舍去),t2=﹣②若DP=BD,则1+(t+4)2=20解得:t1=(舍去),t2=﹣﹣4③若BP=DP,则9+t2=1+(t+4)2解得:t=﹣1综上所述,点P坐标为(0,﹣)或(0,﹣﹣4)或(0,﹣1)(3)连接MC、MB,MB交y轴于点D,过点P作PQ⊥BC于点Q,过点M作MH⊥BC 于点H∵x=0时,y=x2﹣2x﹣3=﹣3∴C(0.﹣3)∵B(3,0),∠BOC=90°∴∠OBC=∠OCB=45°,BC=3∵∠PQC=90°∴Rt△PQC中,sin∠BCO==∴PQ=PC∴MP+PC=MP+PQ∵MH⊥BC于点H∴当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH最小∵M(﹣,m)在抛物线上∴m=(﹣)2﹣2×(﹣)﹣3=∴M(﹣,)设直线MB解析式为y=kx+b∴解得:∴直线MB:y=﹣x+∴MB与y轴交点D(0,)∴CD=﹣(﹣3)=∴S△BCM=S△BCD+S△CDM=CD•BO+CD•|x M|=CD•(x B﹣x M)=××(3+)=∵S△BCM=BC•MH∴MH=∴MP+PC的最小值为点评:本题考查了二次函数的图象与性质,等腰三角形和等腰直角三角形的性质,解二元一次方程组和一元二次方程,垂线段最短定理.求线段和最小值时,一般利用特殊三角函数应用把含有系数的线段长进行转换,再利用三点成一直线或垂线段最短性质得到最短路径的位置,进而计算.6.分析:(1)求直线y=﹣x+4与x轴交点B,与y轴交点C,用待定系数法即求得抛物线解析式.(2)根据点B、C坐标求得∠OBC=45°,又PE⊥x轴于点E,得到△PEB是等腰直角三角形,由PB=t求得BE=PE=t,即可用t表示各线段,得到点M的横坐标,进而用m表示点M纵坐标,求得MP的长.根据MP∥CN可证△MPQ∽△NCQ,故有,把用t表示的MP、NC代入即得到关于t的方程,求解即得到t的值.(3)因为不确定等腰△PDM的底和腰,故需分3种情况讨论:①若MD=MP,则∠MDP =∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP,则∠DMP=∠MPD =45°,进而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,则∠PMD =∠PDM,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF进而得CF=CD.用t表示M的坐标,求直线AM解析式,求得AM与y轴交点F 的坐标,即能用t表示CF的长.把直线AM与直线BC解析式联立方程组,解得x的值即为点D横坐标.过D作y轴垂线段DG,得等腰直角△CDG,用DG即点D横坐标,进而可用t表示CD的长.把含t的式子代入CF=CD,解方程即得到t的值.解:(1)直线y=﹣x+4中,当x=0时,y=4∴C(0,4)当y=﹣x+4=0时,解得:x=4∴B(4,0)∵抛物线y=﹣x2+bx+c经过B,C两点∴解得:∴抛物线解析式为y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90°∴OB=OC∴∠OBC=∠OCB=45°∵ME⊥x轴于点E,PB=t∴∠BEP=90°∴Rt△BEP中,sin∠PBE=∴BE=PE=PB=t∴x M=x P=OE=OB﹣BE=4﹣t,y P=PE=t ∵点M在抛物线上∴y M=﹣(4﹣t)2+3(4﹣t)+4=﹣t2+5t∴MP=y M﹣y P=﹣t2+4t∵PN⊥y轴于点N∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴∴解得:t1=,t2=4(点P不与点C重合,故舍去)∴t的值为(3)∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM∥x轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,x M=4﹣t,ME=y M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m ∴解得:∴直线AM:y=tx+t∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:x=∴DG=x D=∵∠CGD=90°,∠DCG=45°∴CD=DG=∴4﹣t=解得:t=﹣1综上所述,当△PDM是等腰三角形时,t=1或t=﹣1.点评:本题考查了二次函数的图象与性质,解二元一次方程组和一元二次方程,等腰直角三角形的性质,相似三角形的判定和性质,涉及等腰三角形的分类讨论,要充分利用等腰的性质作为列方程的依据.7.分析:(1)二次函数表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),则﹣3a=﹣3,解得:a=1,即可求解;(2)由AD2=AC2+CD2,故△ADC为直角三角形;(3)S=PH×OA=(﹣x﹣3﹣x2﹣2x+3)=﹣(x+)2+,即可求解;(4)分AE=EF、AE=AF、AF=EF三种情况分别求解即可.解:(1)二次函数表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),则﹣3a=﹣3,解得:a=1,函数的表达式为:y=x2+2x﹣3;(2)由(1)知,点D(﹣1,﹣4),AC=3,CD=,AD==,∴AD2=AC2+CD2,故△ADC为直角三角形;(3)过点P作PH∥y轴交AC于点H,将点A、C的坐标代入一次函数表达式并解得:直线AC的表达式为:y=﹣x﹣3,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),S=PH×OA=(﹣x﹣3﹣x2﹣2x+3)=﹣(x+)2+,当x=﹣时,S最大值为,此时点P(﹣,﹣);(4)∵OA=OC=3,∴∠OAC=∠OCA=45°,①当AE=EF时,如下图,△AEF为等腰直角三角形,AE=2=EF,∴点F(﹣1,﹣2);②当AE=AF时,同理可得:点F(﹣3+,﹣);③当AF=EF时,同理可得:点F(﹣2,﹣1);故点F的坐标为:(﹣1,﹣2)或(﹣3+,﹣)或(﹣2,﹣1).点评:本题考查的是二次函数综合运用,涉及到等腰三角形的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.8.分析:(1)用待定系数法即求得抛物线解析式;用顶点坐标公式即求得对称轴直线,得到点D坐标.(2)求点C坐标,利用三角函数求得∠OCA的度数.由MN垂直AC可把MC转化为MN,所以当点D、M、N在同一直线上时DM+MC=DM+MN,根据垂线段最短,可知过点D作DF⊥AC于点F,此时为DM+MN最短.求∠OAC的度数,利用三角函数即求得DF的长.(3)①求直线BC解析式,把x=1代入即求得点E坐标,进而得DE的长.由∠PDA =90°,∠P AD=60°利用三角函数求得PD的长,进而得PE的长,求得PE=2ED.②求直线AC解析式,求点P坐标,进而求PC的长.设抛物线上的点Q坐标为(t,﹣t2﹣t+)(t≠0),根据两点间距离公式即能用t表示PQ2,CQ2.由△CPQ为等腰三角形分三种情况讨论两腰相等,即列得关于t的方程,求解得t的值即得到点Q 坐标.解:(1)∵抛物线y=ax2+bx+经过点A(1,0),B(﹣3,0)∴解得:∴抛物线的解析式为:y=﹣x2﹣x+∵对称轴为直线:x=﹣=﹣1∴D(﹣1,0)(2)在M,N移动的过程中,DM+MC有最小值.如图1,过点D作DF⊥AC于点F∵当x=0时,y=﹣x2﹣x+=∴C(0,)∵A(1,0)∴在Rt△AOC中,tan∠OCA===∴∠OCA=30°∵MN⊥AC,即∠MNC=90°∴MN=MC∴DM+MC=DM+MN∴当点D、M、N在同一直线上时,DM+MC=DM+MN=DF最小∵∠OAC=90°﹣∠OCA=60°∴在Rt△DAF中,sin∠OAC=∴DF=AD=×(1+1)=∴DM+MC的最小值为(3)①PE=2ED,理由如下:设直线BC的解析式为y=kx+b∴解得:∴直线BC的解析式为y=x+,∵对称轴为直线:x=﹣1,点E在对称轴上∴点E(﹣1,)∴DE=∵∠PDA=90°,∠P AD=60°∴在Rt△P AD中,tan∠OAC=∴PD=2∴PE=PD﹣DE=2﹣=∴PE=2ED②设直线AC解析式为y=cx+把点A(1,0)代入得:c+=0,解得:c=﹣∴直线AC:y=﹣x+∵直线AC与对称轴:直线x=﹣1的交点为P∴P(﹣1,2)∴PC==2∵点Q在抛物线上∴设点Q坐标为(t,﹣t2﹣t+)(t≠0)∴PQ2=(t+1)2+(﹣t2﹣t+﹣2)2,CQ2=t2+(﹣t2﹣t+﹣)2i)若PQ=PC,如图2∴PE垂直平分CQ∴QE=CE=1,y Q=y C=∴Q(﹣2,)ii)若PQ=CQ,则(t+1)2+(﹣t2﹣t+﹣2)2=t2+(﹣t2﹣t+﹣)2解得:t1=﹣2,t2=﹣1∴Q(﹣2,)或(﹣1,)iii)若PC=CQ,则t2+(﹣t2﹣t+﹣)2=4解得:t=﹣2∴Q(﹣2,)综上所述,当△CPQ为等腰三角形时点Q的坐标分别为(﹣2,),(﹣1,).点评:本题考查了二次函数的图象与性质,求一次函数解析式,特殊角三角函数,垂线段最短,两点间距离公式,等腰三角形的性质.求线段与线段的几分之一的和的最小值,通常需要对几分之一线段长进行转换,再利用三点共线或垂线段最短等相关定理找到最小值时的位置.9.分析:(1)将点A、C的坐标代入抛物线,利用待定系数法求二次函数解析式解答;(2)先求出点B的坐标,再根据三角形的面积公式求出S△ABC,设Q(m,0),表示出QA,再判断出△AQE∽△ABC,然后根据相似三角形面积的比等于相似比的平方表示出S△AQE,再根据S△QCE=S△AQC﹣S△AQE整理得到关于m的函数关系;(3)分①当DM=DO时,DO=DM=DB=2,∠OBC=∠BMD=45°,再求出∠BDM =90°,然后写出M点的坐标;②当MD=MO时,过点M作MN⊥OD于点N,根据等腰三角形三线合一的性质可得点N为OD的中点,求出DN=ON=1,BN=BD+DN=3,再根据△BMN为等腰直角三角形求出MN=BN=3,然后写出M点的坐标;③当OD=OM时,根据△OBC为等腰直角三角形求出点O到BC的距离,然后与OD相比较判断出不存在.解:(1)将点A(2,0),C(0,﹣4),分别代入y=x2+bx+c,,解得:,∴抛物线的解析式为y=;(2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴点B(﹣4,0),AB=2﹣(﹣4)=2+4=6,S△ABC=AB•OC==12,设Q点坐标为(m,0),则QA=2﹣m.∵∠AQE=∠ABC,∴QE∥BC,∴△AQE∽△ABC,∴,∴,S△QCE=S△AQC﹣S△AQE=,=﹣.(3)△OMD为等腰三角形,可能有三种情形:①当DM=DO时,DO=DM=DA=2,所以,∠OBC=∠BMD=45°,所以,∠BDM=90°,所以,M点的坐标为(﹣2,﹣2);②当MD=MO时,如图,过点M作MN⊥OD于点N,则点N为OD的中点,∴DN=ON=1,BN=BD+DN=3,又△BMN为等腰直角三角形,∴MN=BN=3,∴M点的坐标为(﹣1,﹣3);③当OD=OM时,∵△OBC为等腰直角三角形,∴点O到BC的距离为×4=2,即BC上的点与点O之间的最小距离为2,∵2>2,∴OD=OM的情况不存在,综上所述,点M的坐标为(﹣2,﹣2)或(﹣1,﹣3).点评:本题是二次函数综合题,主要考查了待定系数法求二次函数解析式,抛物线与x 轴的交点问题,三角形的面积,相似三角形面积的比等于相似比的平方的性质,等腰三角形的性质,等腰直角三角形的性质,注意等腰三角形根据腰长的不同分情况讨论.10.分析:(1)用待定系数法即可求抛物线解析式.(2)设点P横坐标为t,过点P作PF∥y轴交AB于点F,求直线AB解析式,即能用t 表示点F坐标,进而表示PF的长.把△P AB分成△P AF与△PBF求面积和,即得到△P AB面积与t的函数关系,配方即得到t为何值时,△P AB面积最大,进而求得此时点P 坐标.(3)设点P横坐标为t,即能用t表示PD的长.根据对称性可知点P、E关于抛物线对称轴对称,用中点坐标公式可得用t表示点E横坐标,进而用t表示PE的长(注意点P、E左右位置不确定,需分类讨论).由于△PDE要成为等腰直角三角形,∠DPE=90°,所以PD=PE,把含t的式子代入求值即得到点P坐标.解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△P AB=S△P AF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△P AB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.点评:本题考查了二次函数的图象与性质,求二次函数最值,等腰直角三角形的性质,中点坐标公式,一元二次方程的解法.分类讨论进行计算时,要注意讨论求得的解是否符合分类条件,是否需要舍去.11.分析:(1)函数的表达式为:y=﹣(x+1)(x﹣5),即可求解;(2)确定PB、CE的表达式,联立求得点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,即可求解;(3)分当CP=CF、CP=PF、CF=PF三种情况,分别求解即可.解:(1)函数的表达式为:y=﹣(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=2,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+,∵CE⊥PB,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=,解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3,故点P(2,﹣3)或(2,5);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)2=()2+4,解得:m=0或(0舍去),②当CP=PF时,同理可得:m=,③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2)或(2,)或(2,)点评:本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.12.分析:(1)由抛物线与x轴两交点设交点式,把点D代入即求得抛物线表达式.(2)由原抛物线顶点式可知,向下平移4个单位后顶点落在x轴上,故MN=4且MN ⊥x轴.由于△AMN为等腰三角形且MN为底边,故有x轴垂直平分MN,得到点N纵坐标为﹣2,代入新抛物线解析式解方程即求得点N横坐标.(3)作点D关于y轴的对称点D',根据轴对称性质即有QD=QD',易得当点D'、Q、E 在同一直线上时,QE+QD=QE+QD'=ED'最小.由于点E随点P运动也是一个动点,由∠OEB=90°且O、B是定点可得点E的运动轨迹为圆弧.故当点E运动到点D'与圆心所连线段上时,D'E最小.求出圆心F的坐标,即求出D'F和半径r,所以D'E=D'F﹣r,所求即为QE+QD的最小值.解:(1)抛物线与x轴交于A(﹣1,0)、B(3,0)∴设交点式为y=a(x+1)(x﹣3)∵抛物线经过点D(2,3)∴a(x+1)(x﹣3)=3解得:a=﹣1∴抛物线表达式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴向下平移后新抛物线为y=﹣(x﹣1)2,顶点G(1,0),即抛物线向下平移4个单位∵原抛物线上一点M平移后的对应点为点N∴MN=4,MN⊥x轴∵△AMN是以MN为底边的等腰三角形,且点A在x轴上∴x轴垂直平分MN∴N的纵坐标为﹣2∴﹣(x﹣1)2=﹣2解得:x1=1+,x2=1﹣∴点N坐标为(1+,﹣2)或(1﹣,﹣2)(3)作点D关于y轴的对称点点D',连接D'Q,取OB中点F,连接D'F∵D(2,3),点Q为y轴上的动点∴D'(﹣2,3),QD=QD'∴当点D'、Q、E在同一直线上时,QE+QD=QE+QD'=ED'最小∵BE⊥OP于点E,P为抛物线上第一象限内的动点∴∠OEB=90°∴点E在以OB为直径的圆在第一象限内的弧上运动∵圆心F(,0),r=∴当点E在线段D'F上时,D'E=D'F﹣EF=﹣=最小∴QE+QD的最小值为.点评:本题考查了二次函数的图象与性质,平移的性质,等腰三角形的性质,解一元二次方程,轴对称求最短路径,圆周角定理,勾股定理.第(3)题求线段和最小值涉及的两条线段有2个动点,先由常规的轴对称求最短路径问题确定点D'、Q、E必须共线,再找出点E运动轨迹为圆弧而得到点E在D'与圆心连线上时D'E最小.13.分析:(1)由菱形的性质可得AD∥BC,BC=AB=10,那么∠DAB=∠CBO,根据tan ∠DAB=tan∠CBO==,求出B、C、D三点的坐标,利用待定系数法求出抛物线的解析式;(2)利用待定系数法求出直线BC的解析式为y=x+8.根据EF∥BC,可设直线EF 解析式为y=x+t,根据直线EF与抛物线只有一个交点,得出方程x2+x+8=x+t 只有一个解,即△=0,求出t的值,得到直线EF的解析式;(3)分别利用当CP=CB时,△PCB为等腰三角形;当BP=BC时,△PCB为等腰三角形,利用勾股定理列方程即可.解:(1)∵四边形ABCD是菱形,∴AD∥BC,BC=AB=10,∴∠DAB=∠CBO,∴tan∠DAB=tan∠CBO==,∵BC=10,。
2012中考数学压轴题函数等腰三角形问题(一)例1 如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示);(2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).思路点拨 图1 图21.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备.2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C .满分解答(1)因为PC //DB ,所以1CP PM MC BD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去). ③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去). 综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 所经过的路径长为54π. 考点伸展 第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =. ②如图4,当PA =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =. 第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2 如图,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B . (1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.满分解答(1)解方程组7, 4,3y xy x=-+⎧⎪⎨=⎪⎩得3,4.xy=⎧⎨=⎩所以点A的坐标是(3,4).令70y x=-+=,得7x=.所以点B的坐标是(7,0).(2)①如图2,当P在OC上运动时,0≤t<4.由8APR ACP PORCORAS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t-⨯-⨯⨯--⨯-=(.整理,得28120t t-+=.解得t=2或t=6(舍去).如图3,当P在CA上运动时,△APR的最大面积为6.因此,当t=2时,以A、P、R为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P在OC上运动时的情形,0≤t<4.如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,42AB=OB>AB.因此∠OAB>∠AOB >∠B.如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.因此∠AQP=45°保持不变,∠PAQ越来越大,所以只存在∠APQ=∠AQP的情况.此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.我们再来讨论P在CA上运动时的情形,4≤t<7.在△APQ中,3cos5A∠=为定值,7AP t=-,5520333AQ OA OQ OA OR t=-=-=-.如图5,当AP =AQ 时,解方程520733t t -=-,得418t =. 如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.2012中考数学压轴题函数等腰三角形问题(二)例3 如图,在直角坐标平面内有点A (6, 0),B (0, 8),C (-4, 0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向作匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向作匀速运动,MN 交OB 于点P .(1)求证:MN ∶NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长;(3)若△BNP 是等腰三角形,求CM 的长.思路点拨1.第(1)题求证MN ∶NP 的值要根据点N 的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N 的位置分类,再按照顶角的顶点分类.注意当N 在AB 的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP ,N 在AB 上时,∠B 是确定的,把夹∠B 的两边的长先表示出来,再分类计算. 满分解答(1)如图2,图3,作NQ ⊥x 轴,垂足为Q .设点M 、N 的运动时间为t 秒.在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3.在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-. (Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=. (Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况. ②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些. 例4 如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少? 思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三 角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性. 2012中考数学压轴题函数相似等腰三角形问题(三)例5 已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由. 思路点拨1.用待定系数法求抛物线的解析式,这个解析式在第(2)、(3)题的计算中要用到.2.过点M 作MN ⊥AB ,根据对应线段成比例可以求FA 的长.3.将∠EDC 绕点D 旋转的过程中,△DCG 与△DEF 保持全等.4.第(3)题反客为主,分三种情况讨论△PCG 为等腰三角形,根据点P 的位置确定点Q 的位置,再计算点Q 的坐标.满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1.由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C三点的抛物线的解析式为1613652++-=x x y . (2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫ ⎝⎛512,56. 如图2,过点M 作MN ⊥AB ,垂足为N ,那么DA DN FA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO=1,EF =2GO .(3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。
动点等腰三角形专题1.已知函数() ()123xxyxx⎧->⎪⎪=⎨⎪<⎪⎩的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A,B两点,连接OA、OB.下列结论:①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;④当点P移动到使∠AOB=90°时,点A的坐标为(26,6-).其中正确的结论个数为()A.1 B.2 C.3 D.4【答案】C.2.(2017浙江省绍兴市)如图,∠AOB=45°,点M、N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P、M、N构成等腰三角形的点P恰好有三个,则x的值是.【答案】x=0或x=424-或42x<<.3.如图1,已知二次函数2y ax bx c =++(a 、b 、c 为常数,a ≠0)的图象过点O (0,0)和点A (4,0),函数图象最低点M 的纵坐标为38-,直线l 的解析式为y =x .(1)求二次函数的解析式;(2)直线l 沿x 轴向右平移,得直线l ′,l ′与线段OA 相交于点B ,与x 轴下方的抛物线相交于点C ,过点C 作CE ⊥x 轴于点E ,把△BCE 沿直线l ′折叠,当点E 恰好落在抛物线上点E ′时(图2),求直线l ′的解析式;(3)在(2)的条件下,l ′与y 轴交于点N ,把△BON 绕点O 逆时针旋转135°得到△B ′ON ′,P 为l ′上的动点,当△PB ′N ′为等腰三角形时,求符合条件的点P 的坐标.【答案】(1)22833y x x =-;(2)y =x ﹣3;(3)P 坐标为(0,﹣3)或(323332+-,323332--)或(323332++,323332-+). 4.如图,已知抛物线2y x bx c =-++与y 轴相交于点A (0,3),与x 正半轴相交于点B ,对称轴是直线x =1.(1)求此抛物线的解析式以及点B 的坐标.(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向运动,同时动点N 从点O 出发,以每秒3个单位长度的速度沿y 轴正方向运动,当N 点到达A 点时,M 、N 同时停止运动.过动点M 作x 轴的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t 秒.①当t 为何值时,四边形OMPN 为矩形.②当t >0时,△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.【答案】(1)223y x x =-++,B 点坐标为(3,0);(2)①;②.5.如图,抛物线22y ax bx =+-与x 轴交于A 、B 两点,与y 轴交于C 点,已知A (3,0),且M (1,83-)是抛物线上另一点.(1)求a 、b 的值;(2)连结AC ,设点P 是y 轴上任一点,若以P 、A 、C 三点为顶点的三角形是等腰三角形,求P 点的坐标;(3)若点N 是x 轴正半轴上且在抛物线内的一动点(不与O 、A 重合),过点N 作NH ∥AC 交抛物线的对称轴于H 点.设ON =t ,△ONH 的面积为S ,求S 与t 之间的函数关系式. 【答案】(1)2343a b ⎧=⎪⎪⎨⎪=-⎪⎩;(2)P 点的坐标1(0,2)或(0132-)或(0,54)或(0,132-);(3)2211(01)3311(13)33t t t S t t t ⎧-<<⎪⎪=⎨⎪-≤<⎪⎩. 6.如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (23,0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB 3; ②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.【答案】(1)(23,2);(2)AD 的值为2或23;(3)①证明见解析;②2323433y x x =-+,当x =3时,y 有最小值3.7.如图,已知抛物线a ax ax y 9322--=与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标;(3)证明:当直线l 绕点D 旋转时,ANAM 11+均为定值,并求出该定值.【答案】(1)a =13-,A (﹣3,0),抛物线的对称轴为x =3;(2)点P 的坐标为(3,2)或(3,0)或(3,﹣4);(3)32. 8.如图,在平面直角坐标系中,抛物线2323333y x x =--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线2323333y x x =--沿x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)3333y x =+;(2)3;(3)Q 的坐标为(3,42213-+)或′(3,42213--)或(3,23)或(3,235-). 9.已知抛物线c 1的顶点为A (﹣1,4),与y 轴的交点为D (0,3).(1)求c 1的解析式;(2)若直线l 1:y =x +m 与c 1仅有唯一的交点,求m 的值;(3)若抛物线c 1关于y 轴对称的抛物线记作c 2,平行于x 轴的直线记作l 2:y =n .试结合图形回答:当n 为何值时,l 2与c 1和c 2共有:①两个交点;②三个交点;③四个交点;(4)若c 2与x 轴正半轴交点记作B ,试在x 轴上求点P ,使△PAB 为等腰三角形.【答案】(1)223y x x =--+;(2)214;(3)①4;②3;③3<n <4或n <3;(4)(﹣5,0)或(3﹣2,0)或(3+42,0)或(﹣1,0).。
2020年中考数冲刺几何难点突破 动点问题专题四 动点在等腰三角形中的分类讨论问题【专题说明】【精典例题】1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ①若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以①中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?【解析】:(1)①①1t =秒,①313BP CQ ==⨯=厘米, ①10AB =厘米,点D 为AB 的中点,①5BD =厘米.又①8PC BC BP BC =-=,厘米,①835PC =-=厘米,①PC BD =. 又①AB AC =,①B C ∠=∠,①BPD CQP △≌△.①①P Q v v ≠, ①BP CQ ≠,又①BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,①点P ,点Q 运动的时间433BP t ==秒,①515443Q CQ v t===厘米/秒.(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯,解得803x =秒.①点P 共运动了803803⨯=厘米. ①8022824=⨯+,①点P 、点Q 在AB 边上相遇,①经过803秒点P 与点Q 第一次在边AB 上相遇. 2、已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;AQCDBP(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 【解析】:(1)过点C 作CD AB ⊥,垂足为D .则2AD =,当MN 运动到被CD 垂直平分时,四边形MNQP 是矩形,即32AM =时,四边形MNQP 是矩形,32t ∴=秒时,四边形MNQP 是矩形. 3tan 6032PM AM =°=,332MNQP S ∴=四边形(2)1°当01t <<时,1()2MNQP S PM QN MN =+四边形·332t =+2°当12t ≤≤时,1()2MNQP S PM QN MN =+四边形·332= 3°当23t <<时,1()2MNQP S PM QN MN =+四边形·7332t =-+ 点评:此题关键也是对P 、Q 两点的不同位置进行分类。
动点之等腰三角形编者语:动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题(不考);全等三角形存在问题;相似三角形存在问题;其它存在问题等在中考压轴题中,线动形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类。
※解决方法:解直角三角形,相似辅助的做法:✍作等腰三角形的高✍向其余边作垂线构成全等。
1.勾股定理。
(辅助线✍)2.锐角三角函数。
(辅助线✍)3.两个角的相似比较常见。
(辅助线✍)典型例题:1.如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.(1)当x= ▲s时,DE⊥AB;(2)求在点E运动过程中,y与x之间的函数关系式及点F运动路线的长;(3)当△BEF为等腰三角形时,求x的值.2.如图,抛物线2323y x x 63-=与x 轴交于点A ,将线段OA 绕点O 逆时针旋转1200至OB 的位置. (1)证明:点B 在抛物线上;(2)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.典型例题答案:1.解:(1)232 (2分) (2 )(3)2.解:(2)等腰三角形练习题2.如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.⑴求点D的坐标(用含m的代数式表示)⑵当△APD是等腰三角形时,求m的值。
中考等腰三角形压轴题中考等腰三角形压轴题在中考数学考试中,等腰三角形是一个经常被考察的知识点。
在中考中,等腰三角形压轴题也是一种常见的考题类型,通常需要考生通过计算等腰三角形的各项性质来求解问题。
例如,一道经典的中考等腰三角形压轴题如下:已知等腰三角形ABC中,AB=AC,角A=60°,D是AB的中点,E 是AC的中点。
连接BE、CD交于点F,求证:AF⊥BC。
这道题主要考察了等腰三角形的性质和垂直交线的性质。
通过画图可知,连接BE、CD会将等腰三角形ABC分成四个小三角形,我们需要利用这个信息来求证题目所述结论。
首先,我们可以得到∠AEC=120°。
又因为ED=EC=EA,因此三角形AED是等边三角形。
同理,三角形BFD也是等边三角形。
因此,我们可以得到∠EDC=∠ECD=∠EAD=∠EAB=∠EFD=∠FBD=30°。
又因为AB=AC,所以三角形ABC是等腰三角形,因此∠BAC=60°。
接下来,我们需要证明∠AFC=90°。
因为DF=FB,所以三角形DFB 是等腰三角形。
因此,∠FBD=∠FDB=(180°-∠BFD)/2=(180°-30°)/2=75°。
又因为∠BAC=60°,所以∠FAC=(180°-∠BAC)/2=(180°-60°)/2=60°。
因此,∠CAF=∠FAC-∠FAB=60°-75°=-15°。
同理,我们可以得到∠CAE=∠EAB-∠EAC=60°-30°=30°。
因此,∠EAF=∠CAF-∠CAE=-15°-30°=-45°。
因为∠EAF+∠FAC+∠CAE=0,所以AF⊥BC。
通过以上的计算过程,我们成功地证明了题目所述结论。
这道题目既考察了等腰三角形的性质,又考察了垂直交线的性质,是一道经典的中考等腰三角形压轴题。
通用版2021年中考数学三轮冲刺复习最后压轴题精选:三角形的动点问题1.如图,在Rt △ABC中,∠C=90°,AC=6,AB=10.点P从点C出发沿CA以每秒2个单位的速度向点A运动,到达点A后立刻以原来的速度沿AC返回;在点P出发的同时,点Q从点A出发沿AB 以每秒2个单位的速度向终点B运动.当点Q到达终点时,点P也停止运动.以PQ为斜边作等腰直角三角形PQM ,使点M与点C在PQ的同侧.设P、Q两点的运动时间为t秒(t>0).(1)用含t的代数式表示线段BQ的长.(2)当四边形APMQ为轴对称图形时,求t的值.(3)当∠AQM为锐角时,求t的取值范围.(4)当点M与△ABC一个顶点的连线垂直平分PQ时,直接写出t的值.2.如图,在△ABC中,∠C=90°,且BC,AC,AB是三个连续的偶数,在边AB上取点M,N(点M 在BN之间),使BM=3AN.点D,E分别是边AC,BC的中点,当点P从点D出发沿DE方向匀速运动到点E时,点Q恰好从点M出发沿BA方向匀速运动到点N.记QN=x,PD=y,当Q为AB中点时,y=2.(1)求BC,AC,AB的长.(2)求y关于x的函数表达式.(3)①连结PQ,当PQ所在直线与△ABC的某一边所在的直线垂直时,求所有满足条件的x的值.②过点P作PH⊥AB于点H,当△PQH为等腰三角形时,求x的值.3.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4.动点P从点A出发,以每秒3个单位长度的速度沿AC−CB−BA方向绕行△ABC一周,动直线l从AC开始,以每秒1个单位长度的速度向右平移,分别交AB、BC于D、E两点.当点P运动到点A时,直线l也停止运动.(1)求点P到AB的最大距离;(2)当点P在AC上运动时,①求tan∠PDE的值;②把△PDE绕点E顺时针方向旋转,当点P的对应点P′落在ED上时,ED的对应线段ED′恰好与AB垂直,求此时t的值.(3)当点P关于直线DE的对称点为F时,四边形PEFD能否成为菱形?若能,直接写出t的值;若不能,请说明理由.,AB=10,点P是线段AB上的动点,点Q是射线AC上4.如图,已知∠BAC ,且cos∠BAC=35的动点,且AQ=BP=x ,以线段PQ为边在AB的上方作正方形PQED ,以线段BP为边在AB 上方作正三角形PBM .(1)如图2,当点E在射线AC上时,求x的值;(2)如果⊙P经过D、M两点,求正三角形PBM的边长;(3)如果点E在∠MPB的边上,求AQ的长.5.如图,△ABC中,AB=AC=8cm,∠BAC′=120° .动点P从点A出发,在AB边上以每秒1cm的速度向终点B匀速运动,同时动点Q从点B出发,沿BC以每秒√3cm的速度向终点C匀速运动,连接PQ,设运动时间为t(秒).(1)当t=2秒时,则△BPQ的面积S△BPQ=________ cm2;(直接写出答案)(2)以PQ为直径作圆O,在点P,Q的运动过程中,当圆O与△ABC的一边所在直线相切时,求t的值.6.如图,已知A,B两点的坐标分别为A(18,0),B(8,6),点P,Q同时出发分别作匀速运动,其中点P从点A出发沿AO向终点O运动,速度为每秒3个单位长度,点Q从点O出发沿OB运动,速度为每秒2个单位长度,当这两个点有一点到达自己的终点时,另一点也停止运动,设P,Q运动时间为t秒.(1)求t的取值范围;(2)若以O,P,Q为顶点的三角形与△ABO相似,求此时t的值;(3)是否存在t,使得△OPQ为等腰三角形?若存在,请直接写出运动时间t;若不存在,请说明理由.7.已知:如图①,在Rt△ABC中,AB⊥AC,AB=6cm,BC=10cm,将△ABC绕AC中点旋转180°得到△CDA .如图②,再将△CDA沿AC的方向以1cm/s的速度平移得到△NDP;同时,点Q从点C出发,沿CB方向以2cm/s的速度运动,当点Q停止运动时,△NDP也停止平移,设运动时间为t(s)(0<t<5) .解答下列问题.(1)当t为何值时,PQ//AB?(2)在运动过程中,t为何值时△PQC的面积最大?并求面积的最大值;(3)是否存在某一时刻t,使PQ⊥DQ?若存在,请求出t的值;若不存在,请说明理由.8.如图,在△ABC中,AC=BC=4,∠ACB=90°,动点P从点A出发,沿AB以每秒√2个单位长度2的速度向点B运动,点Q从点A出发,沿折线AC﹣CB向点B以每秒2个单位长度的速度运动,过点P 作AC的平行线与过点Q作AB的平行线交于点D,当有一个点到达终点时,另一个点也停止运动,设△PQD与△ABC重叠部分图形的面积为S,运动的时间为t(秒)(1)点P到AC的距离为________(用含t的代数式表示)(2)当点D落在BC上时,求t的值(3)当△PQD与△ABC重叠部分图形是三角形时,求S与t的函数关系式(S>0).点D从点A出发,以每秒1个单位长9.如图,在Rt△ABC中,∠ACB=90°,BC=6,sin∠A=35度的速度沿AC向终点C运动,同时点E从点B出发,以相同速度沿BA方向运动,过点E作EF⊥AB,过点D作DF⊥EF垂足为F,连结ED,当点D运动到终点时,点E也停止运动.设△EDF与△ABC重叠部分图形的面积为S(S>0),点D的运动时间为t秒.(1)线段AC的长为________;(2)当直线EF经过点D时,求t的值;(3)求S与t的函数关系式,并直接写出t的取值范围.10.如图ΔABC是等边三角形,AB=10.动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,过点P作PD⊥AC于点D,以PD为边向右作矩形PDEF,且PA=PF.设矩形PDEF与ΔABC 重叠部分的面积为S,点P运动的时间为t(t>0)秒.(1)填空:PD=________;(用含t的代数式表示)(2)当点F落在BC上时,求t的值;(3)求S与t之间的函数关系式.11.如图,在△ABC中,∠C=90∘,AC=6,BC=8,点P从点B出发沿BA−AC以每秒2个单位的速度向终点C运动;同时,点Q从点C出发以每秒1个单位的速度向终点B运动,运动时间为t(t> 0),连结PQ.(1)求AP的长(用含有t的代数式表示);(2)当点P在AB上运动时,过点P作PH⊥BC于点H,求PH的长(用含有t的代数式表示);(3)当点P运动到AC上且△PCQ的面积为12时,求t的值.(4)直接写出运动过程中以PQ为一边的三角形与△ABC相似时t的值.12.(如图,在平面直角坐标系中,直线y=−3x+3与y轴、x轴分别交于A、B两点,动点P从点4A开始在线段AO上以每秒1个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,当其中一点到达终点时,另一点也随之停止运动.设点P运动的时间为t(秒).(1)直接写出A、B两点的坐标.(2)当△APQ与△AOB相似时,求t的值.(3)设△APQ的面积为S(平方单位),求S与t之间的函数关系式.13.如图,在平面直角坐标系xOy中,矩形OABC的顶点为A(8,0)、C(0,4),点B在第一象限.现有两动点P和Q,点P从原点O出发沿线段OA(不包括端点O,A)以每秒2个单位长度的速度匀速向点A运动,点Q从点A出发沿线段AB(不包括端点A,B)以每秒1个单位长度的速度匀速向点B运动.点P、Q同时出发,当点P运动到点A时,P、Q同时停止运动,设运动时间为t(秒).(1)直接写出点B的坐标,并指出t的取值范围;(2)连结CQ并延长交x轴于点D,把CD沿CB翻折交AB延长线于点E,连结DE.①ΔCDE的面积S是否随着t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值;②当t为何值时,PQ//CE?14.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点P从点A出发,沿线段AB以每秒5个单位长度的速度向终点B运动.当点P不与点A、B重合时,过点P作PQ⊥AB,交折线AC−CB 于点Q,过点P、Q分别平行于BC、BA的直线相交于点R.设点P运动的时间为t秒,△PQR与△ABC重叠部分的面积为S.(1)直接写出线段PQ的长.(用含t的代数式表示)(2)当点R落在边AC上时,求t的值.(3)当△PQR与△ABC重叠部分图形为三角形时,求S与t之间的函数关系式.(4)直接写出AQ或PC平分△PQR面积时t的值.15.已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm ,BC=3cm ,点P由B出发沿BA 方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ .若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC;(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC沿QC翻折,得到四边形PQP′C ,那么是否存在某一时刻t ,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.16.已知△ABC为等边三角形,AB=6,P是AB上的一个动点,(与A、B不重合),过点P作AB 的垂线与BC相交于点D,以点D为正方形的一个顶点,在△ABC内作正方形DEFG,其中D、E 在BC上,F在AC上,(1)设BP的长为x,正方形DEFG的边长为y,写出y关于x的函数解析式及定义域;(2)当BP=2时,求CF的长;(3)△GDP是否可能成为直角三角形?若能,求出BP的长;若不能,请说明理由.17.如图(1)所示,直线m⊥n,A、B分别为直线m、n上两点.(1)当OA=OB时,作直线OQ,过点A、B两点分别作AM⊥OQ于点M,BN⊥OQ于点N,若AM=4,BN=3,求MN的长.(2)如图(2),OA=5,点B为直线m上方直线n上动点,分别以OB、AB为边,点B为直角顶点,在△ABO外侧作等腰直角三角形OBF和等腰直角三角形ABE,∠ABE=∠ABF=900,联结EF交直线m于点P,问:当点B运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请说明理由.18.如图1,Rt △ABC中,∠C=90°,BC=8cm,AC=6cm,点D是BC上的一个定点.动点P从点C出发,以每秒2厘米的速度沿C-A-B方向运动,动点Q从D出发,以1cm/s的速度沿D→B方向运动.点P出发5s后,点Q才开始出发,且当一个点达到B时,另一个点随之停止.图2是当0≤t≤5时△BPQ的面积S(cm2)与点P的运动时间t(s)的函数图象.(1)CD=________,S=________cm2;(2)当点P在边AB上时,t为何值时,使得△BPQ与△ABC为相似?(3)运动过程中,求出当△BPQ是以BP为腰的等腰三角形时t的值.19.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为________,F的坐标为________;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.20.在平面直角坐标系中,点A( 2 , 0 ),点B (2 , 2).将△OAB绕点B顺时针旋转,得△O′A′B,点A,O旋转后的对应点为A′,O′.记旋转角为α.(1)如图①,当α=45°时,求点A′的坐标;(2)如图②,当α=60°时,求点A′的坐标;(3)连接 O A′,设线段OA′的中点为M,连接O′M,求线段O′M的长的最小值(直接写出结果即可).21.在△ABC中,CD是△ABC的中线,如果CD上的所有点都在△ABC的内部或边上,则称CD为△ABC的中线弧.(1)在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中点.①如图1,若∠A=45°,画出△ABC的一条中线弧CD,直接写出△ABC的中线弧CD所在圆的半径r的最小值;②如图2,若∠A=60°,求出△ABC的最长的中线弧CD的弧长l .(2)在平面直角坐标系中,已知点A(2,2),B(4,0),C(0,0),在△ABC中,D是AB的中点.求△ABC的中线弧CD所在圆的圆心P的纵坐标t的取值范围.22.如图,在Rt△ABC中,∠BAC=90°,∠B=30°,AD⊥BC于D,AD=4cm,过点D作DE∥AC,交AB于点E,DF∥AB,交AC于点F.动点P从点A出发以1cm/s的速度向终点D运动,过点P作MN∥BC,交AB于点M,交AC于点N.设点P运动时间为x (s),△AMN与四边形AEDF重叠部分面积为y(cm2).(1)AE=________cm,AF=________cm;(2)求y关于x的函数解析式,并写出x的取值范围;(3)若线段MN中点为O,当点O落在∠ACB平分线上时,直接写出x的值.23.如图,在Rt△ABC中,∠ACB=90°,AC、BC的长为方程x2﹣14x+a=0的两根,且AC﹣BC=2,D为AB的中点.(1)求a的值.(2)动点P从点A出发,以每秒2个单位的速度,沿A→D→C的路线向点C运动;动点Q从点B出发,以每秒3个单位的速度,沿B→C的路线向点C运动,且点Q每运动1秒,就停止2秒,然后再运动1秒…若点P、Q同时出发,当其中有一点到达终点时整个运动随之结束.设运动时间为t秒.①在整个运动过程中,设△PCQ的面积为S,试求S与t之间的函数关系式;并指出自变量t的取值范围;②是否存在这样的t,使得△PCQ为直角三角形?若存在,请直接写出所有符合条件的t的值.。
中考数学抛物线压轴题之等腰三角形(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.3.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.4.如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).(1)求过O、B、A三点的抛物线的解析式.(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.6.如图,已知二次函数L1:y=ax2﹣2ax+a+3(a>0)和二次函数L2:y=﹣a(x+1)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是.(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+1)2+1=0的解.7.在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B 的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.8.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.9.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l 经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m 为何值时,△OPQ是等腰三角形.10.如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A (﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.11.在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过点D、B、E的抛物线的解析式;(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE 为等腰三角形,求Q点的坐标.12.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.13.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.14.如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.15.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.16.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.17.如图1,抛物线y=﹣x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积S阴影;(2)如图2,直线AB与y轴相交于点P,点M为线段OA上一动点,∠PMN为直角,边MN与AP相交于点N,设OM=t,试探究:①t为何值时△MAN为等腰三角形;②t为何值时线段PN的长度最小,最小长度是多少.18.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求此抛物线的表达式:(2)过点P作PN⊥BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由.19.如图1,抛物线y=﹣++2与x轴相交于A、B两点(点A在点B的右侧),与y轴相交于点C,对称轴与x轴相交于点H,与AC相交于点T.(1)点P是线段AC上方抛物线上一点,过点P作PQ∥AC交抛物线的对称轴于点Q,当△AQH面积最大时,点M、N在y轴上(点M在点N的上方),MN=,点G在直线AC上,求PM+NG+GA的最小值.(2)点E为BC中点,EF⊥x轴于F,连接EH,将△EFH沿EH翻折得△EF'H,如图所示,再将△EF'H沿直线BC平移,记平移中的△EF'H为△E'F″H',在平移过程中,直线E'H'与x轴交于点R,则是否存在这样的点R,使得△RF'H'为等腰三角形?若存在,求出R点坐标.20.如图1,在平面直角坐标系中,抛物线y=x2﹣x﹣4交x轴于A、B两点,交y轴于点C.(1)点P为线段BC下方抛物线上的任意一点,一动点G从点P出发沿适当路径以每秒1个单位长度运动到y轴上一点M,再沿适当路径以每秒1个单位长度运动到x轴上的点N,再沿x轴以每秒个单位长度运动到点B.当四边形ACPB面积最大时,求运动时间t的最小值;(2)过点C作AC的垂线交x轴于点D,将△AOC绕点O旋转,旋转后点A、C的对应点分别为A1、C1,在旋转过程中直线A1C1与x轴交于点Q.与线段CD交于点I.当△DQI是等腰三角形时,直接写出DQ的长度.1.抛物线的解析式:y=﹣x2+2x+3.(2)连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,∴PA=PB,∴BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:,解得:∴直线BC的函数关系式y=﹣x+3;当x=1时,y=2,即P的坐标(1,2).(3)抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,3),则:MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2﹣6m+10,得:m=1;②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2﹣6m+10=10,得:m1=0,m2=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,﹣)(1,1)(1,0).方法二:(1)∵A(﹣1,0)、B(3,0)、C(0,3),∴y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3.(2)连接BC,∵l为对称轴,∴PB=PA,∴C,B,P三点共线时,△PAC周长最小,把x=1代入l BC:y=﹣x+3,得P(1,2).(3)设M(1,t),A(﹣1,0),C(0,3),∵△MAC为等腰三角形,∴MA=MC,MA=AC,MC=AC,(1+1)2+(t﹣0)2=(1﹣0)2+(t﹣3)2,∴t=1,(1+1)2+(t﹣0)2=(﹣1﹣0)2+(0﹣3)2,∴t=±,(1﹣0)2+(t﹣3)2=(﹣1﹣0)2+(0﹣3)2,∴t1=6,t2=0,经检验,t=6时,M、A、C三点共线,故舍去,综上可知,符合条件的点有4个,M1(1,),M2(1,﹣),M3(1,1),M4(1,0).(4)作点O关于直线AC的对称点O交AC于H,作HG⊥AO,垂足为G,∴∠AHG+∠GHO=90°,∠AHG+∠GAH=90°,∴∠GHO=∠GAH,∴△GHO∽△GAH,∴HG2=GO•GA,∵A(﹣1,0),C(0,3),∴l AC:y=3x+3,H(﹣,),∵H为OO′的中点,∴O′(﹣,),∵D(1,4),∴l O′D:y=x+,l AC:y=3x+3,∴x=﹣,y=,∴Q(﹣,).2.(1)抛物线解析式为y=x2﹣2x﹣3,(2)由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵B(3,0),A(﹣1,0),C(0,﹣3),∴BC=3,BE=2,CE=,∵直线y=﹣x+1与y轴交于点D,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD=,∴,,,∴,∴△BCE∽△BDO,(3)存在,理由:设P(1,m),∵B(3,0),C(0,﹣3),∴BC=3,PB=,PC=,∵△PBC是等腰三角形,①当PB=PC时,∴=,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3=,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,∴3=,∴m=﹣3±,∴P(1,﹣3+)或P(1,﹣3﹣),∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣)3.(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)此抛物线的解析式为y=﹣x2+x;(3)存在;如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△P′OD中,∠P′DO=90°,sin∠P′OD==,∴∠P′OD=60°,∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,即P′、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2).方法二:(3)设P(2,t),O(0,0),B(﹣2,﹣2),∵△POB为等腰三角形,∴PO=PB,PO=OB,PB=OB,(2﹣0)2+(t﹣0)2=(2+2)2+(t+2)2,∴t=﹣2,(2﹣0)2+(t﹣0)2=(0+2)2+(0+2)2,∴t=2或﹣2,当t=2时,P(2,2),O(0,0)B(﹣2,﹣2)三点共线故舍去,(2+2)2+(t+2)2=(0+2)2+(0+2)2,∴t=﹣2,∴符合条件的点P只有一个,∴P(2,﹣2).(4)∵点B,点P关于y轴对称,∴点M在y轴上,设M(0,m),∵⊙M为△OBF的外接圆,∴MO=MB,∴(0﹣0)2+(m﹣0)2=(0+2)2+(m+2)2,∴m=﹣,M(0,﹣).4.(1)∵该抛物线经过点A(5,0),O(0,0),∴该抛物线的解析式可设为y=a(x﹣0)(x﹣5)=ax(x﹣5).∵点B(4,4)在该抛物线上,∴a×4×(4﹣5)=4.∴a=﹣1.∴该抛物线的解析式为y=﹣x(x﹣5)=﹣x2+5x.(2)以O、A、B、M为顶点的四边形中,△OAB的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大.①当0<x<4时,点M在抛物线OB段上时,如答图1所示.∵B(4,4),∴易知直线OB的解析式为:y=x.设M(x,﹣x2+5x),过点M作ME∥y轴,交OB于点E,则E(x,x),∴ME=(﹣x2+5x)﹣x=﹣x2+4x.S△OBM=S△MEO+S△MEB=ME(x E﹣0)+ME(x B﹣x E)=ME•x B=ME×4=2ME,∴S△OBM=﹣2x2+8x=﹣2(x﹣2)2+8∴当x=2时,S△OBM最大值为8,即四边形的面积最大.②当4<x<5时,点M在抛物线AB段上时,图略.可求得直线AB解析式为:y=﹣4x+20.设M(x,﹣x2+5x),过点M作ME∥y轴,交AB于点E,则E(x,﹣4x+20),∴ME=(﹣x2+5x)﹣(﹣4x+20)=﹣x2+9x﹣20.S△ABM=S△MEB+S△MEA=ME(x E﹣x B)+ME(x A﹣x E)=ME•(x A﹣x B)=ME×1=ME,∴S△ABM=﹣x2+x﹣10=﹣(x﹣)2+∴当x=时,S△ABM最大值为,即四边形的面积最大.比较①②可知,当x=2时,四边形面积最大.当x=2时,y=﹣x2+5x=6,∴M(2,6).(3)由题意可知,点P在线段OB上方的抛物线上.设P(m,﹣m2+5m),则Q(m,m)当△PQB为等腰三角形时,①若点B为顶点,即BP=BQ,如答图2﹣1所示.过点B作BE⊥PQ于点E,则点E为线段PQ中点,∴E(m,).∵BE∥x轴,B(4,4),∴=4,解得:m=2或m=4(与点B重合,舍去)∴m=2;②若点P为顶点,即PQ=PB,如答图2﹣2所示.易知∠BOA=45°,∴∠PQB=45°,则△PQB为等腰直角三角形.∴PB∥x轴,∴﹣m2+5m=4,解得:m=1或m=4(与点B重合,舍去)∴m=1;③若点Q为顶点,即QP=QB,如答图2﹣3所示.∵P(m,﹣m2+5m),Q(m,m),∴PQ=﹣m2+4m.又∵QB=(x B﹣x Q)=(4﹣m),∴﹣m2+4m=(4﹣m),解得:m=或m=4(与点B重合,舍去),∴m=.综上所述,当△PQB为等腰三角形时,m的值为1,2或.5.(1).(2)①设直线AB的解析式为y=kx+b.∴解得:,∴直线AB的解析式为.∴C点坐标为(0,)∵直线OB过点O(0,0),B(3,﹣3),∴直线OB的解析式为y=﹣x.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设P(x,﹣x),(i)当OC=OP时,.解得,(舍去).∴P 1(,).(ii)当OP=PC时,点P在线段OC的中垂线上,∴P2(,﹣).(iii)当OC=PC时,由,解得,x 2=0(舍去).∴P3(,﹣).∴P点坐标为P 1(,)或P2(,﹣)或P3(,﹣).②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH,=DQ(OG+GH),=,=,∵0<x<3,∴当时,S取得最大值为,此时D(,﹣).方法二:(1)略.(2)①由A(﹣1,﹣1),B(3,﹣3)得l AB:y=﹣x﹣,∴C(0,﹣),l OB:y=﹣x,设P(t,﹣t),O(0,0),C(0,﹣),∵△OPC为等腰三角形,∴OP=OC,OP=PC,PC=OC,(t﹣0)2+(﹣t﹣0)2=(0﹣0)2+(0+)2,∴t1=,t2=﹣(舍),(0﹣0)2+(0+)2=(t﹣0)2+(﹣t+)2,∴t1=,t2=0(舍),(t﹣0)2+(﹣t﹣0)2=(t﹣0)2+(﹣t+)2,∴t=,∴P点坐标为P 1(,)或P2(,﹣)或P3(,﹣).②过D作x轴垂线交OB于Q,∵B(3,﹣3),∴l OB:y=﹣x,设D(t,﹣t2+t),Q(t,﹣t),∵S△OBD=(D Y﹣Q Y)(B X﹣O X),∴S△OBD=(﹣t2+t+t)•(3﹣0)=﹣t2+t,当t=时,S有最大值,D(,﹣).(3)∵△FAB是以AB为斜边的直角三角形,∴∠GOA+∠BOH=90°,∵BH⊥OH,∴∠OBH+BOH=90°,∴∠GOA=∠OBH,∴△GOA∽△OBH,∵点F为x轴上一动点,∴设F(m,0),∵A(﹣1,﹣1),B(3,﹣3),∴,∴m2﹣2m=0,∴m=0或2,∴F 1(0,0),F2(2,0).6.(1)∵二次函数L1:y=ax2﹣2ax+a+3=a(x﹣1)2+3,∴顶点M坐标为(1,3),∵a>0,∴函数y=ax2﹣2ax+a+3(a>0)的最小值为3,∵二次函数L1的对称轴为x=1,当x<1时,y随x的增大而减小;二次函数L2:y=﹣a(x+1)2+1的对称轴为x=﹣1,当x>﹣1时,y随x的增大而减小;∴当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是﹣1≤x≤1;。
Ox x BAyPyP 两轴负半轴上一动点, 过点轴的垂线交图象于是作 1 .已知函数的图象如图所示,点,4 D . C . 3 B A . 1 . 2.C 【答案】POBPOMOAxONxNAOB 是边=+4,点上的点.若使点°,点2017 . 2 (浙江省绍兴市) 如图,/ =45、在边上,xNPM244 x 42 4xx =或 【答案】.=0或)求二次函数的解析式;(1CCIOABxIxI 作’与线段,过点’,相交于点( 2)直线沿轴下方的抛物线相交于点轴向右平移,得直线,与IEBCEIECE X E )'折叠,当点,求直线恰好落在抛物线上点丄’的解析式;轴于点’时(图,把△2沿直线IBONPBONIyNO 上的动点, (3)在(2)的条件下,为’与逆时针旋转轴交于点135 °得到△,把△绕点’, PPBN 当△'为等腰三角形时,求符合条件的点’的坐 y 3 Ox x OBOA 、.下列结论:点,连接 yyxxxyMxyM ;, <(, 0)在图象上,且,则①若点v (,v ) 2121212112 AOBF 是等腰三角形; 0,-3②当点) 时,△坐标为(BPSAPP,;③无论点在什么位置, 始终有=4=7.5 AOE J | J | 626 APAOB.)④当点的坐标为(移动到使/ =90° 时,点,) 其中正确的结论个数为(动点等腰三角形专题12 值是•、构成等腰三角形的点恰好有三个,则标. —333 3332332 82次 y x Pyx ; 3)或(,3; (3))或坐标为(2 ()【答案】(10) =,-- 2233点(4.如图,已知抛物线 0, 3B 的坐标. 度的速度沿轴正方向运动,同时动点)动点( 段点到达点时,作QPt 秒.,交抛物线于点 ②当〉时,△能否为等腰三角形?若能,求岀 —3332 3 323 33,). ( 222y x bx C yAxBx =1.),与,对称轴是直线正半轴相交于点与轴相交于)求此抛物线的解析式以及点 (1MOxN 岀发,以每秒3从点从点个单岀发,以每秒 2个单位长 2yNAMNMxAB 点、同时停止运动.过动点位长度的速度沿轴正方向运动,当轴的垂线交线,设运动的时间为tOMPN 为矩形.为何值时,四边形 ①当tBOQt 的值;若不能,请说明理由.02xyMI .的纵坐标为的解析式23X y x 2B 2)①;②.,o );,【答案】(1)(点坐标为(3822ax bx y MCABxAy 是抛物点,已知,(3,、5.如图,抛物线o 两点,与) 轴交于,且1与(轴交于3线上另一点.ba ( 1)求的值;、PCACPyPAE 点为顶点的三角形是等腰三角形,求)连结、 ,设点点的坐标;是、轴上任一点,若以2 (HNxOANHACN/点.重合),过点(3)若点作是轴正半轴上且在抛物线内的一动点(不与交抛物线的对称轴于、2 a 5 3V 「21313 2 P )(02)点的坐标(o ,2)或(3,,);)或(o ,)或(0【答案】(1 ;)(144 b 3 11 21) (0 tt t 33 S . 11 23) tt (1t 33 和 32CCAAOABCQ 和,2), 6.如图,在平面直角坐标系中,为原点,四边形(是矩形,点,0的坐标分别是(0DBDEDBDE X EBDCACDA 边作矩形丄,交,作,轴于点,以线段点是对角线上一动点(不与,重 合),连结BDEF . B ; 1 ()填空:点的坐标为 ___________________ 32a ax9 23axy yBACAEABCC 与坐标轴交于 7.的平分线如图,已知抛物线, 3,)三点,其中,/( 0, NMEDIACABDBC 过点,的直线于点分别交于点与射线,轴于点.,交Aa 的值、点)直接写岀的坐标及抛物线的对称轴;(1PPPAD 的坐标;(2)点为等腰三角形,求岀点为tSSONHON t 求的面积为之间的函数关系式.ADDECD ( 2)是否存在这样的点是等腰三角形?若存在,请求岀,使得△的长度;若不存在,请说明理由; 3DB=,矩形 (3;)①求证:圏⑴3-1厂「匕 232323 4X 23xy X AD 时,;((【答案】 1) 3 ( =32 ,); ( 2) 2的值为,当或)①证明见解析;② 3y •有最小值知抛物线轴的交点为1C 的解析式;(1)求i mclyxm 2 :仅有唯一的交点,求 =)若直线与+的值;(叩yxlncyc 为何值时,轴的直线记作:平行于.212CIC 和与共有:①两个交点;②三个交点;③四个交点;221PABXPCX 轴上求点(4)若与,使△轴正半轴交点记作为等腰三角形. ,试在 *320*019学年度第一学期生物教研组工作计划 指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。
努力实现教学创新,改革教学和学习方式,提高课堂教学效益,促进学校的内涵性发展。
同时,以新课程理念为指导,在全面实施新课程过程中,加大教研、教改力度,深化教学方法和学习方式的研究。
正确处理改革 与发展、创新与质量的关系,积极探索符合新课程理念的生物教学自如化教学方法和自主化 学习方式。
主 要工作一、教研组建设 方面:、深入学习课改理论,积极实 施课改 实践。
、以七年级新教材为“切入点” ,强 化理论学习和教学实践。
、充分发挥教研 组的作用,把先进理念学习和教学实践有机的结合起来,做到以学促研,以 研促教,真正实现教学质量的全面提升。
、强化教学过程管理,转变学生的学习方式,提高课堂效益,规范教学 常规管理,抓好“五关” 。
()备课关。
要求教龄五年以下 的教师备抛物线的对称轴上一动点,若△ 11 DI 绕点旋转时,(3)证明:当直线均为定值,并求岀该定值. ANAM1%厂厂 J" 厂 3333 PaAX 或0, 2= ; (2)点,【答案】(1))或(=,的坐标为(,抛物线的对称轴为(-,0)匚 3 3.) 抛物线两点(点在点与8.,与轴交于、的左侧)33CxDEnAE 的解析式;(1)求直线 CBCBKCEPCPEPCE 的下!方抛物线上的一点,连接,点,为直线,当△是线段2 ()点的面积最大时,连接 NKKMMNMCPN 是+上的一点,点中点,点的最小值;是323叮 23 y x x yGCEyDx ,轴正方向平移得到新抛 物线’经过点(3)点沿是线段将抛物线的中点, ,33QFGQyFy 为等腰三角形?若存在,直接写岀点’的顶点为点’的对称轴上,是否存在一点.在新抛物线,使得△ 的坐标;若不存在,请说明理由. 21 2 4 221 43 32 y x Q , 【答案】(1,) 3; (3)的坐标为(3)或(,)或' 32 ,3).或(5DAyc ) . (0 的顶点为,(—1, 4),与 39.已 试结合图形回答:(3)若抛物线=关于轴对称的抛物线记作当, 2423 2x x y nn , 0)或(,(-4 ;或<)(【答案】 1;③;②)① 2; () (; 3433 v 4V 3 () 503 -) 45 (3 (),- 4;22_ 2y x x 3ByBAAX 如图,在平面直角坐标系中,在抛物线上.4轴交于点,对称轴与轴交于点,点(,4 +上的一点,求 (33 (; 2) 33331 或(3+, 0) . 6详案,提倡其他教师备详案。
要求教师的教案能体现课改理念。
()上课关。
()作业关。
首先要控制学生作业的量,本着切实减轻学生负担的精神,要在作业批改上狠下工夫。
()考试关。
以确保给学生一个公正、公平的评价环境。
()质量关。
、加强教研组凝聚力,培养组内老师的团结合作精神,做好新教师带教工作。
二、常规教学方面:加强教研组建设。
兴教研之风,树教研氛围。
特别要把起始年级新教材的教研活动作为工作的重点。
、教研组要加强集体备课共同分析教材研究教法探讨疑难问题由备课组长牵头每周集体备课一次,定时间定内容,对下一阶段教学做到有的放矢,把握重点突破难点、教研组活动要有计划、有措施、有内容,在实效上下工夫,要认真落实好组内的公开课教学。
、积极开展听评课活动,每位教师听课不少于20 节,青年教师不少于节,兴“听课,评课”之风,大力提倡组内,校内听随堂课。
、进一步制作、完善教研组主页,加强与兄弟学校的交流。
我们将继续本着团结一致,勤沟通,勤研究,重探索,重实效的原则,在总结上一学年经验教训的前提下,出色地完成各项任务。
校内公开课活动计划表日期周次星期节次开课人员拟开课内容10月127四王志忠生物圈10 月137五赵夕珍动物的行为12月114 五赵夕珍生态系统的调节12月2818 四朱光祥动物的生殖镇江新区大港中学生物教研组xx- 20X 下学期生物教研组工作计划范文20X 年秋季生物教研组工作计划化学生物教研组的工作计划生物教研组工作计划下学期生物教研组工作计划年下学期生物教研组工作计划20X年化学生物教研组计划20X年化学生物教研组计划中学生物教研组工作计划第一学期生物教研组工作计划20XX-019学年度第二学期高中英语教研组工作计划XX-XX学年度第二学期高中英语教研组工作计划一.指导思想:本学期,我组将进一步确立以人为本的教育教学理论,把课程改革作为教学研究的中心工作,深入学习和研究新课程标准,积极、稳妥地实施和推进中学英语课程改革。
以新课程理念指导教研工作,加强课程改革,紧紧地围绕新课程实施过程出现的问题,寻求解决问题的方法和途径。
加强课题研究,积极支持和开展校本研究,提高教研质量,提升教师的研究水平和研究能力。
加强教学常规建设和师资队伍建设,进一步提升我校英语教师的英语教研、教学水平和教学质量,为我校争创“三星” 级高中而发挥我组的力量。
二.主要工作及活动:.加强理论学习,推进新课程改革。
组织本组教师学习《普通高中英语课程标准》及课标解度,积极实践高中英语牛津教材,组织全组教师进一步学习、熟悉新教材的体系和特点,探索新教材的教学模式,组织好新教材的研究课活动,为全组教师提供交流、学习的平台和机会。
.加强课堂教学常规,提高课堂教学效率。
强化落实教学常规和“礼嘉中学课堂教学十项要求”。
做好集体备课和二备以及反思工作。
在认真钻研教材的基础上,抓好上课、课后作业、辅导、评价等环节,从而有效地提高课堂教学效率。
加强教学方法、手段和策略的研究,引导教师改进教学方法的同时,引导学生改进学习方法和学习策略。
.加强课题研究,提升教科研研究水平;加强师资队伍建设,提升教师的教学能力。
组织教师有效开展本组的和全校的课题研究工作做到有计划、有研究、有活动、有总结,并在此基础上撰写教育教学论文,并向报刊杂志和年会投稿。